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Abstract—One of the most difficult problems in cluster
analysis is the identification of the number of groups in a given
data set. In this paper we offer the approach in the framework
of the common “elbow” methodology such that the true number
of clusters is recognized as the slope discontinuity of the
index function. A randomized algorithm has been suggested
to allocate this position. The scenario approach is used to
significantly reduce the computational complexity. We present
weaker necessary conditions to provide a priori chosen level
of confidence. In addition, we present a number of simulation
examples of unknown huge number of groups clustering to
demonstrate theoretical results. Finally, we note that necessary
conditions can be relaxed more and ideas considered potentially
can be extended to a wide range of real-time decision-making
problems in control systems.

I. INTRODUCTION

Cluster analysis methods can be roughly divided into two
categories: clustering and validation methods. The former
implies the assignment of a set of observations into subsets
(called clusters) so that observations in the same cluster are
similar in some sense and the ones from different clusters
are distinct. The latter is intended to determine the optimal
(“true”) number of clusters, which is a fundamental, and
largely unsolved, problem in cluster analysis.

A. Clustering

Numerous approaches to this problem have been suggested
over the years, but none has been accepted as superior so far.
Geometrical standpoints have been employed in the papers:
Dunn [3], Hubert and Schultz [29] (C-index), Calinski-
Harabasz [5], Hartigan [6], Krzanowski-Lai [7], Sugar-James
[10], Gordon [8], Milligan and Cooper [9] and Tibshirani,
Walter and Hastie [25] (the Gap Statistic method).

Stability models compare pairs of clustered samples ob-
tained by applications of a clustering algorithm where par-
titions consistency is interpreted as their reliability [26], so
that the “true” number of clusters is yielded by the maximal
stability score. In this way, in works of Levine and Domany
[12], Ben-Hur, Elisseeff and Guyon [13] stability criteria are
presented via the fractions of times that pairs of elements
assert the same membership within of a clustering algorithm
reiterations. Bel Mufti, Bertrand, and El Moubarki [14] use
the Loevinger’s measure of isolation to determine a stability
function.
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Additional perception utilizes external correlation indexes
as a stability degree. For example, such a method has been
implemented in the known Clest approach of Dudoit and
Fridlyand [17]. A general prediction resampling procedure
has been proposed by Lange, Roth, Braun and Buhmann
[18]. Tibshirani and Walther [25] consider a comparable
forecast strength process. Jain and Moreau [19] consider the
dispersions of empirical distributions as a stability measure.

Nonparametric density estimation methodology attains the
number of clusters at the probability density function peaks.
The clustering settles on each item of one ‘“domain of
attraction” of the density modes. Evidently, Wishart [30]
firstly offered to look for modes in order to discover the
cluster structure. Apparently, this idea was stated by Hartigan
([6] and [11]) to institute the notion of high density mode
clusters. The cluster quantity is given here by the number
of regions where the density is bigger than a specified level.
Thus, clusters are viewed as isolated islands of “high” density
in the ocean of “low” densities. (see, for example, [27] and
[28]).

Unfortunately, many of the approaches concerned were
developed for a specific problem and are somewhat ad hoc.
Those methods that are more generally applicable tend either
to be model-based, and hence require strong parametric
assumptions, or to be of high computational complexity, or
both.

B. Randomized Approach

In order to avoid computational intensity one can exploit
stochastic approaches. One of those — Randomized scenario
approach [1] — is actively used for solving RCP (Robust
Convex Problems). Generally RCP is NP-hard problem.
The fundamental idea is to consider only a finite number
of sampled instances of uncertainty affecting the system
(the scenarios), and to solve in one shot the corresponding
standard convex problem. It is proved [1] that the number
of scenarios that need to be considered is reasonably small
and that the solution satisfies with high probability all unseen
scenarios as well. Some examples of scenario approach usage
have been shown in [21]. The developed algorithm of finding
the most significant jump of the index function is mostly
based on previous work [22], where the new algorithm of
finding slope discontinuity was proposed.

In this paper we develop a new randomized method to
choosing the number of clusters. The new algorithm will
be proved under the assumption that the index function
has the only “jump” in the point corresponding to the true

EPEL)

number of clusters. The main idea is to allocate the “jump’s



position relying on maximum differences between a-priory
chosen amount of Chebyshev’s uniform approximations of a
distortion function in different random points. A confidence
interval for the true number of clusters can be obtained by
comparatively small amount of the distortion calculations in
randomly chosen points.

C. Application to Control Systems

With the ability to perform clustering in the real-time
operation mode one can extend its appliance to other related
fields. We assume that decision-making problems in control
systems can benefit essentially. For modern process control
systems collect and store large amounts of data and are
unable to manage it on-line. Hence, innovative data mining
approaches, such as fast randomized clustering algorithm,
can be easily adopted by control systems. In this particular
case system state can be represented as the result of the
clustering algorithm and decision can be made upon that
very result. The quality function estimating system state
depends on the whole data set, operated by the system. That
implies high computational complexity. Such problems arise
in logistics distribution, various graph theory problems [32],
multi-agent, mobile systems [31], networking.

There have been already proposed similar approach in
fuzzy neural networks field (that is clustering algorithm ap-
plied to control system problem). For example, in [33] there
have been implemented an on-line algorithm for creating
self-organizing fuzzy neural networks. The main purpose of
the proposed hybrid fuzzy neural network architecture is to
create self-adaptive fuzzy rules for on-line identification of
a singleton or Takagi-Sugeno (TS) type (Takagi & Sugeno,
1985) fuzzy model of a nonlinear time-varying complex sys-
tem. The proposed algorithm therefore aims to build a self-
organizing neural network which is designed to approximate
a fuzzy algorithm or a process of fuzzy inference through
the structure of neural networks and thus create a more
interpretable hybrid neural network model making effective
use of the superior learning ability of neural networks and
easy interpretability of fuzzy systems.

It can also be used in approach to management-
information automated quality control system development
on the level of technological process is offered [34]. The
basic components of such automated control system structure
are: adaptive clusterization unit, required to automate tech-
nology and quality structurization; preprocessing unit, based
on current statistical technologies of “raw” data analysis,
adaptive local and global models of technology identification
units, required to implement the multistep control and choos-
ing of optimal operating practices; statistical quality control
unit including on-line statistical process control based on
nonparametric methods. Adaptive clusterization unit allows
to obtain groups of products on the ground of information
in the system and to choose appropriate technological modes
for its production. These groups have very close properties
comparing to inquired ones by the user. In process of
acquisition of new input data about output product properties

and technologies information about the whole structure is
refreshed.

In [35] clustering is used as a tool for performance
improvement in distributed network systems. The structure
of networked control systems is often abstracted using graph
theory. In this abstraction, the nodes of the graph represent
the agents and the edges between them represent the re-
lation(s) or the possibility of communication between the
corresponding agents. The topology of the communication
network supporting a networked control system has critical
consequences for its performance. An essential aspect of
many of these systems is the lack of a central control
authority: distributed control rules and algorithms are often
utilized due to a host of reasons including energy consid-
erations and reliability. In all such distributed schemes the
agents are provided with simple sets of decision making
algorithms or dynamics; each agent takes an action using its
local information. The actions that each agent performs are
also local, i. e. agents can only affect and are only affected
by their neighboring nodes. The goal of the overall system
is the achievement of a desired global behavior emerging
from the local interactions. The second and related to the
first goal that we is the design of a high level component
responsible for maintaining the communication needs of the
group, and in particular the (path-) connectivity of their
communication network as they move. The connectivity of
the group is maintained by clustering them and providing
sufficient connectivity between the clusters.

In the present paper we develop a new randomized clus-
tering algorithm and discuss the opportunities for its further
application to certain well-known real-time decision-making
problems in control systems.

The rest part of this paper is organized as follows. Sec-
tion II gives the explanation of inner index approach for
solving the cluster stability problems. Section III formulates
the randomized algorithm. The main theoretical result is
stated and proved in Section IV. The simulation results are
shown in section V. At the end we make conclusions.

II. INNER INDEX APPROACH

The inner indexes based on the “elbow” methodology are
often employed in the procedures of partitioning, the stop-
ping rules are applied to determine the number of clusters.
The stopping-rule (index) value is found, in this case, for a
set of cluster solutions and the extreme value, which depends
on the particular stopping rule, indicates the most appropriate
solutions. The inner indexes approach was proposed by Sugar
and James in the framework of the rate distortion theory [10].
In this version of a “jump” method, the procedure is based
on a “distortion” curve, which is a measure of within cluster
dispersion, computed for n-dimensional data. The latter is
assumed to have an underlying distribution composed of k*
components with the common covariance matrix I'. Formally,
let x be a n-dimensional random variable having a mixture
distribution of k* components, each with covariance I'. Then
the minimum achievable distortion associated with fitting &



centers to the data is

1
G = - Clmlnck E|(x— CQJ)T F'(z-Cy), |,

where C,...,C} is a set of k cluster centers obtained by
running a standard clustering procedure, for instance the k-
means algorithm as in [6] or in [23]; C,, is the nearest cluster
center to x. Note that in the case where I' is the identity
matrix distortion is simply mean squared error. Given the
distortions G, a “jumping differential” curve is constructed
according to the following rule:

Je =GN =G,

where A is the transformation power. According to asymp-
totic results obtained from distortion rate theory [10], its
preferred value is

A=n/2.

Moreover, for rather high values of n, the differential distor-
tion .J; asymptotically tends to zero subject to the number of
clusters k is less than the number of components £*. Thus,
for big n, transformed distortion Jy is almost zero when
k < k*, then the value jumps abruptly and increases linearly
when k£ > k*. The Sugar and James’ “jump” algorithm
exploits such behavior in order to determine the most likely
value of k as the true number of clusters. The estimated
number of clusters corresponds to the index of maximal value

of transformed distortion function Jy:
k* = arg max Jg.

IIT. RANDOMIZED ALGORITHM

Based on the rate “distortion” criteria proposed by Sugar
and James [10], the task of determining the true number
of clusters can be theoretically interpreted as a particular
case of more general problems, namely, the fault detection
or the problem of locating the discontinuity points of an
implicitly defined function. Let us consider the function of
Jy, transformed “distortions” mapped into the interval [0; 1]
as the index function I(k). This function behaves in a semi-
linear way before and after the “jump”. To determine such
“jump” point, one can use randomized approach described in
[22]. Generally, the problem can be formulated as follows.
Let us take a real-valued function f on the interval [0;1]
having no more than one jump discontinuity z* € (0;1).
The problem concerned in [22] consists in finding confidence
interval for z* subject to:

1) The function f(-) is Lipschitz continuous with a Lips-
chitz’s constant C' on the intervals (0; z*) and (z*;1);

2) If jump discontinuity exists at the point x*, then the
jump size at this point is above a certain constant value
B >0.

The first constant C' represents the “smoothness” of the in-
dex function on the part of the interval where the function is
continuous. The second constant B defines a possible “jump”
of the index function at the point z* which corresponds, in
our context, to the true number of clusters. Let k.« be

the maximum number of clusters tested. Obviously, the case
B > C/kmax appears to be the most interesting because the
behavior of the index function scaled by k,,x near the point
z* should be essentially different from its behavior at other
points.

The scenario optimization method discussed in [1], is an
effective technique for solving convex optimization problems
in a probabilistic setting. For any given sufficiently small
positive values € and S the number of random trials N is
a priori defined. Thus, the solution obtained for merely N
constraints satisfies all the others with the probability of 1— 3
except for a set whose probability does not exceed e.

To implement the above methodology in the framework of
the clustering concept, consider the transformed “distortions”
I(-), proposed by Sugar and James [10]. Without loss of gen-
erality, assume that  (0) = I(1) and introduce a continuous
piecewise linear function f as follows:

I1 (k:ax> =1(k),

fi(e) = I(k) + ( - ) Ik + 1) — I(k)),

K max
for
k E+1 % *

Ko <z < kmaxyk:()’...,k _2>k a---7kmax_17
fi(z) =1(k" = 1),

fi

. ol
kmax =7 Kmax

In this case restrictions 1-2 described above are satisfied
if we assume that:

Al: C> I())—1(—-1
_.1:2,...,k*—Tg§+17...,k7m| () G =1l

A2: B<|I(k)—I(k —1).

An algorithm which implements the approach in question
can be described as follows:
1) Choose the reliability parameter 8 € (0,1).
2) Choose the parameter M, defining the highest power
in the approximation of the function f; by means of
the Chebyshev’s polynomials:

pm(z) = cos (marccosz), m=0,1,2,..., M.
3) Choose a number N > M and set the number of points
groups 7' > 1:

T= (1)

4\/§Ckmax . i 1
VI—BBN N '

4) Choose randomly 7" groups of N points from interval
(0,1):

Zt:{ztn; n:1,...,N}, t:].,,T

Z:U&.

t

and denote



Below in the proof of Theorem 1 it will be shown
that the largest distance between two sequential points
belonging to Z does not exceed % with probability

of 1 — 3.

5) Choose constant D > 0. For each one of the groups
Zi, t =1,...,T construct uniform approximation for
fr(z):

M
gt(x) = Z dtmpm(37)7 t = 17 e 7T7 (2)
m=0

minimizing the error
e = max|gy(z) - fi(2)]
subject to
|dim| <D, m=0,...,.M, t=1,...,T.

Here a convex optimization MATLAB TOOLBOX
(YALMIP, SeDuMi or cvx) can be applied.
If one of the approximation problems is not resolved
then return to step 2 to choose another parameters
M,N,D.

6) Define the functions

x(z) =, fnax gt(:v)—tzrf;%gt(m), z e (0;1) (3)
and
h(z) =  max max_|g;(2)], 4)
( ) z€[z1(2),2(z)] t=1,..., T |gt( )| (
where

zi(x) = argmax{z € Z:z <z}, z € (0;1)
and
zr(z) =argmin{z € Z:z >z}, z € (0;1).

7) Denote maximum error:

7 = max 7y (5
Account for the decision-making level:
B
L(x) =B — h(zx) —2
(2) = B~ gap—h(x) =27,

which defines the confidence interval:
A ={Z% = zkpmas 1 x € (0;1), x(x) > L(z)}. (6)
IV. MAIN RESULT

Theorem 1: If conditions Al and A2 formulated above
are satisfied, then the set A defined in (6) is not empty
and contains the point x*kp,q,, equal to the true number
of clusters with probability of at least p = 5.

Proof: Consider random variable ¢, defined by max-
imum distance between two sequential points in Z. It is
positive, its mean equals

and its deviation equals

Dlcl= (NT + 1])\ZNT t2)
Using
E[]=E[¢] - (B[)?
yields

2

Bl¢] = (NT + 1)(NT +2)

By virtue of Chebyshev’s inequality we obtain

2(4C)2k2

max

P{q ” 4Ckmax} S BANT+ )(NT+2) =

2(40)2k2

max

= BYNT +1)%

and subject to condition (1) it follows

B
<1-—2.
P{'C' > 4Okmx} <1-5

Hence, with probability of at least 3 there exist two points
z;, and z; in Z:

zy, <a* <z,

and
25, — 20 € o
Zi — Zi | S .
I ! 4Ckmax

Consider the functions g; or g; on the intervals A =
[zi,;;2*] and A, = [2%;2; ]. It follows from definition (5)
that

|f1(zi,) = gi(zi)| + 1 f1(25.) — 9i(25,)] < 27.

The following relationships can be subsequently derived
from the above formulas and conditions of the algorithm:

x(@*) = 1g;(x7) = gi(@")| = 195(25,) — 9i(zi)|—

—(1Ad+HANH = |fr(z5.) = Fr(zi) | =2y=( A+ A ) H >

_ _ B
> B-2y—(A+HAN(HAC) 2 B-2y—1-— (H+C),

max

where H is the maximal derivation g;(-)’ on the interval
[2i,, 2;,]. Finally, taking into account the equation (4), we
obtain

B

*) P
AR re

h(z*) — 2.
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Fig. 1. Index function for initial data set.

V. SIMULATION RESULTS

To check whether the proposed algorithm can be applied
to a large number of clusters, a synthetic dataset was gen-
erated. It contained 3200 clusters, each composed of 7 - 17
instances. Instances in each cluster were generated according
to a Gaussian distribution on the square [0, 1] x [0, 1] with a
random center for each cluster.

We consider the interval [1,8000] which contains the real
number of clusters. For each point the transformed distortion
function I(k) is calculated using the algorithm of Sugar
and James. Note, for each £ = 1,...,8000 we proceed the
clustering algorithm (k-means) and after that computed (k).
The results are presented in Fig. 1.

The scenario approach which was described above allows
us to significantly reduce the number of clustering algorithm
computation. Assuming that B > 1.0 and C' < 0.002, we
choose 5 =0.9; M = 20; N = 29; D = 0.6. Hence, subject
to (1) T = 10. Thus we calculate only 290 values of I(k)
instead of 8000 in order to obtain the confidence interval A
with probability of at least 3 = 0.9. Three approximation
curves g¢(-) are shown on Fig. 2 along with the resulting
function x(-).

With the assumption B > 1.0 and C' < 0.002 we
obtain the level of decision making, which is shown in
Fig. 3 along with the resulting function x(:). A peak near
the point * = 3200 can be observed. So if we consider
segment [3140,3730] to be the confidence interval A, then
for obtainig eventual solution one needs to perform 590
computations of index function I(z). Thus the total number
of index function computations equals to 880, which is
considerably less than initial number of 8000.

VI. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

A new randomized algorithm of stable clustering has been
proposed. The algorithm is based on randomized approach
idea along with well-known algorithms of cluster number
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Fig. 3. Resulting function and confidence level.

determination using inner index functions. The fundamental
idea is to compute only several number of distortion function
values and to determine the “jump” location using uniform
approximations by means of the fixed set of Chebyshev
polynomials. Confidence interval containing the true number
of clusters can be obtained with relatively few number
of distortion function computations. Significant decrease of
computational complexity is theoretically proved for suffi-
ciently generalized case and is shown with several simulation
examples.

B. Future Works

In future work, it will be of interest to further develop
new randomized algorithm, define more precisely its basic
conditions. The picking of initial parameters M, N, D is a
subject of further study as well. So is the choice of clustering
algorithm. Originally we opted for K-means due to its
simplicity, but there is a major drawback of methods similar



to K-means, they often converge on local minima rather than
the global minimum. And their performance depends on the
number of local minima, the choice of initial cluster means,
and the a priori knowledge assumed for the data probability
distribution. For example, Rose in [36] and [37] proposed
an algorithm based on a deterministic annealing optimization
method, which was shown to be capable of avoiding local
minima in situations where descent minimization algorithms
(i.e K-means) failed to do so.

Finally, we would like to apply our new algorithm to actual
problems in the field of control systems where it could be
tested as a decision-making tool in real-time operation mode.
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