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Abstract— Indirect adaptive control problem in closed loop
time-varying linear system is addressed. Small random test
signals are added to the plant’s inputs in order to identify
and track its parameters. The noise is assumed to be unknown
but bounded. It may not have good statistical properties which
is the case in many applications. Simulation example of non
minimum-phase plant of second order is provided.

I. INTRODUCTION

Stochastic approximation appeared in a 1951 article in the

Annals of Mathematical Statistics by Robbins and Monro

[1] and was further developed for optimization problems by

Kiefer and Wolfowitz [2]. Now this topic has wide variety of

applications in such areas as signal processing, telecommuni-

cations and information technology, neural networks control.

In the field of adaptive control stochastic approximation

algorithms can be used as well for system identification,

when the parameters of a plant are unknown [3]. In [5],

[6], [7], [8] it was proposed to use random perturbation

added to the plant’s inputs in linear time-invariant systems

for identification. This paper brings together those results

with recent advances on minimum tracking of time-varying

functional with SPSA-type algorithms [9]. However, due to

different reasons dynamical system can be time-varying. In

this case the algorithm of identification needs to track the

change in system’s parameters to correct the control signals

appropriately.

The problem of system identification of ARX model can

be formulated as a problem of linear regression [3], [8]:

yt = φT
t θt + vt,

where yt ∈ R is an observation, φt ∈ R
p is a known

regressor, θt ∈ R
p is a vector of unknown parameters and

vt ∈ R is a noise term. In case of ARX model, vector φt

consists of plant inputs and outputs. One popular way to

estimate and track θt is to use LMS or Kalman filtering

method [3]. However, in order to get proper quality of

tracking with standard LMS, one needs to assure that the

regressors φt and noise vt are weakly correlated, such that,

as assumed in [25]:

sup
k

‖
k+n
∑

t=k+1

φtvt‖ ≤ c
√

n.

It is the case if either vt is white noise (sequence of

independent random variables with zero mean) or Eφt = 0,

O. Granichin, V. Vlasov and A. Vakhitov are with Depart-
ment of Mathematics and Mechanics, Saint Petersburg State Univer-
sity,198504 Saint Petersburg, Russia oleg granichin@mail.ru,
vsevik@mail.ru, av38@yandex.ru

vt, and φt are independent. In most systems controlled by

some complex rules we cannot assume that Eφt = 0,

because φt contains plant inputs and outputs. Those cases are

too strict for most systems.Sometimes it can not be assumed

that vt is random [4].

Random perturbation added to the plant’s input can over-

come both of these complexities. The idea to use random test

signals to identify parameters of a dynamic system firstly

was proposed by Saridis and Stein in 1968 [10]. Later, it

was decided to combine an identification algorithm based on

random test perturbation with stabilization algorithm which

cares about stability of a system [5], [7]. An algorithm

based on random perturbation similar to the SPSA algorithm

[12], [13] in linear case can be applied to identify the

unknown parameters of a linear plant [7]. This paper extends

the algorithm to cover the case of time-varying systems

using recent advances on SPSA algorithms in non-stationary

stochastic optimization problems [9].

The random test perturbation algorithms were successfully

applied in case of linear regression [8]. They can be used

for identification of dynamic system model coefficients [16],

because the model can be represented as several linear

regression models with unknown but bounded additive terms,

which is acceptable for the random test perturbation algo-

rithms as it was described above. After proper parameter

introduction [5], [16], [7] model of any linear plant with

scalar inputs and outputs can be represented as a series of

linear regression models with unknown but bounded additive

noise terms. This implies that random perturbation algorithm

can be used to identify any linear plant.

In previous works on identification of linear plant with

random test perturbation [5], [7], [10] vanishing with time

test signal was used. It is obvious that the vanishing perturba-

tion can not help in case of time-varying system which does

not converge to some state (as in [21]). From the other side,

if the random perturbation signal does not vanish, then the

control is not asymptotically optimal. We can only guarantee

some bounds on sub-optimality of the control law with direct

relation to corresponding upper bound on minimum tracking

error by stochastic approximation algorithm.

In the following section we will give a problem statement,

in the third section the adaptive control algorithm is pre-

sented, fourth section is devoted to identification algorithm.

Simulation results are described in the fifth section , while

the sixth section contains conclusions, discussion of results

and open problems. The appendices contain description of

parameter introduction technique which is a key to under-

stand the correspondence linear plant control and proofs of
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the theorems about the tracking algorithm.

II. PROBLEM STATEMENT

Consider a SISO plant

a(∇, τt)yt = b(∇, τt)ut + vt, (1)

where ∇ is the time shift translation operator (∇yt = yt−1),

t ∈ N is discrete time moment, yt is plant output, ut is

plant input, vt is noise sequence. The polynomials a(λ, τ)
and b(λ, τ) are defined as

a(λ, τt) = 1 + λa
(1)
t + . . . + λna

(n)
t ;

b(λ, τt) = λb
(1)
t + λ2b

(2)
t + . . . + λmb

(m)
t ,

and the polynomials are mutually non-concellable.

We assume that the noise is bounded and unknown:

|vt| < σv. (2)

We denote the unknown plant parameters as τt:

τt = (a
(1)
t , a

(2)
t , . . . , a

(n)
t , b

(1)
t , . . . , b

(m)
t )T , (3)

τt ∈ T , where p = n+m, T ⊆ R
p is a known convex closed

set of possible values of the vector (3).

Definition 2.1 The drift of the sequence of parameters

{xt} ⊂ R
q with constants Xi, i = 1 . . . q, is formulated as

|x(i)
t − x

(i)
t−1| < Xi for i = 1 . . . q and Xi > 0.

The feedback of the following form exists:

α(∇, τt)ut + β(∇, τt)yt = 0, (4)

which stabilizes the plant (1) and ensures an appropriate

control performance such as control optimality with respect

to some criterion. Let coefficients of the polynomials

α(λ, τt) = 1 + λα1(τt) + · · · + λpαp(τt),

β(λ, τt) = 1 + λβ1(τt) + · · · + λpβp(τt)

be known and continuous functions in the set T . We remind

that stabilization of feedback (the controller) (4):

sup
t∈N

(|yt| + |ut|) < ∞ (5)

is equivalent to stability of the characteristic polynomial

g(λ, τt) = a(λ, τt)α(λ, τt) − b(λ, τt)β(λ, τt) of the closed

system (1),(4).

Consider a one-to-one mapping R : τt 7→ θt

θt = (θ
(1)
t , . . . , θ

(p)
t ),

θ
(i)
t =

i
∑

j=0

F
(i)
j,t b

(i−j+1)
t = F

(i)
t (∇, τt)b

(i+1)
t (τt),

where F
(i)
t is an i-th degree polynomial and F

(i)
j,t is its

j’th coefficient, the exact formula for F
(i)
t is given in the

Appendix. To obtain τt from θt it is needed to solve a linear

system of equations Atθt = Bt where At is p × p matrix

and B ∈ R
p. The system is uniquely solvable if at(λ) and

bt(λ) are mutually non-concellable [7].

Next we give a definition of stabilization of estimates’

sequence which will be later used in the problem statement.

Definition 2.2[26] A sequence of mean-squared estimation

errors E‖θ̂s − θs‖2 has upper bound L > 0 if

lim
s→∞

(E‖θ̂s − θs‖2)1/2 ≤ L.

Problem 1 Build a sequence of estimates {θ̂s} ⊂ R
p

following the unknown vectors {θs} such that an upper

bound for the mean-squared errors exists.

Problem 2 Build a sequence of estimates {τ̂ (i)
t } ⊂ R fol-

lowing the unknown parameters {τ (i)
t } where i = 1, 2, . . . , p

such that for each i an upper bound Li for the mean-squared

errors exists.

Theorem 2.1 If for the plant (1)

1) polynomials at and bt are non-concellable;

2) drift of parameters τt happens according to definition

2.1 with constant Ai for the coefficient a
(i)
t and with

constant Bj for the coefficient b
(j)
t ;

3) |a(i)
t | ≥ a− > 0 for i = 1 . . . n;

4) |b(j)
t | ≤ b+ for j = 1 . . .m;

then exists Tk: |θ(k)
t − θ

(k)
t−1| < Tk for k = 1 . . . p.

Proof 1. Consider a system of equations Atθt = Bt. From

i-th equation,
∑

j aij
t θ

(i)
t = b

(i)
t where aij

t is an element of

At. From here, |θ(i)
t | ≤ b+

∑

j a
−

.

2. Next, consider two systems for t−1 and t and substract

the i-th equations. We get:
∑

j aij
t (θ

(i)
t − θ

(i)
t−1) + (

∑

j aij
t −

∑

j aij
t−1)θ

(i)
t−1, |θ

(i)
t −θ

(i)
t−1| ≤ (Bi+Āi

b+
∑

j
a
−

) 1
∑

j
a
−

, where

Āi =
∑i

k=1 Ak. End of proof.

Theorem 2.1 states that drift of τt induces drift in the same

sense of definition 2.1 for θt.

III. ALGORITHM

The identification algorithm is iterative. The first block of

operations (1-4) is performed for each time moment t. The

next block (5-6) is performed after the first block only when

t = sp − 1 for some s ∈ N.

1) Generate input

Compute the input ut using the regulator (4) with

estimate τ̂t.

2) Generate test perturbation and feed input to plant

Add random test perturbation to the input:

ūt = ut + ∆s+1, for t=ps, ūt = ut in other case,

(6)

and feed ūt to the plant.

3) Get the plant output

Get the plant output yt+1.

4) If STRIPE condition is true, apply the “Stripe” algo-

rithm

Correct the estimate of τt using the “Stripe” algorithm:

τ̂t+1 = STRIPE(τ̂t, yt+1, yt, . . . , ut, ut−1, . . .).
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Additional steps for t = sp−1 if STRIPE condition

was false for t ∈ {p(s − 1), . . . , ps − 1}:

5) Calculate θ̂s

Use available output Ys = (yp(s−1)+1, . . . , yps)
T to

calculate θ̂s as follows:

θ̂s = IDENTIFY(θ̂s−1, ∆s, Ys). (7)

6) Calculate τ̂R
t Calculate τ̂R

t using θ̂s:

τ̂t+1 = R−1(θ̂s).

The STRIPE condition and STRIPE algorithm are clarified

in the Appendix, the IDENTIFY algorithm is the main point

of the article and it is discussed in the next section. The

function R−1 : θt 7→ τt used in the last step is briefly

described in section 2 and fully introduced in the appendix

1.

1) On each step we use ”stripe” algorithm to stabilize

the system if needed. This could be understood as a high-

level way to estimate parameters on the early phase of

identification and tracking, while main algorithm is not yet

able to give good enough estimations to keep system stable.

2) We use reparametrization technique of one-to-one rela-

tionship R : τt 7→ θt so that we could estimate θ instead of

τ .

3) We take p as the number of steps for one algorithm

cycle. On the beginning of each cycle we add a random

perturbation ∆s to the input and after p steps calculate new

value of θ for this cycle. Then we calculate corresponding

estimate for τ value.

IV. ALGORITHM FOR θs ESTIMATION

In this section we explain the IDENTIFY algorithm used

in the previous section to generate estimates of θs.

We denote Ys = (yp(s−1)+1, . . . , yps)
T , θ̄s =

(θ
(1)
p(s−1)+1, . . . , θ

(p)
ps )T , then the following equality holds:

Ys = fs(θ̄s) + φs + ∆sθ̄s, (8)

where (see Appendix 1 for definition of F
(l)
s , G

(l)
s )

fs(θ̄s) = (f (1)
s (θ̄s), f

(2)
s (θs), . . . , f

(p)
s (θ̄s))

T ,

f (l)
s (θ̄s) = F (l−1)(∇, τt)bt(∇)up(s−1)+l +G(l−1)(∇, τt)yps,

φs = (φ(1)
s , φ(2)

s , . . . , φ(p)
s ), φ(l)

s = F (l−1)(∇, τs)vp(s−1)+l,

l = 1, . . . , p.

The following algorithm can be proposed to estimate θs

with θ̂s:

θ̂s = θ̂s−1 − γs∆s(∆sθ̂s−1 + fs(θ̂s−1) − Ys), (9)

where γs > 0 is the algorithm step size and γsδ
2
s = ν for

some ν > 0.

Theorem 4.1 For the plant (1) with feedback (4) with drift

of θt according to definition 2.1 with constants Ti assume

that

1) E‖∆s‖2 = δ2
s ,

2) correlation of random perturbation and inputs for 0 <
j ≤ l is bounded E∆sup(s−1)−1+k ≤ Ck,

3) plant output yt and input ut are bounded |yt| < Y ,

|ut| < U ,

4) 0 < (1 − γδ2)2 + γ2δ2U2 < 1.

estimation error for the i-th component of θs θ̂
(i)
s − θ

(i)
s

provided by the algorithm (9) has an asymptotic upper bound

L(i), the formula for which can be found in the Appendix

II.

Note According to the theorem 2.1, we can assume that

drift in the sense of definition 2.1 happens with θt while it

physically happens with τt.

Consider a case of linear dynamic plant of second order:

yt +atyt−1 +yt−2 = b
(1)
t ut−1 + b

(2)
t ut−2 +vt, t = 1, 2, . . . .

(10)

We apply the following parametrization of a plant:

θt =







b
(1)
t

b
(2)
t − atb

(1)
t

(a2
t − 1)b

(1)
t − atb

(2)
t






. (11)

It has a following reverse mapping:







at

b
(1)
t

b
(2)
t






=







−(θ
(3)
t + θ

(1)
t )/θ

(2)
t

θ
(1)
t

θ
(2)
t − θ

(1)
t (θ

(3)
t + θ

(1)
t )/θ

(2)
t






(12)

Let us assume that the following conditions hold for all n ∈
N:

|b(1)
t − b

(1)
t−1| ≤ B1; |b(2)

t − b
(2)
t−1| ≤ B2; |at − at−1| ≤ A,

(13)

|at| ≤ Ā; |b(1)
t | ≤ B̄1; |b(2)

t | ≤ B̄2; |b(2)
t − atb

(1)
t | ≥ J.

Theorem 4.2 For the second order plant (10) assume that

all the conditions of the Theorem 4.1 hold and the sequence

τt has drift according to definition 2.1 with constants Ai

and Bj for components a
(i)
t and b

(j)
t respectively. Then the

algorithm (9) provides estimates for τt which stabilize in the

following sense:

(E|at − ât|2)1/2 ≤ 1

J
(L0 + L2),

(E|b(1)
t − b̂

(1)
t |2)1/2 ≤ L0,

(E|b(2)
t − b̂

(2)
t |2)1/2 ≤ 2B̄1

J
L0 + L1 +

B̄1

J
L2,

where

T (0) = B1; T (1) = B2 + 1/2(ĀB1 + AB̄1);

T (2) = B̄1AĀ + 1/2(Ā2 − 1)B1 + 1/2(ĀB2 + AB̄2).

Proof of Theorem 4.2 From the conditions (13) we get the

dependency of error bounds τ̂
(i)
t − τ

(i)
t from θ̂t = θt and

from Theorem 4.1 we get the bounds L(0), L(1), L(2).

4006



V. STABILIZING ALGORITHM ”STRIPE”

To solve the stabilization problem (5) the algorithm de-

scribed below [23] can be used, which is to be combined

with the identification and tracking algorithm described in

previous section. Let us transform the equation (1) into the

following form:

yt + Φ∗
t−1τt = vt,

where Φt−1 = (yt−1, yt−2, · · · , yt−n, ut−k−1, · · · , ut−m)T .

By boundenness of noise term (2), the inequalities

|yt + Φt−1τ̂t| ≤ 2σv + ǫ|Φt−1|, t ∈ N, |Φ| =
√

Φ ∗ Φ

can be solved with respect to τ̂t for any ǫ ≥ 0. These

inequalities provide an algorithm

τ̂t+1 = PrT

(

τ̂t −
ηt1(|ηt| − 2σv − ǫ|Φt−1|)

|Φt−1|2
Φt−1

)

, (14)

ηt = yt + Φ∗
t−1τt = Φ∗

t−1(τ̂t − τt) + vt.

Given an arbitrary initial condition τ̂1, the algorith converges

in finite number of steps [23].

VI. SIMULATION

As an example of calculation we used the bicyclist-robot

model presented in [7]. The robot controls the turn angle

of bicycle handlebars as an input and the angle of deviation

from the vertical line is the system output. One can consider

that while robot is riding a bicyle some environmental or

internal parameters could change, e.g. wind speed, surface

type or friction coefficient in front fork of bicycle.

We simulate parameters identification in the linear plant

mentioned above (10). We choose y1 = y2 = u1 = u2 = 0,

where vt is uniformly distributed between 0 and 1. We use

following parameters and bounds of possible values:

at = 3.7 + 3 · 10−4t, b
(1)
t = 6.4 − 3 · 10−4t,

b
(2)
t = −8.0 + 3 · 10−4t,

τt =









at

1

b
(1)
t

b
(2)
t









∈ T = [2, 10]× 1× [1, 10]× [−10, 0] ⊂ R
4.

Under the given assumptions the mapping Θ(·) : T → Θ =
θ(T ) ⊂ R

4 is reversible (12). As the control goal we consider

system stabilization and deviaton limit minimization of the

system output absolute value for the ”worst” possible noise

sequence:

sup
vt≤1

t=1,2,...

lim
t→∞

|yt| → min

When |b(1)
t /b

(2)
t | ≤ 1 the plant is non-minimum phase and

following regulator is needed to keep values of input and

outputs small:

c1(τ) =
b
(2)
t b

(1)
t − at(b

(2)
t )2

(b
(1)
t )2 + (b

(2)
t )2 − atb

(1)
t b

(2)
t

,

d0(τ) =
b
(2)
t + atb

(1)
t − at(b

(2)
t )2

(b
(1)
t )2 + (b

(2)
t )2 − atb

(1)
t b

(2)
t

,

d1(τ) =
b
(1)
t − atb

(2)

(b
(1)
t )2 + (b

(2)
t )2 − atb

(1)
t b

(2)
t

,

ut + c1(τ)ut−1 = d0(τ)yt + d1(τ)yt−1.

This regulator is proved to be optimal for stationary case [24]

and we consider its use appropriate for small enough param-

eters drift. Let {∆s}s∈N - be a set of random independent

test perturbations possesing with equal probabilities values

of ±∆0, ∆0 = 0.3, and the sequence of control inputs be

formed by:

ut = ut, t = 1, 2, . . . , 99,

u70+30s+i = u70+30s+i, i = 1, 2, . . . , 29,

u70+30s = u70+30s + Rs∆s,

Rn = 20(1 + |y30s| + |y30s−1| + |u30s−1|), n = 1, 2, . . . ,

where test perturbation Rs∆s is added to control only on

each 30th step starting with 100th, and the control ut itself

is determined by the regulator mentioned above and using

current parameter estimation τ̂t:

ut + c1(τ̂t)ut−1 = d0(τ̂t)yt + d1(τ̂t)yt−1.

We start with estimation a = 4, b(1) = 5, b(2) = −6. These

values are selected in order to have a visual plot showing

both identifying and tracking. For ”stripe” algorithm we take

ǫ = 0.1. Each step we use ”stripe” algorithm to form new

estimation of τ̂t if system became unstable. We also use

identification and tracking algorithm (9) three steps after each

test perturbation was sent (in case ”stripe” did not change

estimation value since that moment):

θ̂s = θ̂s−1 − γs∆sΓ(∆sθ̂s−1 + fs(θ̂s−1) − Ys),

Γ =





1 0 0
0 2 0
0 0 3



 ,

γs =
αn

∆2
, αn = max(α0,

1

n
), α0 = 0.5,

where Γ is a positive-definite matrix used to track different

members of θ with different speed. Matrix Γ firstly intro-

duced here does not have strong impact on the proof of

theorem but allow to have much better experimental results.

Figures 1,2,3 present typical parameter estimation for

a, b(1), b(2). Time is scaled up for first 10 steps while estima-

tion changes dramatically. The ”stripe” algorithm computes

rough estimations during first steps. After 100th step when

test perturbation is turned on it produces even better results.

After 150th step it is not changing estimation anymore.

During 1000 steps plant parameters shift by 0.3 and estimates

follow these changes.

As can be seen at figure 4, while tracking estimation error

does not exceed 0.15 for all paramaters. In this case the

error is almost as big as parameters drift, but it should be

understood that the same bounds for estimation error will

be still kept even for ten times bigger steps number. We

purposely use these data to make figures more visual.
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VII. CONCLUSIONS

The indirect adaptive control of a time-varying system is

a well-known problem. However, traditional identification

methods are not applicable to the general case of plant

identification in presense of unknown but bounded noises and

arbitrary feedback control. The use of random perturbation

makes it feasible. The combination of stabilization and

identification algorithm was presented in the paper.

The error bounds can be sufficiently improved with in-

troduction of adaptive gain sequence, which could adjust

to feedback and drift of plant’s parameters. Another drift

models could be tested as well.

VIII. APPENDIX 1

Next we will introduce a technique of reparametrization

of (1) [7]. Consider an equation

F (l)(λ, τt)a(λ, τt) + λl+1G(l)(λ, τt) = 1, (15)

where F (l)(λ, τt) and G(l)(λ, τt) are polynomials with re-

spect to λ and the degree of F (l)(λ, τt) is less than or equal

to l. The coefficients F (l)(λ, τt) can be determined by the

coefficients of a(λ, τt) from equations

F
(l)
0 = 1,

∂i

∂λi
F (l)(λ, τt)a(λ, τt) = 0.

Then the coefficients of G(l)(λ, τt) can be found as

G(l)(λ, τt) =
1 − F (l)(λ, τt)a(λ, τt)

λl+1
.

If we apply the operator F (l)(λ, τt) to both sides of the

plant equation (1), we get the following equation:

yt = G(l)(λ, τt)yt−l−1+F (l)(λ, τt)b(λ, τt)ut+F (l)(λ, τt)vt.
(16)

Let us break the set of natural numbers N into non-

intersecting subsets Np of p = m + n numbers:

Ns = {p(s − 1) + 1, p(s − 1), . . . , ps}.
For each t = p(s−1)+ l,l = 1 . . . p we get an equation (16).

Let us denote the coefficient of up(s−1) on the right-hand side

of (16) as θ
(l+1)
s . Then, if we define θ

(i)
s = 0, i < 0, then

the following holds:

a(∇, τt)θ
(l)
s = bl

t, t = p(s − 1) + l. (17)

In the matrix form the condition (17) can be rewritten as

A(τt)θs = B(τt), we do not show the exact form of matrices

due to lack of space. The one-to-one relationship between θt

and τt is thoroughly described in [7].

IX. APPENDIX II.

Lemma 1. [9] If v2
n ≤ kv2

n−1 + hvn−1 + l n ∈
N, k ∈ (0, 1). Then v2

n ≤ (k + ǫ/2)nv2
0 + ( h

2(1−k) (1 +
√

1 + 4l(1 − k)h−2))2, or limn→∞vn ≤ h
2(1−k) (1 +

√

1 + 4l(1 − k)h−2), where ǫ = h2

2l (
√

1 + 4l(1 − k)h−2 −
1).

Proof of Theorem 4.1. We will do the proof of asymptotic

bounds for |θ̂(i)
s − θ

(i)
s |2 using mathematical induction by i.
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The base for the induction is i = 1. Let us denote as Es the

following conditional expectation:

Es = E{·|θ̂s−1, θs}, Ēs = E{·|θ̂s−1, θs−1}.
Let us analyze the estimation error of the initial component

of θs. Using the fact that F (0) = 1 we get the following:

|θ̂(1)
s − θ(1)

ps |2 = |θ̂(1)
s−1 − θ(1)

ps − γ∆s(∆sθ̂
(1)
s−1 + fs(θ̂s−1)

(1)−

−Y (1)
s )|2 = |θ̂(1)

s−1 − θ(1)
ps − γ|∆s|2(θ̂(1)

s−1 − θ(1)
ps )+

+γ∆s(f
(1)
s (θ̂s−1)

(1) − f (1)
s (θp(s−1)) − φ(1)

s )|2

Note that f
(1)
s (θp(s−1)) = θ

(1)
p(s−1)up(s−1), so f

(1)
s (θ̂s−1)

(1)−
f

(1)
s (θp(s−1)) = (θ

(1)
p(s−1) − θ̂

(1)
s )up(s−1) due to definition of

fs, and φ
(1)
s = vp(s−1)+1. In the same time due to inde-

pendence of ∆s and θs, θ̂s−1, vp(s−1) Es∆s(fs(θ̂s−1)
(1) −

fs(θp(s−1)) − φs) = 0, so

Es|θ̂(1)
s − θ(1)

s |2 = (θ̂
(1)
s−1 − θ(1)

s )2(1 − γδ2)2+

+γ2δ2((θ̂
(1)
s−1 − θ(1)

s )up(s−1) +

m
∑

i=2

(b̂i
t − bi

t)up(s−1)−i+

+(â(∇, τ̂t) − a(∇, τt))yp(s−1) − vp(s−1)+1)
2,

where b̂(∇, τ̂t) and â(∇, τ̂t) are the polynomials with corre-

sponding coefficients taken from estimate τ̂t.

Notice that (
∑m

i=2(b̂
i
t − bi

t)up(s−1)−i + (â(∇, τ̂t) −
a(∇, τt))yp(s−1)−vp(s−1)+1) ≤ U

∑m
i=2 B̃i +Y

∑n
i=1 Ãi +

σv = P1. Then the previous inequality can be continued as

. . . ≤ (θ̂
(1)
s−1 − θ(1)

ps )2((1 − γδ2)2 + γ2δ2U2)+

+2γ2δ2(θ̂
(1)
s−1 − θ(1)

ps )P1 + γ2δ2P 2
1 .

Then, let us analyze the drift term, taking expectation Ēs

conditioned on θ̂s−1, θs−1:

Ēs|θ̂(1)
s −θ(1)

ps |2 ≤ (θ̂
(1)
s−1−θ

(1)
p(s−1))

2((1−γδ2)2+γ2δ2U2)+

+2|θ̂(1)
s−1−θ

(1)
p(s−1)|(((1−γδ2)2+γ2δ2U2)T1+γ2δ2UP1)+T 2

1 +

+γ2δ2P 2
1 + 2γ2δ2UP1T1.

Therefore, if the inequality

0 < (1 − γδ2)2 + γ2δ2U2 < 1

holds, the estimation errors for the first component of θs have

asymptotic bound, which is according to the Lemma 1 with

k = (1−γδ2)2+γ2δ2U2, h = 2(((1−γδ2)2+γ2δ2U2)T1+
γ2δ2UP1), l = T 2

1 + γ2δ2P 2
1 + 2γ2δ2UP1T1.

Let us prove the induction step, which is as follows: i →
i + 1. Let us suppose that the asymptotic bound for the j-th

component is Lj , j = 1 . . . i so that:

lim
n→∞

(E|θ̂(j)
s − θ(j)

ps |2)1/2 ≤ L(j).

For the component i + 1 of the estimation error vector

analogous bounds hold, with k = (1 − γδ2)2 + γ2δ2U2,

h = 2(((1 − γδ2)2 + γ2δ2U2)Ti+1 + γ2δ2UPi+1), l =
T 2

i+1 + γ2δ2P 2
i+1 + 2γ2δ2UPi+1Ti+1.

So, the value Li+1 is bounded. The induction is finished

and the proof as well.
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