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Exact Confidence Regions for Linear Regression Parameter under
External Arbitrary Noise!
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Abstract—The paper propose new method for identifying
non-asymptotic confidence regions for linear regression parame-
ter under external arbitrary noise. This method called Modified
Sign-Perturbed Sums (MSPS) method and it is a modifica-
tion of previously proposed one, called Sign-Perturbed Sums
which is applicable only in case of symmetrical centred noise.
MSPS algorithm correctness and obtained confidence region
convergence are proved theoretically under some additional
assumptions. SPS and MSPS methods are compared basing
on simulated data. Few advantages of MSPS method in case of
biased and asymmetric noise are illustrated.

I. INTRODUCTION

The system identification consists of two major problems:
obtaining mathematical model of dynamic system and es-
timation of obtained model parameters or their boundaries
from noised measurements [1]. Noise may appear from
absolutely different sources. It could be result of difference
between complex real world systems and chosen mathemat-
ical model which often induce many implicit assumptions
and uncertainties. It also could result from the outside of the
model, for example, intentionally injected by the opponent.
Such types of noise produced by sources not within the
model and independent from system inputs we will call
external noise. It is important to note that external noise is
not only measurement model error — it could have any kind
of distribution or, moreover, be deterministic. However, it is
often rather difficult to determine real nature and true proper-
ties of corresponding noise. Therefore, developing methods
and procedures for assessment of a model quality is another
central issue in system identification [1], [2]. The model
parameter’s estimation could be done in two ways. The first
one is to estimate exact values of the parameter’s. The second
one is to construct so called confidence region which contains
true parameter’s values with specified probability. We focus
on the confidence region construction task.

In this paper we consider only linear regression model.
Despite the fact that more complex models could better fit
complex systems and hence reduce the uncertainty, such
models could also overfit real system. Many types of models
could be reduced to linear regression model via differ-
ent techniques, such as linearisation or redesignation. As
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an example, auto-regression with exogenous input, finite
impulse-response models, and many others models could
be reduced to multivariate linear regression. Hence, it is
natural to develop almost arbitrary noise-robust confidence
region construction method for linear regression model. We
formulate linear regression model as following
yi=¢ 0 +&, i=1,...,N, (1)

where N is a number of observations, ¢; € R? is a system
input, y; € R is a system output, & € R is an unknown noise
and 8* € R? is an unknown system parameter.

In paper we aimed at the second task: for given probability
o € [0,1] construct exact o-confidence region, which we
defined as

Definition 1: For given a € [0,1] ©®y is exact o-
confidence region for parameter 6* if

P(6* € Oy) = 0.

There are some classical methods for confidence region
construction in linear regression model which works well
under assumption of i.i.d. Gaussian noises & (see, for ex-
ample [1]). Asymptotic-theory for system identification (see,
e.g., [1], [3]) is the standard approach for confidence region
construction, if an exact noise distribution is unknown,. The
asymptotic-theory have been successfully applied in many
practical tasks, but its results are precise only if N tends
to infinity. In case of finite and especially small number
of observations it could cause erroneous results. However,
until recent decades, there were almost no methods for
constructing exact (non-asymptotic) confidence regions for
linear regression in case of external arbitrary noise.

Surprising, introducing additional randomnicity into con-
sidering model could not only increase quality of parameter
estimation (for example, see [3]), but also made parameter’s
exact confidence region construction possible even under
almost arbitrary noise. Such techniques, which consist of
implantation additional randomnicity into system called ran-
domization and successfully applied in variety of areas (for
examples, see [4], [5], [6], [7], [8]). Interesting randomized
algorithm for linear regression parameter estimation problem
under almost arbitrary noise proposed in [9].

Generally, one approach called Set Membership Identifi-
cation could be successfully used under assumptions that
noise is arbitrary except its boundaries are known apriori.
The provided guaranteed region consist of such values 6
which do not violate this apriori boundaries [10], [11], [12].
Besides, prior knowledge of noise boundaries is quite a
strong requirement, which is not always true.
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A significant breakthrough was done in recent work [13],
in which authors M.C. Campi, E. Weyer and B.C. Csaji
introduced method called Sign-Perturbed Sums (SPS) for
construction exact confidence region for linear model param-
eter in case of noise symmetrically distributed around zero.
This method is tied to the concept of sign-perturbed sum

N
Sk(0) =Y ariti(vi— ¢/ 0).k=1,....M—1, (2
i=1

1,
i =193 _

where k is just some index and ay; called random signs.
This method is based on the idea similar to Leave-out Sign-
dominant Correlation Regions (LSCR) method. The idea
is that, under several assumptions, sums S;(6) and sum
So(8) = YN, ¢:(yi — 97 0) distributed equally if 6 = 6*.
Briefly, SPS use symmetry of noise distribution to provide
equality of all sign-perturbed sums distributions to use it in
further confidence regions construction.

Nevertheless, SPS method have several significant limi-
tations. First, due to the lack of solid analysis, there are
no theoretical results so far, that states some ®,s, prop-
erties, such as statistical mean and variation of its borders
and asymptotically N — oo behaviour. Second, because of
assumptions done in SPS, we could not always assume that
noise is symmetrical and unbiased. In many practical cases
noise bias is too significant to neglect it [1]. Moreover,
noise asymmetry could play big role especially in small data
sets [13].

This papers focuses on the second limitation. In this
paper we introduce modification of SPS algorithm called
Modified Sign-Perturbed Sums (MSPS) which use symmetry
of system inputs x; instead of & to provide equality of all
MSPS analogues of sign-perturbed sums distribution. So, it
pushing the symmetrical distributed role from the noises to
system inputs. MSPS is aimed on use in situations when
SPS is inapplicable due to asymmetry of noise distribution
but symmetry of system inputs distribution around known
mean.

This paper organized as follows. At first, we formulate
problem statement as confidence region constructing problem
under external arbitrary noise in the first section. Then we
MSPS algorithm which provide exact confidence regions
with user-chosen probability under external arbitrary noise
in Section III. We also provide some theoretical results about
algorithm correctness and properties of obtained confidence
region, collaterally show more effective way for confidence
region calculation in one-dimensional case in Section III-A.
Finally, in Section IV we present comparative examples on
simulated data in section.

with probability
with probability

B = —

II. PROBLEM STATEMENT
The overall problem statement is as follows. In terms of
model (1) and under following assumptions

1) {&}Y, — an unknown arbitrary noises independent
from model inputs {¢}Y ;

2) {9}, — observable but uncontrollable i.i.d. inputs,
symmetrically distributed about known mean my = E¢;
Vi=1,...,N

for given probability o € [0,1] we need to construct exact
a-confidence region ®, for parameter 6*, such as

P(6*€®a) = .

One important feature of these assumptions is that the restric-
tions imposed on the noise distribution are extremely weak.
This makes most of known confidence region construction
techniques (at least all mentioned in this paper) inapplicable.

III. MODIFIED SIGN-PERTURBED SUMS

Hereinafter we presume that Assumptions II satisfied. In
order to describe a Modified Sign-Perturbed Sums algorithm
we should introduce modified sign-perturbed sum notation.

N
SK(8) = ) ariAi(yi — 9/ 6) = 3)
=1

ar,i (¢ —my) (vi — 9/ 0),

=

1

where my is a known ¢; mean, and we denote A; = ¢; —my.
This sum is similar to sign-perturbed sum (2) introduced
in [13] with only difference in added my. The key idea of the
subtraction is that (¢; —mg ) multiplier plays the role which ¢
plays in original SPS method. Since €& no longer symmetric
about zero this property “transferred* to (¢; —my ).

A. MSPS algorithm

The MSPS exact confidence region construction algorithm
is quite similar to SPS algorithm and consist of computation
of all sums S;(0) for all values 6 and returns TRUE if
0 belongs to confidence regions and FALSE otherwise.
Algorithm 1 is pseudo code of single MSPS procedure.

The key idea of the MSPS algorithm is that in case
of ¢; symmetrically distributed around zero, all sums
Sk(6%) = ):f-ilakv,'A,'ei and So(6*) = Z?’ZIA,-S,- are iden-
tically distributed due to the fact that random vectors
(ar1Ar1,...,axyAn) and (Aq,...,Ay) identically distributed.
Thus, if we denote Z; = ||S;(6*)|| for k=0,...,M — 1 than
Zy would took any position in sorted row Z,...,Z_1)
with equal probability . Hence, Zo will not be among g < M
greatest values in {Z;};")' with exact probability 1 — .

It is worth to note, that in case of E¢; =0 MSPS algorithm
is identical to SPS one.

The following theorem stands what set of all 8 for which
algorithm 0 returns true forms an exact (1 — {5 )-confidence
region for parameter 6*.

Theorem 1: In Assumptions II, let M > g € R be two
positive integers, {Sx(8)}; = 1M1 be M — 1 modified sign-
perturbed sums and So(8) = YN | Ai(yi — (¢ —my)T6) be
original not perturbed sum. Taking Z;(0) = ||Sk(0)|[3, k =
0,...,M —1 following set

Ouy={0€R:|{kc{l,....M—1}:Z(8) < Z(0)}| > 1}
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Algorithm 1 MSPS algorithm

procedure MSPS({y;}Y,, {9} |, my,M, q, 6)
foriinl...N do

ni<_J’i—¢iT'6
A,’<—¢i7m¢,

end for

for kinl...M—1 do
Sy~ 0eRP

for iin 1...N do
Sk < Sk +A;-ni- RANDOMSIGN()
end for
Zi + |ISkl[3
end for
So<—0eRP
foriin 1...N do
So < So+A; - n;
end for
Zo + [[Sol13
r< 0
forkinl...M—1 do
if Zy > Z, then
r<—r+1
end if
end for
if r >= g then
return FALSE
else
return TRUE
end if
end procedure

would be an exact confidence region for parameter 6* with
probability 1 — i, that is

Pgivak,i (9* S ®M,q) =1— 1

Proof can be found in Appendix VI.

This theorem is similar for the corresponding theorem
for SPS algorithm [13] as well as modified sign-perturbed
sums similar to sign-perturbed sums. It is essential that this
theorem considers a much wider class of noises because there
is no requirements on its symmetry and mean.

B. Confidence region calculation via SSPS area

In addition, we describe @y, a bit more thoroughly. In
simple words, @, , consists of such points 6 € R4, for which
Zo(0) is greater no more then M —q — 1 different Z;(0).
Equivalent, @)/, consists of points 6, for which Z(0) is
lower than at least ¢ different Z;(0) — so that for at least
q different k inequality Zo(0) < Z;(6) holds true. Using
this interpretation, ®, could be written as an intersections
union.

Remark 1: Note that

Oy g = U (ﬂ{e 1 Z0(8) <Zk(6)}> # 0.

Ic{1,..M—1}:[T|=q \kel

The importance of this result is that we reduce the problem
of @y, calculation to problem of calculation {6 : Zy(0) <
Z1(0)}. We will declare this set as Single Sign-Perturbed
Sum (SSPS) area. Some ways and ideas about how to
calculate SSPS area will be described further.

C. One-dimensional SSPS area

We will examine one-dimensional case (d = 1) because of
its simplicity and interpretability.
Lemma 1: Let g=1. Then

{6:20(6) < Zu(6)} = (B™ BY™),

V(1 —ar) dyi @ _ YN (1 +ak) gy
S (T—ae)e?” T X (1 ag)e?
By = min(B\" ,BY),

P By = max (B,({l) ,B,Ez))

Proof can be found in Appendix VI

It is important to note that by using formulas for Single
Sign-Perturbed Sum area {0 : Zo(0) < Z;(0)} we can sig-
nificantly improve one-dimensional MSPS confidence region
compared to origin point-wise calculation through algo-
rithm 0. Since Bj forming ®y, boundaries, it would be
interesting to find out some of its statistical properties.

Proposition 1: Let By be either B,(Cl) or B,(f) and in addi-
tion for assumption II following is true

where

B =

o {¢;} second and fourth moments exists;

o {&} is either a random variables which raw second
moments exists and bounded by constant C < oo, or
determined sequence of values bounded v/C.

Then
E¢ ¢.a[Bi] = 67,

2
Ee 9.a[Bk — Ee,¢.a[Bt]] 0
where E¢  , is mathematical expectation of joint distribution
of random variables {&} | {¢:}Y,,{a:}Y,.

Proof can be found in Appendix VI.

This proposition brings two important facts. First, the
mean of ©y, boundaries By is equal to true parameter
value 0*, so boundaries just fluctuate around it. Second,
this boundaries tend to 6* with N increased. Summing up,
the confidence region converges to the parameter 6* when
N — oo, By analogy with estimator, the @y, confidence
region could be called unbiased and consistent.

IV. SIMULATED EXAMPLES

In this section we provide illustrated comparison of
SPS, MSPS and asymptotic confidence regions construction
method on simulated data. Since MSPS method is aimed
to replace SPS than the second one is inapplicable we
will illustrate such kind of situation. Additionally, we will
use traditional asymptotic confidence regions construction
to illustrate it inapplicability in such situations. At first,
we briefly describe a method for constructing asymptotic
confidence region under assumption of asymptotic normality
of the noise.
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A. Asymptotic confidence regions

One of the standard methods for 6* parameter estimation
is least squares estimator, which finds the best solution in
terms of least squares error Y | |[y; — ¢;0][3. Obtained esti-
mate is called least squares estimate and could be calculated
by following formula

N
;¢ = are min — o070l
LSE geERdi:ZIHyl (0 ||

Useful fact, that under some moment conditions on the
noise sequence the least square estimate 65z is asymp-
totically normal with cov(éLSE — 0*) converges to Ey =
&2YN [ (¢:0F)~!, where 6 is a g variance estimate [1] and
0* asymptotic confidence region could be calculated as

Ou =1{0:(6—0.56) Ey1(0 — 658) < xa(1)6%/N}, (4)

where x4 (1) — is an x? distribution with 1 degree of free-
dom a-quantile. However, such confidence regions provide
very rough estimate under Assumptions II and could cause
mistakes and incorrect results.

B. Simulation description

In context of this paper cause of Assumptions II we
interested in situation when
« noise has asymmetrical and even biased distribution,
because this is a field of MSPS application,
« data sample size is relatively small, because it confine
the application of asymptotic methods.
We consider that ¢; belongs to R? because it is much easier
to illustrate it on a plane. Furthermore, ¢; is simulated as
Gaussian random vector

1 0
¢i~N(/J.¢,Z¢)7where I'L(P:(l?_l)Ta Z(]): ( 0 1 >
2

and true parameter 8* = (—1,2)7 always. The only thing
that varies in the examples below is the noise &; distribution.

We divide this section into two parts: the first one is
dedicated to the case of relatively big number of observations
(N = 50) and the second one is dedicated to the case of
relatively small number of observations (N = 15).

At each figure we provide three confidence regions: SPS-
based confidence region, MSPS-based confidence region and
confidence region obtained by the asymptotic formula (4).
Notation remark, by N(0,1) we refer to univariate normal
distribution with zero mean, and by Exp(A = 1) we refer to
exponential distribution with rate parameter equal to one.

C. Big sample size

Here we will consider two types of noise: unbiased
symmetric noise and biased asymmetric noise.

1) &~N(0,1)

2) g ~Exp(A=1)+4
It is expected that MSPS will perform slightly worse than
both SPS and 4 in case of symmetric noise, but will out-
perform them in case of noise asymmetry. It could be seen
from the figure la, that corresponds to normally distributed

theta_1
20 25

1.5

1.0

T T T T T

-2.0 -15 -1.0 -0.5 0.0
theta_2

(a) Confidence regions obtained by SPS (blue horizontal lines),
MSPS (yellow vertical lines) and asymptotic one (ellipsoid). True
parameter is marked by circle with dot inside, least squares estimate
is marked by cross

theta_1

-2

theta_2

(b) Confidence regions obtained by SPS (blue horizontal lines),
MSPS (yellow vertical lines) and asymptotic one (ellipsoid). True
parameter is marked by circle with dot inside, least squares estimate
is marked by cross

zero mean (and hence symmetric) noise 1, all confidence
regions contain both true parameter and least square estimate.
Noticeably that MSPS and SPS-confidence regions are much
bigger than the asymptotic one.

Figure 1b corresponds to biased noise and shows MSPS-
based confidence region advantage. Despite the fact that
MSPS confidence region increased in size, it still contains
true parameter value, while both asymptotic and SPS-based
confidence regions a shifted because of noise bias and
asymmetry.

D. Small sample size

Here we will consider the two types of noise: unbiased
asymmetric and biased asymmetric

) &~Exp(A=1)—1,

2) & ~Exp(A=1)+4.
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theta_1

theta_2

(c) Confidence regions obtained by SPS (blue horizontal lines),
MSPS (yellow vertical lines) and asymptotic one (ellipsoid). True
parameter is marked by circle with dot inside, least squares estimate
is marked by cross

10

theta_1

theta_2

(d) Confidence regions obtained by SPS (blue horizontal lines),
MSPS (yellow vertical lines) and asymptotic one (ellipsoid). True
parameter is marked by circle with dot inside, least squares estimate
is marked by cross

The small sample size case is rather important because
the noise asymmetry plays higher role there. As soon as
noise variables are i.i.d they are asymptotically normal due
to Central Limit Theorem (CLT) and hence symmetrical
about zero in case of zero mean. Obviously, SPS should
outperform both opponents in both cases. Indeed, figure 1c
which corresponds to unbiased but asymmetrical noise 1
shows that only MSPS-based confidence region contains
significant 6* neighborhood, whereas is shifted due to noise
asymmetry and SPS-based region becomes unbounded which
is unacceptable. Similar situation is shown on figure 1d
where bias added to asymmetrical noise 1 with asymptotic
confidence interval shifted even further from true parameter
0.

V. CONCLUSION

In this paper we proposed a new method called Modified
Sign-Perturbed Sums (MSPS) for construction exact confi-
dence region of linear regression parameter. This algorithm
is a modified version of previously proposed Sign-Perturbed
Sums (SPS) method [13]. The theoretically proven advan-
tage of the MSPS method is that it could construct exact
confidence regions even under external arbitrary noise.

From the theoretical point of view, this method is based on
the same idea as SPS which consists of obtaining modified
sing-perturbed sums from the observation by using random
signs. It is also shown for one-dimensional case that con-
fidence regions obtained by MSPS method converge to the
true parameter value under some additional assumptions.

From the practical point of view, it is shown that for
biased and asymmetrically distributed noise MSPS confi-
dence region outperforms both SPS confidence regions and
confidence region obtained by classical asymptotic theory,
especially in case of small number of measurements then
big number of measurements can not neglect the noise
asymmetry impact.

In future work we plan to use above described theoretical
results in our practical project: multi-agents control system
for the group of UAVs. One of the important challenging
problems for the UAVs system design is the development of
an optimization flight algorithm. We use the randomized al-
gorithm to estimate the wind direction [14] and to determine
the center of thermal updrafts [15].

VI. APPENDIX

Here we provide the sketch of proof of Theorem 1 and
some of the propositions.

To prove Theorem 1 we first give particular lemma follows
from theorem, proved by B. C. Csaji, M. C. Campi and E.
Weyer in [13] which stands for SPS method.

Lemma 2: B. C. Csaji, M. C. Campi and E. Weyer [13]
Let go be a random variable

¢ 2
go = | Y tixill3,
i=1

where {;}% | are independent random variables symmetri-
cally distributed about zero and {x;})' is some variables,
possibly deterministic, independent from {#;}Y . If ay; are
random signs and random variables {gk}kM: jl defined as

N
gk =l Zak,itixi||%7
i=1

then {gk}k}‘/’= Bl are i.i.d. Furthermore, probability of gy not
being among of g largest values from {g; 2’1:_01 is equal to
1— 4
Having this lemma we now ready to prove Theorem 1.
Proof: Of the theorem 1

To prove the theorem we need to show that for 6* € @y 4

with probability 1 — &, or equivalently that Zy(6*) is less
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than at least ¢ different Z(6*) from {Z(6*)}¥,! with this

probability. Since Zy(6*) and Z;(6*) could be written as

—HZA&II

Here, denoting x; = ¢ and #; = A; for i=1,...,N we can
use Lemma 2 which states that all random (through A; the
randomness) values {Z;(6%)}¥°' are iid and Zy(0*) is
not among ¢ largest values from {Z;(6*)} ' with exact
probability 1— . |
Proof: of Lemma 1
Lets consider inequality Zo(6*) < Z;(6*)

N N
(ZAi(y,— (Zak,iAi(yi—¢i9))2
i=1 i=1
N N
(Y Aiyi — (Y ari9i(vi— 9:6))°

i=1 i=1

N
(1= ar)Ai(yi — 9:6)) (Y (1 +axi)Ai (v
i=1
(211 (1 —aki)Ai(e+A0%) 9) .
Y (1 —ag )7
9> <o.
Proof: of Proposition 1

<Z,1 (1+ak;)Ai(g +Ai6%)
|: iV:1(1 j:ak_’i)A,-(s,-—i—A,'G*)] _

N
2(0%) =1} aridiell,  Zo(8
i=1

( —¢:0)) <0

==

Il
-

Y (1+ap)A?
(1 a)A?

Ee,(p,aB{ak,i} = Ee

1ta;;)A&
= 0" +Eepa [( ) lzl]
Y (1 £ a)A;
Since A; independent from ¢ and EA; =0
(I:I:ak, AS,:| lﬂ:akl’)A'Ei
COCTN (1 £ar,)A2 ,; SO TN (1 a)A?
ZE l:I:aki)A-s,-
e0.a | SN T o
i=1 ﬁéz(liak /)A

Here we got first statement. Two obtain the second one,
note that for any {x;}) inequality 2YY x? > (Y x;)? is true.
Hence,

EepalBia, v —Eeg.aBia 1> =Ee.o. [
el TReoaan TR0 (T (1 ai ) A7 2

N (1+a;;)AEg)?
SCEs,np,a[( T H
( ':](liak,t)Al) N—oo

(X (14 ak,i)Aisi)2:| <

Indeed since ¢ independent with A; we can take mathemat-
ical expectation for them separately. Taking expectation by
& and using their boundedness we obtain

N 2
2 (X (1 £ag)A;)
Bega [B{ak’i} _nglaB{ak’i}] = CPega |:(ZN1 (1+a;)A)*

1
0.
(XY (1+ ak,i)Ai)z] N—eo

Thus, the proposition proved.

=CEepa
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