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Abstract— The new algorithm is proposed for the estimating
of linear plant’s unknown parameters in the case of observa-
tions with arbitrary external noises. It is based on adding of
randomized inputs (test perturbations) through the feedback
channel. The assumptions about the noise are reduced to a
minimum: it can virtually be arbitrary but independently of it
the user must be able to add test perturbations. We combine
the previous result about asymptotic properties of randomized
control strategy with the new one which is followed by a non-
asymptotic approach of LSCR (Leave-out Sign-dominant Cor-
relation Regions) method. The new algorithm gives confidence
regions for series of finite sets of observations. These regions
shrink to the true values of an unknown parameters when
number of observations tents to infinity while the algorithm
complexity does not increases.

I. INTRODUCTION

A pervasive problem in data mining is the need to
make meaningful inference from a limited amount of data.
Such inference usually involves an estimation process and
an uncertainty calculation (e. g., confidence region). For
many estimators (such as least squares, maximum likeli-
hood, maximum a posterior, etc.) exist an asymptotic theory
that provides the basis for determining probabilities and
confidence regions in the case of large samples. However,
except for relatively simple cases, it is generally not pos-
sible to determine this uncertainty information in the small-
sample setting. The new approach was proposed in [1] based
on LSCR (Leave-out Sign-dominant Correlation Regions)
method. If the number of observation increases infinitely
then the resulting confidence intervals have good asymptotic
properties in the sense that it shrink to the true point under
some general conditions. But the complexity of the algorithm
increases significantly when number of observations tends
to infinity. More early in [2] there was proposed a simple
recurrent algorithm with good asymptotic properties which
is based on the similar randomized inputs adding in the
feedback channel. The main contribution of this paper is to
combine these two approaches.

For a linear control plant with almost arbitrary additive
noises in the observations the identification is possible with
randomized test signals as part of control actions. Noise
does not necessarily possess any useful statistical properties
and does not need to be random at all. The reconstruction
of unknown values of parameters is provided based on the
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properties of a test signal which is mixed with a control
signal. The introduction of a test signal in a control channel
can deteriorate the control performance. However, in an
appropriate decision about the intensity of a test signal the
output process will be indistinguishable from an optimal
process through time (if the intensity of a test signal is
diminished rapidly with time it is not necessary that the
identification process is complete).

The identification investigation techniques with test signals
was used in [3] and subsequently extended in [4] to closed
control systems. In these works an assumption of the a-priori
stability of a plant was made, a noise was assumed to be a
white noise process, and in addition, a relatively limiting
constraint was placed on the noisy control. In [2], [5] for the
non a-priori stable case there were suggested the algorithm
when special randomized test signals in the input channel
allow to identify asymptotically the control plant unknown
parameters under almost arbitrary additive noise in a plant
model. The procedure is valid for any noise vt and does not
require a-priori knowledge of its characteristics; noise may
be not random or may be white or correlated random, with
zero-mean or bias; a signal-noise ratio may be high or low.
The recovery of unknown parameter values is provided by
the properties of randomized test signals which are added
together with an intrinsic adaptive control signal from a
closed loop. This approach follows from Feldbaum’s concept
of dual control [6]: control must be not only directing but
also learning. Recently similar randomized control strategies
were put forward in [7].

In [5], [8] for the case of an arbitrary noise (e. g.,
unknown but bounded noise) the randomization was used to
develop an identification algorithm which allows to obtain
an asymptotically confidence region of an indefinitely small
size. These results were extended to the case of time-varying
parameters in [9], [10]. The information about the maximum
possible amplitude of the noise has only been used in the
formulas for estimating the rate of convergence, i. e., this
knowledge is not required for operability of an identification
algorithm.

The identification method discussed below is based on
the reparametrization of the mathematical model of a plant
(instead of coefficients of the plant as its initial parameters,
some alternative parameters are convenient to use, which are
in an one-to-one correspondence to the initial parameters).
This enables the plant to be written in the form which is not
too different from a “linear observation scheme”. Then jus-
tified recurrent algorithms such as stochastic approximation
algorithms can be applied for estimating unknown values of
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the parameters. In this paper we combine the ideas of former
asymptotic results from [2], [5] and new procedure from
[11], [12] which gives rigorously guaranteed non-asymptotic
confidence regions for unknown parameters of a linear dy-
namical control plant which is disturbed by arbitrary noise.
The control strategy considered in [11], [12] is different from
the control strategy of [1]. It includes randomized items in
the input channel only one time per some interval when
the control strategy of [1] has randomized part of inputs
on each iteration. This fact allows to prove in [12] more
weak assumptions about independence of external noise and
randomized part of control inputs.

The paper is organized as follows: At the beginning
we give a preliminary example for illustrative purposes.
Then, in Section III, we formulate a formal problem setting.
Section IV provides the rules to form control inputs (control
synthesis). Section V introduces the main assumptions and
describes a special method of linear plant model reparame-
terization. Stochastic approximation algorithm is considered
in Section VI. Next Section VII summarizes the result of
[12] about properties of confidence regions in the case of
a finite number of observations. The new algorithm and the
main theoretical result of this paper are in Section VIII. At
the end, we discuss our future plans.

II. PRELIMINARY EXAMPLE

Is it possible to get smart estimates under arbitrary external
noise?

For example, let’s consider the simple problem of an
unknown parameter θ? estimating from the observations:

yt = θ? ·ut + vt , (1)

where we are able
• to chose the inputs (control actions) ut , t ∈ [1..N],
• to measure the outputs yt (see Fig. 1).

Here and further we will use notation [i.. j] for the set of
integers from the integer i to the integer j.

Fig. 1. The model of observations.

The problem is to find or estimate the unknown parameter
θ? ∈R by the sequence of inputs and outputs {ut ,yt} without
any restrictions for the sequence of external noises {vt}.

Does not it seem absurd such a statement of the problem?
From the deterministic point of view, yes, of course!

Nobody does not know deterministic algorithms provided
some sense in answers (other than a meaningless solution
— the entire real axis). For the fixed number of observations
and for any proposed answer as a value or a finite interval
one can always suggest such vt that the following observation
will be wrong for the proposed answer.

The algorithm of a sequential estimation of an unknown
parameter θ? of (1) consists of two steps:

1) Input (control actions) ut selection.
2) Estimation of the parameter θ? based on the data

obtained ut ,yt (for example, calculation of an estimate
θ̂t or a set Θ̂t containing θ?).

If in addition to the problem setting we would be to
assume a random (probabilistic) nature of the noise vt then
we could be use the strong law of large numbers. Under
its conditions we can to talk about estimating an unknown
parameter θ? by averaging of the observation data: θ̂t =
1
t ∑

t
i=1 yi. The simulation results with the true parameter θ? =

3 and the observations which were made with an independent
and uniformly distributed on the interval [−0.5,0.5] noise vt
are given in Table 1. Row 5 indicates the proximity of the
estimate θ̂7 = 2.99 to the true parameter θ? = 3.

Table 1.
t 1 2 3 4 5 6 7
ut 1 1 1 1 1 1 1

vt = rand()−0.5
yt 2.9 2.8 3.2 3.3 2.6 3.4 2.7
θ̂t 2.9 2.85 2.97 3.05 2.96 3.03 2.99

vt = rand()−0.5+m, m = 1
yt 3.9 3.8 4.2 4.3 3.6 3.9 4.2
θ̂t 3.9 3.85 3.97 4.05 3.96 4.03 3.99

If the observations were carried out with the random
noise too but with the unknown mean value (expectation)
m = E{vt} (for example, m = 1, Table 1, row 6) then the
simulation results (Table 1, row 8) shows that the algorithm
failed: θ̂7 = 3.99. This value is substantially exceeds the
true parameter θ? = 3. The discrepancy is similar to the
uncertainty level m = 1. (Here and further E{·} is a symbol
of the mathematical expectation).

Despite the seeming absurdity of attempts to estimate an
unknown parameter θ? under arbitrary external noises, from
the practical needs it is often still have to decide.

Consider the following rule of a random input selection
for the first step

ut =

{
+1, with probability 1

2 ,

−1, with probability 1
2 .

(2)

At the second step we calculate a value

ỹt = ut · yt

by the known values (ut ,yt). For the “new” sequence of
observations {ỹt} we have a model which is similar to (1)

ỹt = θ? · ũt + ṽt ,

where ũt = u2
t and ṽt = ut · vt .

Let’s suppose, as in the simulation before, that vt is a
random noise but with unknown expectation. If vt is an
external noise it is natural to assume that it does not depend
on the our randomized input (control) at the first step. Hence
we have

E{ṽt}= E{ut · vt}= E{ut} ·E{vt}= 0 ·m = 0,
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i. e. in the “new model” the “hard (ill poses)” observation
problem of estimating an unknown parameter θ? of (1) is
converted by using the random selection rule for inputs
(controls) in the first step to the “standard” problem of
estimating of an unknown parameter θ? observed with an
independent zero-mean noise.

In Table 2 we summarize the corresponding results of the
simulation.

Table 2.
t 1 2 3 4 5 6 7
ut -1 1 -1 1 1 1 -1

vt = rand()−0.5+m, m = 1
yt -2.1 3.8 -1.8 4.3 3.6 4.4 -2.3
ũt 1 1 1 1 1 1 1
ỹt 2.1 3.8 1.8 4.3 3.6 4.4 2.3
θ̂t 2.1 2.95 2.57 3.00 3.12 3.33 3.19

The comparison of results from Table 2, row 7 with
previous one from Table 1, row 8 shows that new estimates
are substantially better but the quality of evaluations turned
out lower than in the more relevant results from Table 2,
row 5 because “new errors” ṽt have a bigger variance than vt .

The probability of making a wrong decision can be
estimated asymptotically using the assessment of the corre-
spondence mean rate of convergence in [8] and Chebyshev’s
inequality. For every t and for any ε > 0 if E{v2

j} ≤ σ2
v , j ∈

[1..t] then we obtain

Prob{|θ̂t −θ?| ≥ ε} ≤ 1
t

σ2
v

ε2 +o
(

1
t

)
.

Following the method described by M. Campi in [14] for
the finite number of observations (N = 7) with an arbitrary
external noise vt a new rigorous mathematical result of a
guaranteed set of possible values of an unknown parameter
θ? can be obtained:

1) Let be M = 8 and select randomly seven (= M− 1)
different groups of four indexes T1, . . . ,T7.

2) Compute seven partial sums s̃i = ∑ j∈Ti ỹ j, i ∈ [1..7].
3) Build the confidence interval

Θ̂ = [ min
i∈[1..7]

s̃i; max
i∈[1..7]

s̃i].

It contains θ? with the probability p = 75% (= 1−2 ·
1/M).

For the sample data {(ut ,yt)} from Table 2 we obtain by
the above described method:

Table 3.
i Ti s̃i
1 {2, 3, 4, 5} 3.375
2 {1, 3, 4, 6} 3.15
3 {2, 3, 5, 6} 3.4
4 {1, 2, 6, 7} 3.15
5 {1, 4, 5, 7} 3.075
6 {2, 3, 5, 7} 2.875
7 {1, 4, 6, 7} 3.275

Hence, the unknown parameter θ? belongs the interval Θ̂=
[2.875;3.4] with the probability p = 75%.

Under arbitrary external noises the randomization in the
input data selection process allows to get a quite reasonable

result for the unknown parameter estimation problem which
seems absurd and cannot be handled by any deterministic
algorithm!

Remark. An alternative probabilistic approach is a
Bayesian estimation when the noise vt probability is at-
tributed a-priori to a nature with a probability distribution Q.
But Bayesian and randomized approaches are quite different
from the practical point of view. In the Bayesian approach
the probability Q describes the probability of a value of vt
in comparison with other, i. e. it is a part of the model
of the problem. In contrast, the probability P in the ran-
domized approach is artificially selected. P exists only in
our algorithm and it has a known nature, and therefore the
traditional problem of “a bad model” is not happen as it can
often happen with the Q in the Bayesian approach.

III. PROBLEM STATEMENT

Consider a dynamic scalar linear control plant which is
described in a discrete time by an autoregressive moving
average model

A?(z−1)yt = B?(z−1)ut + vt (3)

with scalar inputs ut , outputs yt , and noises vt .
In Equation (3) z−1 is a delay operator: z−1yt =

yt−1, z−1ut = ut−1, the polynomials A?(λ ) and B?(λ ) have
forms

A?(λ ) = 1+a(1)? λ + · · ·+a(na)
? λ

na ,

B?(λ ) = b(l)? λ
l +b(l+1)

? λ
l+1 + · · ·+b(nb)

? λ
nb ,

where the positive integers na,nb are known output and input
(control) model orders; l is a delay in control, 1≤ l≤ nb; τ =

(a(1)? , . . . ,a(na)
? ,b(l)? , . . . ,b(nb)

? )T is a vector of plant parameters
a part of which is unknown. Here and further we will use
superscripts in brackets as coefficients’ indexes.

Noise vt describes all other sources apart from ϕt =
(−yt−1, . . . ,−yt−na ,ut−l , . . . ,ut−nb)

T which cause variation
in yt .

It is required to define, with a given probability, an area
of reliability for unknown coefficients of plant (3) by the
observations of outputs {yt} and known inputs (controls)
{ut} which can be chosen.

Procedures discussed further intended to identify the plant’
unknown parameters are based on reparameterization of
the plant mathematical model. Instead of the natural plant
parameters—dynamic coefficients—it is convenient to use
some other parameters which are in one-to-one correspon-
dence with them. Such reparameterization is a result of
rewriting the plant’s equation (3) in the moving average
model form which makes it possible to use the stochastic
approximation and LSCR procedures for building the confi-
dence region, even in the cases when an adaptive algorithm
is used in the feedback channel.
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IV. CONTROL ACTIONS WITH RANDOMIZED TEST
SIGNALS

Let s≤ na +nb− l +1 be a positive integer. (It is usually
equal to the amount of plant (3) unknown parameters). And
let be the number of observations N = s ·K ·N∆ with some
positive integers K and N∆.

Let us choose a sequence of independent random variables
symmetrically distributed around zero (a randomized test
perturbation) ∆0,∆1, . . . ,∆KN∆−1:

E{∆n}= E{∆3
n}= 0, E{∆2

n}= σ
2
∆, E{∆4

n} ≤M4,

and add them to the input channel with some gain coefficients
βk, k ∈ [1..K] once per every s time moments (at the begin-
ning of each time interval [skn− l..skn+ s− l− 1)] where
n ∈ [1..N∆]) in order to “enrich” the variety of observations.

To be more precise, we will build controls {ut} by the
rule

usn+i−l =

{
βn÷N∆

∆n + ūsn−l , i = 0,
ūsn+i−l , i ∈ [1..s−1] or i ∈ [−s+1..−1],

where n ∈ [1..KN∆], and “own (intrinsic)” controls {ūt} are
determined by the adjustable feedback law

ūt = Ut(yt ,yt−1, . . . , ūt−1, . . .), ū−t = 0, t ≥ 0.

The type and characteristics of a feedback depend on prac-
tical problems specifics. In particular, it is possible to use a
trivial law of “intrinsic” feedback: ūt = 0, t ∈ [1..N− l], or
in [2] it is proposed to use the stabilized regulator

C(z−1, τ̃t)ūt = D(z−1, τ̃t)yt (4)

with parameters τ̃t = τ̂t−s which are tuning by the “Strip”-
algorithm

τ̂t = τ̂t−1−
(ϕT

t τ̂t−1− yt)1{|ϕT
t τ̂t−1−yt |−2Cv−δ‖ϕt‖>0}

‖ϕt‖2 ϕt , (5)

where 1{·} is the characteristic function of a set, Cv is a
choosing sufficiently large noise bound δ > 0 is a small
constant, and a feedback regulator (4) is determined by
such polinomials C(λ ,τ) and D(λ ,τ) that A(λ ,τ)C(λ ,τ)−
B(λ ,τ)D(λ ,τ) is a stable polynomial.

V. MAIN ASSUMPTIONS AND REPARAMETERIZATION OF
THE PLANT MODEL

Main assumption
A1. The user can choose ∆n and this choice does not affect

the external noise vsn, . . . ,vs(n+1)−1. (In the mathematical
sense, ∆n does not depend on {vt}s(n+1)−1

t=1 .)
Note that we do not make any assumptions about the

statistical structure of noise vt . It can be non-random. If it
is random, there are no assumptions about the zero-mean or
any autocorrelation properties.

For time instants sn, n ∈ [1..KN∆], we can denote v̄sn =

vsn + (1− A?(z−1))ysn + (B?(z−1)− b(l)? z−l)usn and rewrite
Equation (3) in the following form:

ysn = βn÷N∆
∆nθ

(1)
? +θ

(1)
? ūsn−l + v̄sn,

where θ
(1)
? = b(l)? . This equation shows a direct relation

between observation ysn and test signal ∆n which does not
depend on the “new” noise v̄sn.

Similarly, we can rewrite Equation (3) for the rest of time
sn+ i−1, i ∈ [2..s], n ∈ [1..KN∆−1], sequentially excluding
the variables ysn+i−1, . . . ,ysn from the left-hand side of Equa-
tion (3) using the same equation for more early time instants

ysn+i−1 = βn÷N∆
∆nθ

(i)
? +

i−1

∑
j=0

θ
(i− j)
? ūsn−l+ j + v̄sn+i−1. (6)

Here θ
(i− j)
? , j ∈ [0..i−1] are the corresponding coefficients

of the remaining right-hand side terms with ūsn−l+ j,v̄sn+1 =

vsn+1 − a(1)? v̄sn + (1− A?(z−1) + a(1)? z−1)ysn+1 + (B?(z−1)−
b(l)? z−l − b(l+1)

? z−l−1)usn + θ
(1)
? ūsn−l+1, and v̄sn+i, i ∈ [2..s],

are determined sequentially in a similar way.
In [2] and [5], the authors suggest forming new model

parameters as s-vector θ? of coefficients θ
(i)
? obtained in

(6). They also give conditions for the invertibility of a such
reparameterization procedure.

The next formula follows immediately from the above
definition θ? = A−1B, where s× s matrix A and s-vector
B are

A=



1 0 . . . 0 0
a(1)? 1 . . . 0 0
a(2)? a(1)? . . . 0 0

...
...

. . .
...

...
0 . . . a(na)

? . . . a(1)? 1

 , B=



b(l)?
...

b(nb)
?
...
0


.

How can we make the choice of an integer parameter s?
The most natural way is to choose it by a such way which
guarantees the existence of an inverse function corresponding
to the new model parameters θ .

Assumptions
A2. Let s be a positive integer such that a set of the

plant’s unknown parameters are uniquely determined by
some function τ(θ) from the above-defined vector θ?.

By Lemma 2.2 on p. 117 from [5] Assumption A2 holds
for s = na + nb − l + 1 when the plant’s orders na,nb are
known and the following assumption is satisfied.

A3. The polynomials znaA?(z−1) and znbB?(z−1) are mu-
tually prime.

In [5] there is also the algorithm for the inverse function
τ(θ) construction.

Usually in a practice, only a part of plant parameters are
unknown. Sometimes, unknown parameters correspond to the
low degrees of z−1 which are smaller than some n̄a and n̄b,
respectively. In this case, we can choose s = n̄a + n̄b− l+1,
which is significantly less than na + nb − l + 1. Moreover,
the “new” noise v̄sn+i−1 in (6) can be cutted into two parts:
nonmeasurable ṽsn+i−1 and measurable ψsn+i−1. The second
measurable part is determined by observable inputs and
outputs with known coefficients (see the example below).

Example. Consider the second-order plant

yt +a(1)? yt−1 + yt−2 = b(1)? ut−1 +1.6ut−2 + vt , (7)
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with unknown coefficients a(1)? and b(1)? 6= 0.
Denote

τ? =

(
a(1)?

b(1)?

)
.

Let be s = 2 and vector θ? of the “new” parameters is

θ? =

(
b(1)?

1.6−a(1)? b(1)?

)
∈ R2.

In this case, the inverse function τ(θ) is

τ(θ) =

(
1.6−θ (2)

θ (1)

θ (1)

)
.

Equations (6) have the following forms:

y2n = βn÷N∆
∆nθ

(1)
? +θ

(1)
? ū2n−1 +ψ2n + ṽ2n,

y2n+1 = βn÷N∆
∆nθ

2
? +θ

2
? ū2n−1 +θ

1
? ū2n +ψ2n+1 + ṽ2n+1,

where ψ2n+i = 1.6ū2n−2+i − y2n−2+i, i = 0,1, ṽ2n =

v2n − a(1)? y2n−1, ṽ2n+1 = v2n+1 + a(1)? (a(1)? y2n−1 + y2n−2 −
1.6ū2n−2− v2n).

VI. STOCHASTIC APPROXIMATION ALGORITHM

Consider the estimation algorithm{
τ̄t = τ(θ̂n−1), t ∈ [s(n−1)+1..sn], n ∈ [1..KN∆],

θ̂
(i)
n = θ̂

(i)
n−1−

1
n ∆n(usn−l θ̂

(i)
n−1− ysn+i−1), i ∈ [1..s].

(8)

Let be for a sufficiently large R̄ > 0 the “own” control
{ūt} is built by the feedback controller (4) with adjustable
parameters τ̄t when inputs and outputs are bounded and
otherwise with estimates τ̂t which are formed by “Strip”-
algorithm (5)

τ̃t =

{
τ̄t , if |yt |+ |ut−1|< R̄,
τ̂t−s — otherwise.

(9)

Theorem 1. If the conditions A1–A2 and

2σ
2
∆ > 1, E{v2

t } ≤ σ
2
v ,

∞

∑
n=1

β
−1
n÷N∆

n
= ∞,

∞

∑
n=1

β
−2
n÷N∆

n2 < ∞

are satisfied then for an arbitrary initial vector θ̂0 ∈ Rs the
algorithm (8) ensures the estimates {θ̂n} such that for an
arbitrary ρ > 0 the following limit bounds are valid in the
mean square sense:

E{|θ̂ (i)
n −θ

(i)
? |2} ≤

β
−1
n÷N∆

n

ρC2
ū +σ2

i,v̄

2σ2
∆
−1

+o

(
β
−1
n÷N∆

n

)
, (10)

i ∈ [1..s], Cū = supt ūt , σ2
i,v̄ = σ2

v +(C2
ū +σ2

∆
)∑

i−1
j=1 |θ

( j)
? |2.

Remark. If βk → 0 as k→ ∞ and Cū < ∞ it follows that
a randomized test signal vanishes with time (e. g., we can
choose βk = 1/ ln(k)). That is why an adaptive system can be
synthesized with the described identification algorithm since
with time their output becomes indistinguishable from the
output of an optimal system synthesized for known control
plant parameters.

The proof of Theorem 1. By virtue the representation (6)
for any i ∈ [1..s] the algorithm (8) is strictly the same as
algorithms (2) in [8] or (2.2) in [5] for the linear regression
model

ysn+i−1 = usn−lθ
(i)
? + v̄sn+i−1.

To prove Theorem 1 it is possible to use the corresponding
result of Theorem 2 from [8] for a partial case βk = 1 or
Theorem 5 on p. 111 from [8] for the general case since all
their conditions hold under conditions of Theorem 1.

For the considered case we have |E{usn−l}| ≤
Cū, |E{u2

sn−l}| ≤ C2
ū + σ2

∆
, and E{v̄2

sn+i−1} ≤
σ2

v + (C2
ū + σ2

∆
)∑

i−1
j=1 |θ

( j)
? |2. These assessments allow

to derive the result of Theorem 1.

VII. PROCEDURE FOR CONSTRUCTING CONFIDENCE
REGIONS FOR FINITE NUMBER OF OBSERVATIONS

The previous result has an asymptotic nature. For the finite
number of observations we can use the following procedure.

1) For each k ∈ [1..K] consider the finite time interval
[k′s..k′s+ sN∆−1] where k′ = (k−1)N∆.

2) Using the data of observation, for n∈ [1..N∆], i∈ [1..s]
we can write sN∆ predictors as a function of θ

ŷk′s+sn+i−1(θ) = βk∆k′+nθ
(i)+

i−1

∑
j=0

θ
(i− j)ūk′s+sn+i−l− j.

3) We can calculate the prediction error

εt(θ) = yt − ŷt(θ), t ∈ [k′s..k′s+ sN∆−1].

4) According to the observed data, for n ∈ [1..N∆], i ∈
[1..s] we form a set of sN∆ functions of θ

fk′s+sn+i−1(θ) = ∆k′+nεk′s+sn+i−1(θ).

5) Choose a positive integer M > 2s and for j ∈ [0..M−1]
construct M different binary stochastic strings (of zeros
and ones) (h j,1, . . . ,h j,sN∆

) as follows: h0,i = 0, i ∈
[1..N], all the other elements h j,i take the values of
zero or one with the equal probability 1

2 . We calculate

g(i)k, j(θ) =
N∆−1

∑
n=0

h j,ns+i · fk′s+ns+i−1(θ), i ∈ [1..s].

6) Choose q from the interval [1;M/2s]. For i ∈ [1..s]
construct regions Θ̂

(i)
k such that at least q of the g(i)k, j(θ)

functions are strictly higher than 0 and at least q
functions are strictly lower than 0.
We define the confidence set by the formula

Θ̂k =
s⋂

i=1

Θ̂
(i)
k . (11)

Remarks. 1. The procedure described above is similar to
the one suggested in [1] but it has two significant differences
from it. First, we consider a confidence set Θ̂k in state space
Rs instead of Rna+nb as in [1]. It is better since often we have
s < na + nb. Moreover, the considered confidence regions
Θ̂

(i)
k , i ∈ [1..s] are the subsets of Ri instead the case of [1]
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when Θ̂
(i)
k ⊂ Rna+nb . Second, randomized trial perturbations

are included through the input channel only once per every s
time instants instead of permanent perturbations in [1]. This
is better from the control point of view. We do not disturb
the plant so often.

2. If we can cut the “new” noise v̄k′s+sn+i−1 in (6) into two
parts—ṽk′s+sn+k−1 and ψk′s+sn+k−1— where the first part is
nonmeasurable but whereas the second one is determined
by observable inputs and outputs with known coefficients
then we can use more stronger predictors ŷk′s+sn+i−1(θ) =
βk∆k′+nθ i + ∑

i−1
j=0 θ (i− j)ūk′s+sn+i−l− j + ψk′s+sn+i−1 in the

above-described procedure.
The probability that θ? belongs to each of Θ̂

(i)
k , i ∈ [1..s]

is given in the following theorem.
Theorem 2: Let condition A1 be satisfied. Consider i ∈

[1..s] and assume that Prob(g(i)k, j(θ?) = 0) = 0. Then

Prob{θ? ∈ Θ̂
(i)
k }= 1−2q/M (12)

where M, q and Θ̂
(i)
k are from steps 5 and 6 of the above-

described procedure.
Proof: See [12].
The next corollary follows directly from Theorem 2.
Corollary 3: Under the conditions of Theorem 2

Prob{θ? ∈ Θ̂k} ≥ 1−2sq/M (13)

where Θ̂k is taken from (11).
Note that, as it was pointed out in [1], the value of

the probability in (12) is accurate but not the lower limit.
Inequality in (13) is obtained by virtue to the fact that the
events {θ? 6∈ Θ̂

(i)
k }, i ∈ [1..s] may overlap.

From the above, it is easy to derive.
Theorem 4: Let conditions A1–A2 be satisfied and assume

that Prob(g(i)k, j(θ?) = 0) = 0. Then the set τ(Θ̂) is the
confidence set for unknown parameters of plant (3) with a
confidence level of no less than 1−2sq/M.

VIII. MAIN RESULT

Now we are ready to formulate the main result.
Algorithm
1) For k = 1,2, . . . ,K.
2) To generate the sequence {θ̂n} by the algorithm (8).
3) To choose ε > 0 and to build the parallelepiped

Θ̄k =
s

∏
i=1
{θ (i) : |θ̂ (i)

kN∆
−θ

(i)| ≤ ε}. (14)

4) To choose q and M and to compute the region Θ̂k by
the algorithm (11).

5) We define the confidence set as the intersection Θ̃k =
Θ̂k ∩ Θ̄k.

Theorem 5: Let the conditions of Theorems 1 and 2 hold.
Then Prob{θ? ∈ Θ̃k} ≥

≥ (1−2sq/M)

(
1− βk

kN∆

ρC2
ū +σ2

s,v̄

ε2(2σ2
∆
−1)

)s

+o
(

βk

kN∆

)
. (15)

Proof: The result of Theorem 5 is immediately follows by
applying the Chebushev’s inequality to the result of Theorem
1 and by Corollary 3.

IX. CONCLUSION

In the future work we plan to use above theoretical results
in our practical project: multiagents group of UAV [?].
For the UAV control syntheses it is important to develop
algorithms of a flight optimization. One of possibilities is
to use above described randomized algorithms [?]. Other
way is to accumulate energy and increase the flight range
by using the thermal updrafts which are formed in the lower
atmosphere due to disruption of warm air from the surface
when it is heated by sunlight [16].
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