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Abstract— This paper considers the possibilities of random-
ized controls for designing confidence regions for unknown
parameters. The assumptions about external noise that affect
a linear plant are reduced to a minimum: external noise can
virtually be arbitrary, but, independently of it, the user must be
able to add test perturbations through the input channel. Based
on a finite set of observations, we suggest a new procedure
which can be used in adaptive control schemes. It has been
developed in the general framework of “counting of leave-out
sign-dominant correlation regions” (LSCR), which is mostly
being promoted by M. Campi et al. for identification problems.
The procedure returns confidence regions which are guaranteed
to contain true parameters with a user-chosen probability.
The theoretical results are illustrated by an example of a
nonminimum-phase second-order plant.

I. INTRODUCTION

The real world is usually so complex that its model is often
used with simplifications and many assumptions. To describe
unknown relations, one can include a lot of uncertainties into
a model. But it is difficult to understand their real nature and
properties. Besides, it is important to determine the limits
of an uncertainty in the model that can be tolerated by
a specified application. Therefore, developing methods and
procedures for assessment of a model quality is a central
issue in system identification [1], [2].

Insufficient variety of input signals complicates the prob-
lem of identification. An opportunity for a control system
to produce a special control (trial, test, probing) signal in
the input channel can significantly alleviate the problem of
reconstructing unknown parameters. Special randomized test
signals in the input channel allow identification of the control
plant parameters when we consider a plant model with almost
arbitrary additive noise [3], [4]. The procedure suggested
in [3], [4] is valid for any noise vt and does not require
a priori knowledge of its characteristics; noise may be not
random or may be white or correlated, with zero-mean or
bias; a signal-noise ratio may be high or low. The recovery
of unknown parameter values is provided by the properties
of randomized test signals which are added together with
an intrinsic adaptive control signal from a closed loop. This
approach follows from Feldbaum’s concept of dual control
[5]: control must be not only directing, but also learning.

Consider a dynamical system

yt = G?(z−1)ut + vt (1)
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with input ut and output yt shown in Fig. 1.

Fig. 1. Dynamical system.

Noise vt describes all other sources, apart from ut , which
cause variation in yt . z−1 is a delay operator: z−1ut =
ut−1. The transfer function G?(z−1) belongs to a set of
transfer functions G(θ ,z−1), parameterized by θ ∈ Rs, i. e.,
G?(z−1)=G(θ?,z−1) for some θ?. The structure of the model
class G(θ ,z−1) is known, but θ? itself is unknown. The
problem under consideration is to determine, based on a finite
set of input and output data collected at time t = 1,2, . . . ,N, a
confidence region Θ̂ for θ? with a specified probability cho-
sen by a user. Moreover, Θ̂ must be constructed without any
a priori knowledge of the level, distribution, or correlation
of the noise.

The standard approach to obtaining confidence regions is
to use an asymptotic theory of system identification (see,
e.g., [1], [4], [6], [7]). Although these results have been
used successfully in many applications, asymptotic estimates
are only reliable when the data volume N tends to infinity.
When the number of points of data measurements is finite,
the asymptotic theory may cause erroneous results even for
large data sets. In the case of a small finite amount of data
the one of possible approach is considered in [8].

In [4], [9], for the case of arbitrary noise (e. g., unknown
but bounded noise), the randomization was used to develop
an identification algorithm, which allowed for obtaining an
asymptotically confidence region of an indefinitely small
size. These results were extended to the case of time-varying
parameters in [10], [11].

In this paper, we present a procedure which gives rig-
orously guaranteed nonasymptotic confidence regions for
unknown parameters of a linear dynamical control plant
which is disturbed by arbitrary noise. The procedure consists
of simple input design steps followed by an algorithm
named LSCR (Leave-out Sign-dominant Correlation Re-
gions), which is mostly promoted by M. Campi and E. Weyer
[12]. But the LSCR method is difficult to use directly when
we consider identification problems in the context of adaptive
control under arbitrary noise. In particular, the practical
application of the LSCR method to systems with feedback,
which was considered in [12] (Remark 3 on p. 2711), is only
possible for an a priori chosen stationary control law. If the
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control plant is not stabilized and input and output variables
increase infinitely, a linear model is usually not valid, from
the practical point of view, and the regions obtained by
the algorithms from [12], which were proved theoretically,
may not be directly relevant to the initial statement. If the
closed-loop regulator changes in time, depending on current
observations, it implies that one of the main conditions of
the applicability of the LSCR method from [12] is violated.

The main contribution of this paper in comparison with
the results of [12] is based on a special parameterization of a
plant model. This leads to smaller dimensions of confidence
regions and opens up the possibility of using LSCR for a
class of arbitrary feedbacks (in particular, for regulators with
adjustable coefficients). Earlier, the same parameterization
method was described in [3], [4], [10] for designing asymp-
totic estimation algorithms. The procedure considered in this
paper can be applied to any finite number of observations. It
was suggested in [13]. Here we establish weaker conditions
for external noise and illustrate a possibility of applying the
algorithm to a more difficult case of a nonminimum-phase
second-order plant.

The paper is organized as follows: At the beginning,
we give a preliminary example for illustrative purposes.
Then, in Section III, we formulate a formal problem setting.
Section IV provides the rules to form control inputs (control
synthesis). Section V introduces the main assumptions and
describes a special method of transfer function reparame-
terization. Section VI presents a procedure for constructing
confidence regions. The main theoretical result is given in
Section VII. The simulation results for a nonminimum-phase
second-order plant are shown in Section VIII. At the end, we
make conclusions.

II. PRELIMINARY EXAMPLE

To illustrate the main ideas of the LSCR method, following
the logic of [12], we consider an example of a second-order
scalar control plant, which is described by the following
equation:

yt −2yt−1 + yt−2 = b?ut−1 +1.6ut−2 + vt , (2)

where t = 1, . . . ,N is the time moments, N = 15, y0 = y−1 =
u−1 = 0, and b? is unknown. There is no information about
external noise vt , but if it is random, it does not depend
on ut . The main difference between our example and the
one considered in [12] consists in non-stable properties of
plant (2).

The aim is to build, based on observations of inputs and
outputs, a confidence interval Θ̂ which contains θ? = b?
with the probability of 80%. Note that such a problem
with any probability of up to 100% always has a trivial
solution — the whole real axis. Moreover, the problem is to
construct such an algorithm of estimation b? and generation
of input data u0, . . . ,u14 that the resulting confidence interval
Θ̂ characterizes b? more accurately. For example, it can
mean that the corresponding sets Θ̂ “gather” closely to the
point b? as N→ ∞.

PROCEDURE
Generate a sequence of independent identically distributed

random (i.i.d.) variables ∆t , t = 0, . . . ,14 (we will call them
randomized trial perturbations), which take the values ±1
with the equal probability 1

2 .
Assuming that

ut = ∆t , t = 0, . . . ,14,

obtain the corresponding output values yt , t = 1, . . . ,15.
Using the observed data ∆0, . . . ,∆14,u−1,y−1, . . . ,y15, for

t = 1, . . . ,15, and denoting observable variables ψt = 2yt−1−
yt−2 +1.6ut−2, we can consider the error

εt(b) = yt −ψt −but−1

as a linear function of b.
Denote

ft(b) = ∆t−1εt(b) = (∆t−1(yt −ψt))− (∆t−1ut−1)b.

We want to compute the empirical estimates of the correla-
tions E[∆t−1εt(b)] using ft(b). (Hereinafter E[·] is a symbol
of mathematical expectation).

Note that from the definitions, we can derive

E[∆t−1εt(b)] = (b?−b)E[∆2
t−1]+E[∆t−1vt ] = (b?−b).

Based on this fact, we calculate the series of empirical
correlation estimates, using different subsets of the available
data.

Exclude from the consideration the areas of possible values
of b, in which the empirical estimates too often take only
positive (or only negative) values.

Our aim is to build a confidence interval which contains
b? with a probability of at least 80%. Following [12], choose
q = 2 and M = 20 such that 1− 2q/M = 0.8. Further,
choosing 19 = M− 1 random subsets of data, we calculate
the empirical estimates

gi(b) =
15

∑
t=1

hi,t · ft(b), i = 1, . . . ,19,

where hi,t are i.i.d. Bernoulli variables, which take the values
0 or 1 with the equal probability 1

2 , i. e., hi,t determine
whether ft(b) is used to calculate the i-th empirical correla-
tion. (Of course, the estimates should be scaled, but we are
not going to do this because below we will only use their
sign).

Next, since it is very unlikely that all functions gi(b?) have
the same sign exclude those b for which either all values
gi(b) or all but one (less than q = 2) have the same sign.
It directly follows from Theorem 1 [12] that the remainder
interval is an 80% confidence area for b?.

A similar example with the plant

yt = b?ut + vt

was considered in Introduction of [12]. The simulation with
b? = 1 and i.i.d. sequence of normally distributed noise vt
with mean 0.5 and dispersion 0.1 (bias noise) resulted in
the confidence interval [0.874;1.119]. We note again that the
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procedure for obtaining the confidence interval never used
any information about noise (independence, mean value, or
dispersion). The above characteristics of the noise were only
used in the experiment to simulate noise itself.

Inclusion of additional dynamics terms into the left- and
right-hand parts of (2) does not affect either the procedure
behavior or the assessment of the confidence set. But as a
result, the output variable increases significantly (see Fig. 2,
line 1), which is bad from the practical point of view.
This is due to the instability of the transfer function. In
adaptive control problems with unknown but bounded noise,
the output variable can be stabilized by using feedback with
adjustable coefficients (see, for example, [3]). The same
effect can be achieved in combination with some other
methods of identification.

Fig. 2. Output variables yt , t = 1,2, . . . ,15.

For example, if we choose a sufficiently high Cv (e. g., Cv =
10) and assume that |vt | ≤Cv, we can use the membership
set approach. In [3], the authors proposed to use a stabilizing
“Stripe” algorithm, which forms a sequence of estimates b̂t .
The estimate b̂t is used to build the stabilizing part ūt of
control input, which is added to the randomized control ∆t

ut = ∆t + ūt .

The stabilizing part ūt is obtained by the feedback law

ūt =

{
β
(1)
t yt +β

(2)
t yt−1−αtut−1, b̂t 6= 0,

0, b̂t = 0,

where coefficients αt ,β
(1)
t and β

(2)
t are determined by the

polynomial equation

(1−2λ +λ
2)(1+αtλ )−λ (b̂t +1.6λ )(β

(1)
t +β

(2)
t λ ) = 1.

The control plant with unknown parameter b? may be a
nonminimum-phase plant (input nonstable) since |b?|< 1.6;
but the above feedback is input stable for the plant with
parameters b̂t (see, e. g., [4]). In simulations, we use a
stabilizing “Stripe” algorithm in the form described in [4],
[10]. This algorithm turns on when the output variable
exceeds the bounded level of 20. As a result, it stabilizes
the behavior of the output (see Fig. 2, line 2) and input
variables.

In this case, the property E[∆t−1εt(b)] = (b?− b) is still
satisfied, since E[∆t−1ūt−1] = 0, and the LSCR procedure
is operable. The functions gi(b), i = 1,2, . . . ,19, and the
80% confidence interval Θ̂ = [0.850;1.045] obtained in the
simulation are shown in Fig. 3.

Fig. 3. Functions gi(b), i = 1,2, . . . ,19, and 80% confidence interval
Θ̂ = [0.850;1.045] for b? = 1.0.

Although we use the level of Cv in the synthesis of the
stabilizing feedback, the design of the confidence region
obtained by the LSCR algorithm does not depend on Cv.
Even if we choose an understated level Cv, the suggested
algorithm still works, whereas the methods of identification
of the set membership approach will lead to wrong results.

The case of unknown coefficient a? instead of b? is
more complicated. We cannot use the procedure proposed in
[12] directly for estimating the two-dimensional parameter
(a?,b?)T because it also leads to a dramatic increase of the
output variable. However, the possibility to use the feedback
with adjustable coefficients is limited by the condition of
independence of input randomized trial perturbations and
noise, which is not satisfied. An example of an upgraded
procedure for this case is discussed in [13].

III. PROBLEM STATEMENT

The procedure discussed further intended to identify the
unknown parameters of a dynamic scalar linear control plant,
which is described by an autoregressive moving average
model, is based on reparameterization of the mathematical
model of a plant. Instead of the natural parameters of the
plant—dynamic coefficients—it is convenient to use some
other parameters, which are in one-to-one correspondence
with them. Such reparameterization is a result of rewriting
the plant’s equation in moving average model form, which
makes it possible to use the LSCR procedure for building the
confidence region, even in the cases if an adaptive algorithm
is used in the feedback channel.

We assume that a control plant has scalar input and output
and it is described by Equation (1) in discrete time with
G?(z−1) = B?(z−1)/A?(z−1), where

A?(λ ) = 1+a(1)? λ + · · ·+a(na)
? λ

na ,

B?(λ ) = b(l)? λ
l +b(l+1)

? λ
l+1 + · · ·+b(nb)

? λ
nb ,

the natural numbers na,nb are the output and input (con-
trol) model orders; l is a delay in control, 1 ≤ l ≤ nb;
a(1)? , . . . ,a(na)

? ,b(l)? , . . . ,b(nb)
? are the plant parameters, a part

of which is unknown.
It is required to define, with a given probability, an area

of reliability for unknown coefficients of plant (1) by the
observations of outputs {yt} on a finite interval of time t =
1,2, . . . ,N, and known inputs (controls) {ut}, which can be
chosen.
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IV. CONTROL ACTIONS WITH RANDOMIZED TEST
SIGNALS

Let s ≤ na + nb− l + 1 be a positive integer number. (It
is usually equal to the quantity of unknown parameters of
plant (1)). And let N = s ·N∆ be with some integer N∆.

Let us choose a sequence of independent random variables
symmetrically distributed around zero (a randomized test
perturbation) ∆0,∆1, . . . ,∆N∆−1 and add them to the input
channel once per every s time moments (at the beginning
of each time interval) in order to “enrich” the variety of
observations.

To be more precise, we will build controls {ut}N−l
t=0 by the

rule

usn+i−l =

{
∆n + ūsn−l , i = 0,
ūsn+i−l , i = 1,2, . . . ,s−1,

n = 0, . . . ,N∆−1,

where “intrinsic” controls {ūt} are determined by the ad-
justable feedback law

ūt = Ut(yt ,yt−1, . . . , ūt−1, . . .), t ≥ 0, ū−k = 0, k > 0.

The type and characteristics of feedback depend on specific
practical problems. In particular, it is possible to use a trivial
law of “intrinsic” feedback: ūt = 0, t = 0,1, . . . ,N− l.

V. MAIN ASSUMPTIONS AND REPARAMETERIZATION OF
THE TRANSFER FUNCTION

Main assumption
A1. The user can choose ∆n and this choice does not affect

the external noise vsn, . . . ,vs(n+1)−1. (In the mathematical
sense, ∆n does not depend on {vt}s(n+1)−1

t=1 .)
Note that no assumptions are made about the noise vt

and the upper limits of the noise amplitudes. If the noise
is random, there are no assumptions about the zero-mean or
any autocorrelation properties.

For time sn, n = 0, . . . ,N∆−1, we can denote v̄sn = vsn +
(1− A?(z−1))ysn + (B?(z−1)− bl

?z−l)usn and rewrite Equa-
tion (1) in the following form:

ysn = ∆nθ
(1)
? +θ

(1)
? ūsn−l + v̄sn,

where θ
(1)
? = b(l)? . This equation shows a direct relation

between observation ysn and test signal ∆n which does not
depend on the “new” noise v̄sn.

Similarly, we rewrite Equation (1) for the rest of time
sn+ k− 1, k = 2, . . . ,s, sequentially excluding the variables
ysn+k−1, . . . ,ysn from the left-hand side of the equation, using
the same equation (1) for early time instants

ysn+k−1 = ∆nθ
(k)
? +

k−1

∑
i=0

θ
(k−i)
? ūsn−l+i + v̄sn+k−1, (3)

where θ
(k−i)
? , i = 0, . . . ,k− 1 are the corresponding coeffi-

cients of the remaining right-hand side terms with ūsn−l+i.
In [3] and [4], the authors suggest forming new parameters

as s-vector θ? of coefficients θ
(k)
? obtained in (3). They also

give conditions for the invertibility of such a reparameteri-
zation procedure.

The next formula follows immediately from the above
definition θ? = A−1B, where s× s matrix A and s-vector
B are

A=



1 0 . . . 0 0
a(1)? 1 . . . 0 0
a(2)? a(1)? . . . 0 0

...
...

. . .
...

...
0 . . . a(na)

? . . . a(1)? 1

 , B=



b(l)?
...

b(nb)
?
...
0


.

Consider the conditions of the existence of a correspond-
ing inverse function.

Assumptions
A2. Let s be a positive integer and Θ⊂Rs such that a set

of the plant’s unknown parameters are uniquely determined
by some function τ(θ) : Θ→Rna+nb , from the above-defined
vector θ?.

By Lemma 2.2 on p. 117 from [4], Assumption A2 holds
for s = na + nb − l + 1 when the plant’s orders na,nb are
known and the following assumption is satisfied.

A3. The polynomials znaA?(z−1) and znbB?(z−1) are mu-
tually prime.

In [4] there is an algorithm for the inverse function τ(θ).
In practice, usually only part of plant parameters are

unknown. Sometimes, unknown parameters correspond to the
low degrees of z−1, which are smaller than some n̄a and n̄b,
respectively. In this case, we can choose s = n̄a + n̄b− l+1,
which is significantly less than na+nb− l+1. Moreover, the
“new” noise v̄sn+k−1 in (3) can be divided into two parts:
nonmeasurable ṽsn+k−1 and measurable ψsn+k−1. The latter
is determined by observable inputs and outputs with known
coefficients (see the example below).

Example. Consider the second-order plant

yt +a(1)? yt−1 + yt−2 = b(1)? ut−1 +1.6ut−2 + vt , (4)

t = 1,2, . . . ,N, with unknown coefficients a(1)? and b(1)? 6= 0.
Denote τ? = (a(1)? ,b(1)? )T. Let s = 2 and vector θ? of the

“new” parameters be

θ? =

(
b(1)?

1.6−a(1)? b(1)?

)
∈ R2.

In this case, if θ (1) 6= 0 then Assumption A2 and the inverse
function τ(θ) is

τ(θ) =

(
1.6−θ (2)

θ (1)

θ (1)

)
.

Equations (3) have the following forms:

y2n = ∆nθ
(1)
? +θ

(1)
? ū2n−1 +ψ2n + ṽ2n,

y2n+1 = ∆nθ
(2)
? +θ

(2)
? ū2n−1 +θ

(1)
? ū2n +ψ2n+1 + ṽ2n+1,

where ψ2n+k = 1.6ū2n−2+k − y2n−2+k, k = 0,1, ṽ2n =

v2n − a(1)? y2n−1, ṽ2n+1 = v2n+1 + a(1)? (a(1)? y2n−1 + y2n−2 −
1.6ū2n−2− v2n).
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VI. PROCEDURE FOR CONSTRUCTING CONFIDENCE
REGIONS

1) Using observational data, we can write predictors as a
function of θ

ŷsn+k−1(θ) = ∆nθ
(k)+

k−1

∑
i=0

θ
(k−i)ūsn+k−l−i, (5)

n = 0, . . . ,N∆−1, k = 1, . . . ,s.

2) We can calculate the prediction error

εt(θ) = yt − ŷt(θ), t = 1, . . . ,N.

3) According to the observed data, we form a set of
functions of θ

fsn+k−1(θ)=∆nεsn+k−1(θ), n= 0, . . . ,N∆−1, k= 1, . . . ,s.

4) Choose a positive integer M > 2s and construct M
different binary stochastic strings (of zeros and ones)
(hi,1, . . . ,hi,N), i = 0,1, . . . ,M− 1, as follows: h0, j =
0, j = 1, . . . ,N, all the other elements hi, j take the
values of zero or one with the equal probability 1

2 .
We calculate for k = 1, . . . ,s

g(k)i (θ) =
N∆−1

∑
n=0

hi,ns+k · fns+k−1(θ), i = 0, . . . ,M−1.

5) Choose q from the interval [1;M/2s]. For k = 1, . . . ,s,
construct a region Θ̂(k) such that at least q of the
g(k)i (θ) functions are strictly higher than 0 and at least
q are strictly lower than 0.
We define the confidence set by the formula

Θ̂ =
s⋂

k=1

Θ̂
(k). (6)

Remarks. 1. The procedure described above is similar
to the one suggested in [12], but it has two significant
differences from it. First, we consider a confidence set Θ̂

in state space Rs instead of Rna+nb . The confidence regions
Θ̂(k), k = 1, . . . ,s, are the subsets of Rk instead of Θ̂(k) ⊂
Rna+nb . Second, randomized trial perturbations are included
through the input channel only once per every s time instants
instead of permanent perturbations in [12].

2. If we can divide the “new” noise v̄sn+k−1 in (3) into
two parts—ṽsn+k−1 and ψsn+k−1— where the first part is
nonmeasurable, whereas the second is determined by observ-
able inputs and outputs with known coefficients, then, in the
above-described procedure, we can use stronger predictors
instead of (5)

ŷsn+k−1(θ) = ∆nθ
(k)+

k−1

∑
i=0

θ
(k−i)ūsn+k−l−i +ψsn+k−1.

VII. MAIN RESULT

The probability that θ? belongs to each of Θ̂(k), k =
1,2, . . . ,s, is given in the following theorem.

Theorem 1: Let Assumption A1 be satisfied. Consider k∈
{1,2, . . . ,s} and assume that Prob(g(k)i (θ?) = 0) = 0. Then,

Prob{θ? ∈ Θ̂
(k)}= 1−2q/M, (7)

where Θ̂(k),q and M are from steps 5 and 4 of the above-
described procedure.

Proof: See Appendix.
Remark. The number of data N does not enter directly into

the bound (7) given in Theorem 1. The dependence on N is
implicitly included into the formula (7) by M which can not
be greater than the number of subsets of cardinality more
than 2s in the set of N elements.

The next corollary follows directly from Theorem 1.
Corollary 2: Under the conditions of Theorem 1

Prob{θ? ∈ Θ̂} ≥ 1−2sq/M, (8)

where Θ̂ is taken from (6).
Note that, as it was pointed out in [12], the value of

the probability in (7) is accurate, but not the lower limit.
Inequality in (8) is obtained owing to the fact that the events
{θ? 6∈ Θ̂(k)}, k = 1, . . . ,s may overlap.

From the above, it is easy to derive the main result of this
paper.

Theorem 3: Let Assumptions A1,A2 be satisfied and
assume that Prob(g(k)i (θ?) = 0) = 0. Then, the set τ(Θ̂) is
the confidence set for unknown parameters of plant (1) with
a confidence level of no less than 1−2sq/M.

Note that earlier, under similar assumptions, in [3], [4],
the authors showed a possibility of forming an estimation
algorithm, based on the control strategy described in Section
IV, which provides asymptotical convergence of estimates to
true values of unknown parameters of plant (1).

VIII. EXAMPLE

We return to control plant (4) from Section V with N = 960
and unknown parameters a? and b?.

Define functions ft(θ):

f2n(θ)=∆n(y2n−∆nθ
(1)−θ

(1)ū2n−1−ψ2n), n= 0, . . . ,N∆−1,

f2n+1(θ)=∆n(y2sn+1−∆nθ
(2)−θ

(2)ū2n−1−θ
(1)ū2n−ψ2n+1).

Let us choose M = 480 and q = 6 and calculate the
empirical correlations

g(k)i (θ) =
499

∑
n=0

hi,2n+k · f2n+k−1(θ), i = 1, . . . ,479, k = 1,2.

For k= 1,2, we construct the regions Θ̂(k) which only include
the values of θ for which no less than 6 of the functions
g(k)i (θ), i = 1, . . . ,479, are strictly higher than zero and no
less than 6 of them are strictly lower than zero.

By virtue of Theorem 3, the vector of true parameters with
a probability of more than 95% = 1−2 ·2 ·6/480 belongs to
the confidence set τ(Θ̂) = τ(Θ̂(1)⋂Θ̂(2)).
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Fig. 4. Confidence set τ(Θ̂).

Fig. 4 shows the regions τ(Θ̂), τ(Θ̂(1)), and τ(Θ̂(2))
obtained from the simulation with true values a? = −2 and
b? = 1, and characteristics of noise and stabilizing feedback
like those in Section II.

IX. CONCLUSIONS AND ACKNOWLEDGMENTS

This paper presents a procedure for constructing a confi-
dence set of unknown parameters of a linear scalar control
plant, based on a finite set of data measurements. The
procedure is defined as an intersection of confidence regions
which contain true parameters with specified guaranteed
probability.

From the theoretical point of view, an important feature of
the suggested procedure is that it operates without any signif-
icant assumptions about the external noise. It is also of vital
importance from the practical point of view since in practical
applications, it is difficult to obtain a priori knowledge about
the noise characteristics. The resulting confidence set is not
conservative because it gives a rather good description of
the uncertainties in the model. The results of this paper
are relevant to the problems of constructing robust control
systems.

The authors are grateful to Marco C. Campi for the inter-
esting and fruitful discussions regarding the subject-matter
of this paper. We would like also to thank the reviewers
for their constructive comments and SPRINT laboratory of
SPbSU+Intel for supporting the project.

APPENDIX

The following preliminary Proposition 1, which is similar
to Proposition 1 from [12], p. 2716, is instrumental to the
proof of Theorem 1.

Proposition 1: Fix k ∈ [1, . . . ,s]. Let H be a stochastic
M×N∆ matrix with elements hi,ns+k, i = 0,1, . . . ,M−1, n =
0, . . . ,N∆− 1, from step 4 of the algorithms in Section VI,
and let η = col(η1, . . . ,ηN∆

) be a vector independent of H,
consisting of mutually uncorrelated random variables sym-
metrically distributed around zero. Given an i ∈ [0,M− 1],
let Hi be the M×N matrix, whose rows are equal to the
i-th row of H. Then, Hη and (H −Hi)η have the same
M-dimensional distribution provided that the i-th element of
(H−Hi)η (which is 0) is repositioned as the first element
of the vector.

Proof of Theorem 1. The general scheme of the proof is
the same as the similar proof of Theorem 1 in [12]. The
only difference is in the stage when Proposition 1 is applied
to prove that each variable gk

i (θ?) has the same probability
1/M to be in the generic rth position (i. e., there are exactly
r− 1 other variables that are lower than the variable under
consideration).

In our case, denote ηn := ∆n−1ε(n−1)s+k−1(θ?). For the
correlation between ηi and η j, i > j, we derive successively

E[ηiη j] = E[∆i−1ε(i−1)s+k−1(θ?)∆ j−1ε( j−1)s+k−1(θ?)] =

= E[∆i−1]E[ε(i−1)s+k−1(θ?)∆ j−1ε( j−1)s+k−1(θ?)] = 0

by the virtue of Assumption A1 and the symmetry property
of test perturbation distribution: E[∆i−1] = 0. Hence, the
variables η1, . . . ,ηN∆

are mutually uncorrelated.
Take a variable g(k)ī (θ?) which is in the r-th position. The

inequality

g(k)i (θ?)−g(k)ī (θ?) =
N∆

∑
n=0

(hi,ns+k−hī,ns+k)ηn < 0

holds for r− 1 selection of i ∈ [0,M− 1]. It is the same as
asking whether the r−1 entries of (H−Hī)η are negative.
From Proposition 1, we have that (H−Hī)η has the same
distribution as Hη and, therefore, Prob{“r− 1 entries of
(H−Hī)η are negative”} = Prob{“r− 1 entries of Hη are
negative”}, and it does not depend on ī.

The rest of the proof is similar to that given in [12].
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