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Analytical-numerical localization
of hidden attractor in electrical Chua’s circuit

Kuznetsov N., Kuznetsova O., Leonov G., Vagaitsev V.

Draft 1 2

Abstract. Study of hidden oscillations and hidden chaotic attractors (basin of attraction of which does
not contain neighborhoods of equilibria) requires the development of special analytical-numerical methods.
Development and application of such methods for localization of hidden chaotic attractors in dynamical model
of Chua’s circuit with nonlinearity sign are demonstrated in this work.
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1 Introduction

The classical attractors of Lorenz [1], Rossler [2], Chua [3], Chen [4], and other widely-known attractors are
those excited from unstable equilibria (self excited attractors). From computational point of view this allows
one to use standard numerical method, in which after transient process a trajectory, started from a point of
unstable manifold in the neighborhood of equilibrium, reaches an attractor and identifies it.

However there are attractors of another type: hidden attractors, a basin of attraction of which does not
contain neighborhoods of equilibria [6]. Here equilibria are not “connected” with attractor and creation of
numerical procedure of integration of trajectories for the passage from equilibrium to attractor is impossible
because the neighbourhood of equilibrium does not belong to such attractor. The simplest examples of
systems with such hidden attractors are hidden oscillations in counterexamples to widely-known Aizerman’s
and Kalman’s conjectures on absolute stability (see, e.g., [8, 9, 10]). Similar computational problems arise in
investigation of semi-stable and nested limit cycles in 16th Hilbert problem (see, e.g., [11, 12, 13]).

In 2010, for the first time, a chaotic hidden attractor [5] was computed in generalized Chua’s circuit (which
can be used for hidden chaotic communication [17]) and then one was discovered in classical Chua’s circuit.

Further a special analytical-numerical algorithm for localization of hidden attractors is considered.
Chua’s circuit (see Fig. 1) can be described by differential equations in dimensionless coordinates:

ẋ = α(y − x)− αf(x),

ẏ = x− y + z,

ż = −(βy + γz).

(1)

Here the function
f(x) = m1x+ (m0 −m1)sat(x) =

= m1x+
1

2
(m0 −m1)(|x+ 1| − |x− 1|)

(2)

characterizes a nonlinear element, of the system, called Chua’s diode; α, β, γ,m0,m1 are parameters of the
system. In this system it was discovered the strange attractors [14, 15] called then Chua’s attractors. All
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Figure 1: Classical Chua’s circuit

known classical Chua’s attractors are the attractors that are excited from unstable equilibria and this makes
it possible to compute such attractors with relative easy (see, e.g., attractors gallery in [16]).

The applied in this work algorithm shows the possibility of existence of hidden attractor in system (1).
Note that L. Chua himself, analyzing in the work [3] different cases of attractor existence in Chua’s circuit,
does not admit the existence of such hidden attractor.

2 Analytical-numerical method for hidden attractors localization

For numerical location of hidden oscillations it is turns out to be effective methods based on homotopy where
a sequence of similar systems is consider such that initial data for numerical localization of periodic solution
(starting periodic solution) in the first starting system can be obtained analytically and then transformation
of this starting periodic solution in the transition from one system to another is followed numerically.

Consider a system
dx

dt
= Px +ψ(x),x ∈ Rn, (3)

where P is a constant n× n-matrix, ψ(x) is a continuous vector-function, and ψ(0) = 0.
Define a matrix K in such a way that the matrix

P0 = P + K (4)

has a pair of purely imaginary eigenvalues ±iω0 (ω0 > 0) and the rest of its eigenvalues have negative real
parts. We assume that such K exists. Rewrite system (3) as

dx

dt
= P0x +ϕ(x), (5)

where ϕ(x) = ψ(x)−Kx.
Introduce a finite sequence of functions ϕ0(x),ϕ1(x), ...,ϕm(x) such that the graphs of neighboring func-

tions ϕj(x) and ϕj+1(x) slightly differ from one another, the function ϕ0(x) is small, and ϕm(x) = ϕ(x).
Using a smallness of function ϕ0(x), we can apply and mathematically strictly justify [7, 8] the method of
harmonic linearization (describing function method) for the system

dx

dt
= P0x +ϕ0(x), (6)

and determine a stable nontrivial periodic solution x0(t). For the localization of attractor of original system
(5), we shall follow numerically the transformation of this periodic solution (a starting oscillating attractor —
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an attractor, not including equilibria, denoted further by A0) with increasing j. Here two cases are possible:
all the points of A0 are in an attraction domain of attractor A1, being an oscillating attractor of the system

dx

dt
= P0x +ϕj(x) (7)

with j = 1, or in the change from system (6) to system (7) with j = 1 it is observed a loss of stability
bifurcation and the vanishing of A0. In the first case the solution x1(t) can be determined numerically by
starting a trajectory of system (7) with j = 1 from the initial point x0(0). If in the process of computation
the solution x1(t) has not fallen to an equilibrium and it is not increased indefinitely (here a sufficiently large
computational interval [0, T ] should always be considered), then this solution reaches an attractor A1. Then
it is possible to proceed to system (7) with j = 2 and to perform a similar procedure of computation of A2,
by starting a trajectory of system (7) with j = 2 from the initial point x1(T ) and computing the trajectory
x2(t).

Proceeding this procedure and sequentially increasing j and computing xj(t) (being a trajectory of system
(7) with initial data xj−1(T )) we either arrive at the computation of Am (being an attractor of system (7)
with j = m, i.e. original system (5)), or, at a certain step, observe a loss of stability bifurcation and the
vanishing of attractor.

To determine the initial data x0(0) of starting periodic solution, system (6) with nonlinearity ϕ0(x) can
be transformed by linear nonsingular transformation S to the form

ẏ1 = −ω0y2 + εϕ1(y1, y2,y3),

ẏ2 = ω0y1 + εϕ2(y1, y2,y3),

ẏ3 = A3y3 + εϕ3(y1, y2,y3)

(8)

Here A3 is a constant (n − 2) × (n − 2) matrix, all eigenvalues of which have negative real parts, ϕ3 is an
(n− 2)-dimensional vector-function, ϕ1, ϕ2 are certain scalar functions. Without loss of generality, it may be
assumed that for the matrix A3 there exists positive number α > 0 such that

x∗3(A3 + A3
∗)x3 ≤ −2α|x3|2, ∀x3 ∈ Rn−2 (9)

Introduce the following describing function

Φ(a) =
2π/ω0∫
0

[
ϕ1 ((cosω0t)a, (sinω0t)a, 0) cosω0t+

+ϕ2 ((cosω0t)a, (sinω0t)a, 0) sinω0t

]
dt.

Theorem 1 [7] If it can be found a positive a0 such that

Φ(a0) = 0 (10)

and Φ′(a0) < 0 then there is a periodic solution in system (6) with the initial data x0(0) = S(y1(0), y2(0),y3(0))∗

y1(0) = a0 +O(ε), y2(0) = 0, y3(0) = On−2(ε). (11)

Here On−2(ε) is an (n− 2)-dimensional vector such that all its components are O(ε).
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3 Localization of hidden attractor in Chua’s system

We now apply the above algorithm to analysis of Chua’s system with scalar nonlinearity. For this purpose,
rewrite Chua’s system (1) in the form (3)

dx

dt
= Px + qψ(r∗x), x ∈ R3. (12)

Here

P,q, r =

 −α(m1 + 1) α 0
1 −1 1
0 −β −γ

 ,

 −α0
0

 ,

 1
0
0

 ,

ψ(σ) = (m0 −m1)sat(σ).

Introduce the coefficient k and small parameter ε, and represent system (12) as (6)

dx

dt
= P0x + qεϕ(r∗x), (13)

where

P0 = P + kqr∗ =

 −α(m1 + 1 + k) α 0
1 −1 1
0 −β −γ

 ,

λP0
1,2 = ±iω0, λ

P0
3 = −d,

ϕ(σ) = ψ(σ)− kσ = (m0 −m1)sat(σ)− kσ.
In practice, to determine k and ω0 it is used the transfer function W (p) of system (3):

WP0(p) = r∗(P− pI)−1q,

where p is a complex variable. Then ImW (iω0) = 0 and k is computed then by formula k = −(ReW (iω0))
−1.

By nonsingular linear transformation x = Sy system (13) can be reduced to the form

dy

dt
= Ay + bεϕ(c∗y), (14)

where

A,b, c =

 0 −ω0 0
ω0 0 0
0 0 −d

 ,

 b1
b2
1

 ,

 1
0
−h

 .

Further, using the equality of transfer functions of systems (13) and (14), we obtain

WA(p) = r∗(P0 − pI)−1q.

This implies the following relations

k =
−α(m1 +m1γ + γ) + ω2

0 − γ − β
α(1 + γ)

,

d =
α + ω2

0 − β + 1 + γ + γ2

1 + γ
,

h =
α(γ + β − (1 + γ)d+ d2)

ω2
0 + d2

,

b1 =
α(γ + β − ω2

0 − (1 + γ)d)

ω2
0 + d2

,

b2 =
α
(
(1 + γ − d)ω2

0 + (γ + β)d
)

ω0(ω2
0 + d2)

.

(15)
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System (13) can be reduced to the form (14) by the nonsingular linear transformation x = Sy. Having
solved the following matrix equations

A = S−1P0S, b = S−1q, c∗ = r∗S, (16)

one can obtain the transformation matrix

S =

 s11 s12 s13
s21 s22 s23
s31 s32 s33

 .

By (11), for small enough ε we determine initial data for the first step of multistage localization procedure

x(0) = Sy(0) = S

 a0
0
0

 =

 a0s11
a0s21
a0s31

 .

Returning to Chua’s system denotations, for determining the initial data of starting solution of multistage
procedure we have the following formulas

x(0) = a0, y(0) = a0(m1 + 1 + k),

z(0) = a0
α(m1 + k)− ω2

0

α
.

(17)

Consider system (13) with the parameters

α = 8.4562, β = 12.0732, γ = 0.0052,

m0 = −0.1768, m1 = −1.1468.
(18)

Note that for the considered values of parameters there are three equilibria in the system: a locally stable
zero equilibrium and two saddle equilibria.

Now we apply the above procedure of hidden attractors localization to Chua’s system (12) with parameters
(18). For this purpose, compute a starting frequency and a coefficient of harmonic linearization. We have

ω0 = 2.0392, k = 0.2098 .

Then, compute solutions of system (13) with nonlinearity εϕ(x) = ε(ψ(x) − kx), sequentially increasing ε
from the value ε1 = 0.1 to ε10 = 1 with the step 0.1.

By (15) and (17) we obtain the initial data

x(0) = 9.4287, y(0) = 0.5945, z(0) = −13.4705

for the first step of multistage procedure for the construction of solutions. For the value of parameter ε1 = 0.1,
after transient process the computational procedure reaches the starting oscillation x1(t). Further, by the
sequential transformation xj(t) with increasing the parameter εj, using the numerical procedure, for original
Chua’s system (12) the set Ahidden is computed. This set is shown in Fig. 3.

The considered system has three stationary points: the stable zero point F0 and the symmetric saddles
S1 and S2. To zero equilibrium F0 correspond the eigenvalues λF0

1 = −7.9591 and λF0
2,3 = −0.0038 ± 3.2495i

and to the saddles S1 and S2 correspond the eigenvalues λ
S1,2

1 = 2.2189 and λ
S1,2

2,3 = −0.9915 ± 2.4066i. The
behavior of trajectories of system in a neighborhood of equilibria is shown in Fig. 3.
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Figure 2: Equilibrium, stable manifolds of saddles, and localization of hidden attractor.

Figure 3: Hidden attractor projections on (x, y), (x, z), and (y, z)
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Figure 4: Projection of the solutions of the modified Chua’s system on the plane (x, y) for i = 3. Nonlinearity
θi(x) and stability sectors.

Figure 5: Projection of the solutions of the modified Chua’s system on the plane (x, y) for i = 5. Nonlinearity
θi(x) and stability sectors.

We remark that here positive Lyapunov exponent [18]3. corresponds to the computed trajectories.
By the above and with provision for the remark on the existence, in system, of locally stable zero equi-

librium and two saddle equilibria (trajectories from the neighborhood of these saddles tend to zero or to
infinity), we arrive at the conclusion that in Ahidden a hidden strange attractor is computed.

Now let us consider localization of hidden oscillation in the Chua’s circuit with modified nonlinear char-
acteristic — discontinuous nonlinearity sign(x) instead of sat(x). For this we consider the system (12) with
nonlinearity of special form

θi(x) = ψ(x) +
i

n

(
(m0 −m1)sign(x)− ψ(x)

)
, i = 1, . . . , n (19)

and apply the same numerical procedure to the new system with n = 10, increasing the value of the parameter
i from 1 up to 10. Projections of the solutions of the system (12) with nonlinearity (19) on the plane (x, y)
for i = 3, 5, 7, 10 are shown in Figs. 4–7 respectively.

4 Conclusions

In the present work the application of special analytical-numerical algorithm for hidden attractor localization
is discussed. The existence of such hidden attractors in classical and modified Chua’s circuits is demonstrated.

It is also can be noted that to obtain existence of hidden attractor in Chua’s circuit one can artificially
modify [20, 19, 7] diode characteristics to stabilize zero stationary point by inserting small stable zone around
zero stationary point into nonlinearity.
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3 Lyapunov exponents (LEs) were introduced by Lyapunov for the analysis of stability by the first approximation for regular
time-varying linearizations, where negativeness of the largest Lyapunov exponent indicated stability. While there are known
Perron effects [18] of the largest Lyapunov exponent sign inversions for non regular time-varying linearizations, computation
of Lyapunov exponents for linearization of nonlinear autonomous system along non stationary trajectories is widely used for
investigation of chaos, where positiveness of the largest Lyapunov exponent is often considered as indication of chaotic behavior
in considered nonlinear system.

Figure 6: Projection of the solutions of the modified Chua’s system on the plane (x, y) for i = 7. Nonlinearity
θi(x) and stability sectors.
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Figure 7: Projection of the solutions of the modified Chua’s system on the plane (x, y) for i = 10. Nonlinearity
θi(x) and stability sectors.
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