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Abstract. The hidden oscillations (a basin of attraction of which does not contain neighborhoods of
equilibria) have been obtained first in the 50-60s of 20th century in automatic control systems with scalar
piecewise-linear nonlinearity. This brings up the question about the excitation nature of hidden oscillations.

In the present paper it is shown that hidden oscillations can exist not only in systems with piecewise-linear
nonlinearity but also in smooth systems. Here it is demonstrated the possibility of the existence of hidden
chaotic attractor in modified Chua’s system with a smooth characteristic of nonlinear element.
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1 Introduction

In the initial period of development of the theory of nonlinear oscillations in the first half of last century, a
main attention has been given to analysis and synthesis of oscillating systems. For these systems the solution
of existence problem of oscillating regimes did not encounter severe difficulties.

The development of modern computers allows one to perform numerical simulation of complex nonlinear
dynamical systems and to obtain new information about the structure of their trajectories. In well-known
systems of Duffing [1], Van der Pol [2], Beluosov-Zhabotinsky [3], Lorenz [4], Rössler [5] and many others
the classical self-exited oscillations and attractors can be studied, with relative ease, numerically by stan-
dard computational procedure, in which after transient process a trajectory, starting from a point of unstable
manifold in a small neighborhood of unstable equilibrium, reaches an attractor and computes it..

However, the possibilities of this approach turned out to be very limited. In the middle of last century
in the systems with scalar nonlinearity there were obtained the oscillations of another type, namely hidden
oscillations, a basin of attraction of which does not contain neighborhoods of equilibria and which cannot
be computed with the help of the above standard procedure. In addition, in this case the integration of
trajectories with random initial data is unlikely to furnish the desired result (see, e.g., Arnold’s description of
Kolmogorov’s experiment on the search of limit cycles [6, 8, 7]) since a basin of attraction can be very small
and the attractor dimension itself can be much less than the dimension of the considered system. Note, that
similar difficulties arise in computation of rare attractors [9].

In 1961 Gubar’ [10] showed analytically the possibility of existence of hidden oscillation in two-dimensional
dynamical system of phase locked-loop with piecewise-constant impulse nonlinearity. In 50-60’s of last century
the investigations of widely known Markus-Yamabe’s [11], Aizerman’s [12], and Kalman’s [13] conjectures on
absolute stability, have led to the finding of hidden oscillations in dynamical model of automatic control
systems with scalar piecewise-linear nonlinearity, which belongs to the sector of linear stability (see [14, 15,
17, 18] and others). Note that in such systems for the investigation of the existence of hidden oscillations,
the property of piecewise-linearity of nonlinearity allows one to integrate a system on intervals of linearity
and then to apply Andronov’s point-transformation method and the estimation of trajectories on Poincare

1Nikolay V. Kuznetsov, nkuznetsov239 at gmail.com (correspondence author)
2PDF slides http://www.math.spbu.ru/user/nk/PDF/Hidden-attractor-localization-Chua-circuit.pdf

1

http://www.sciencedirect.com/science/article/pii/S0167278912001534
http://dx.doi.org/10.1016/j.physd.2012.05.016
http://www.math.spbu.ru/user/nk/PDF/2012-Physica-D-Hidden-attractor-Chua-circuit-smooth.pdf
http://www.math.spbu.ru/user/nk/
http://en.wikipedia.org/wiki/Hidden_oscillation
http://en.wikipedia.org/wiki/Hidden_oscillation
http://www.math.spbu.ru/user/nk/PDF/Hidden-attractor-localization-Chua-circuit.pdf
http://www.math.spbu.ru/user/nk/PDF/Hidden-attractor-localization-Chua-circuit.pdf
http://www.math.spbu.ru/user/nk/PDF/Hidden-attractor-localization-Chua-circuit.pdf
http://www.math.spbu.ru/user/nk/PDF/Hidden-attractor-localization-Chua-circuit.pdf
http://www.math.spbu.ru/user/nk/PDF/Hidden-oscillation-Absolute-stability-Aizerman-problem-Kalman.pdf
http://www.math.spbu.ru/user/nk/PDF/Hidden-attractor-localization-Chua-circuit.pdf
http://www.math.spbu.ru/user/nk/PDF/Hidden-attractor-localization-Chua-circuit.pdf
http://www.math.spbu.ru/user/nk/PDF/Hidden-oscillation-Absolute-stability-Aizerman-problem-Kalman.pdf
http://www.math.spbu.ru/user/nk/PDF/Hidden-oscillation-Absolute-stability-Aizerman-problem-Kalman.pdf
http://www.math.spbu.ru/user/nk/PDF/Hidden-oscillation-Absolute-stability-Aizerman-problem-Kalman.pdf
http://www.math.spbu.ru/user/nk/
http://www.math.spbu.ru/user/nk/PDF/Hidden-attractor-localization-Chua-circuit.pdf


cross-section. Note, that similar investigations were carried out also for non-autonomous systems (see, e.g.
[19, 19]).

Recently, in 2010, for the first time, a chaotic hidden oscillations (hidden attractors) were discovered in
Chuas circuit [21, 22, 18] in Chua’s circuits with continuous piecewise-linear nonlinearity. Note that L. Chua
himself, analyzing in the work [23] different cases of attractor existence in Chua’s circuit, does not expect the
existence of such hidden attractor in his system.

Below it will be shown that the existence of hidden oscillations does not relate directly, however, with the
property of piecewise-linearity and requires further development of effective methods for their investigation.

In addition, on the example of modified Chua’s system with smooth nonlinearity it is shown the existence
of chaotic hidden oscillations (hidden attractors) in smooth systems. For localization of hidden attractors an
effective analytical-numerical algorithm is suggested.

2 Analytical-numerical method for hidden oscillations localiza-

tion

Consider a system with vector nonlinearity

dx

dt
= Px +ψ(x), x ∈ Rn. (1)

Here P is a constant (n× n)-matrix, ψ(x) is a continuous3 vector-function, and ψ(0) = 0.
Define a matrix K in such a way that the matrix

P0 = P + K (2)

has a pair of purely imaginary eigenvalues ±iω0, (ω0 > 0) and the rest of its eigenvalues have negative real
parts. Rewrite system (1) as

dx

dt
= P0x +ϕ(x), (3)

where ϕ(x) = ψ(x)−Kx.
Introduce a finite sequence of functions ϕ0(x), ϕ1(x), . . . ,ϕm(x) such that the graphs of neighboring

functions ϕj(x) and ϕj+1(x) slightly differ from one another, the function ϕ0(x) is small, and ϕm(x) =
ϕ(x). Taking into account a smallness of the function ϕ0(x), one can use and justify mathematically strictly
[25, 26, 8, 24] the method of harmonic linearization (the describing function method) for the system

dx

dt
= P0x +ϕ0(x) (4)

and determine a stable nontrivial periodic solution x0(t).
For the localization of attractor of original system (3), we shall follow numerically the transformation

of this periodic solution with increasing j. This periodic solution, denoted further by A0, is regarded as a
starting oscillating attractor (an attractor, not including equilibria).

Here two cases are possible. In the first case all the points of A0 are in the attraction domain of attractor
A1, which is an oscillating attractor of the system

dx

dt
= P0x +ϕj(x) (5)

3This condition can be weakened if a piecewise-continuous function being Lipschitz on closed continuity intervals is considered
[8]
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with j = 1. In the second case, in the change from system (4) to system (5) with j = 1, it is observed a loss
of stability (bifurcation) and the vanishing of A0. In the second case the solution x1(t) can be determined
numerically by starting a trajectory of system (5) with j = 1 from the initial point x0(0). If in the process of
computation the solution x1(t) is not fallen to equilibrium and is not increased indefinitely (here it should be
considered a sufficiently large computational interval [0, T ]), then this solution reaches attractor A1. Now it
is possible to consider system (5) with j = 2, to perform a similar procedure of computation of A2 by starting
a trajectory of system (5) with j = 2 from the initial point x1(T ) and to compute the trajectory x2(t).

Proceeding then this procedure, sequentially increasing j, and computing xj(t) (which is a trajectory
of system (5) with initial data xj−1(T )) we either arrive at the computation of Am (which is an attractor
of system (5) with j = m, i.e. original system (3)), either, at a certain step, observe a loss of stability
(bifurcation) and the vanishing of attractor.

Determine the initial data x0(0) of starting periodic solution x0(t). For this purpose, by the linear
nonsingular transformation S, system (4) with nonlinearity ϕ0(x) is reduced to the form

ẏ1 = −ω0x2 + εϕ1(y1, y2,y3),

ẏ2 = ω0x1 + εϕ2(y1, y2,y3),

ẏ3 = Ax3 + εϕ3(y1, y2,y3).

(6)

Here y1, y2 are scalar values, y3 is (n − 2)-dimensional vector; ϕ3 is (n − 2)-dimensional vector-function,
ϕ1, ϕ2 are scalar functions; A3 is ((n− 2)× (n− 2))-matrix, all eigenvalues of which have negative real parts.
Without loss of generality, it can be assumed that for the matrix A3 there exists a positive number d > 0
such that

y∗3(A3 + A∗3)y3 ≤ −2d|y3|2, ∀y3 ∈ Rn−2. (7)

Introduce the describing function

Φ(a) =
2π/ω0∫

0

[
ϕ1 ((cosω0t)a, (sinω0t)a, 0) cosω0t+

+ϕ2 ((cosω0t)a, (sinω0t)a, 0) sinω0t

]
dt,

and suppose that for the vector-function ϕ(x) the estimate

|ϕ(x′)−ϕ(x′′)| ≤ L|x′ − x′′|, ∀x′,x′′ ∈ Rn (8)

is satisfied.

Theorem 1 [24] If a positive a0 can be found such that

Φ(a0) = 0,
dΦ(a)

da

∣∣∣∣
a=a0

6= 0 (9)

then for sufficiently small ε there exists periodic solution x0(t) with the initial data x0(0) = S(y1(0), y2(0),y3(0))∗,
where

y1(0) = a0 +O(ε), y2(0) = 0, y3(0) = On−2(ε), (10)

and On−2(ε) is (n− 2)-dimensional vector such that all its components are O(ε).

If the stability is regarded in the sense that for all solutions with the initial data sufficiently close to x0(0),
the modulus of their difference with x0(t) is uniformly bounded for all t > 0), then for the stability of x0(t)

it is sufficient that the condition dΦ(a)
da

∣∣∣∣
a=a0

< 0 is satisfied.

Theorem 1 permits one to construct analytical-numerical algorithms for the search of hidden oscillations
in various systems with scalar and vector nonlinearities.
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3 Localization of hidden attractor in Chua’s system with smooth

scalar nonlinearity

Classical Chua’s attractors are those which are excited from unstable equilibria. This permits one, with
relative easy, to compute different classical Chua’s attractors [27, 28, 29, 30, 31, 32]. But recently by special
analytical-numerical algorithm [24] in classical Chua’s circuit there were also discovered the hidden attractors
[22].

The above theorem can be used for the search of hidden oscillations in modified Chua’s system with
smooth scalar nonlinearity.

Consider the following smooth Chua’s system

ẋ = α(y − x)− αf(x),

ẏ = x− y + z,

ż = −(βy + γz).

(11)

Here the function
f(x) = m1x+ (m0 −m1)tanh(x) =

= m1x+ (m0 −m1)
ex − e−x

ex + e−x

(12)

characterizes a nonlinear element of the system (here it is considered smooth nonlinearity tanh(x) close to
the nonlinearity saturation(x) in the classical Chua’s circuit); α, β, γ,m0,m1 are parameters of system.

Let us apply the above analytical-numerical algorithm to analysis of Chua’s system. For this purpose,
rewrite Chua’s system (11) as (1)

dx

dt
= Px + qψ(r∗x), x ∈ R3. (13)

Here

P =

 −α(m1 + 1) α 0
1 −1 1
0 −β −γ

 , q =

 −α0
0

 , r =

 1
0
0

 ,

ψ(σ) = (m0 −m1)tanh(σ).

Introduce the coefficient k and small parameter ε, and represent system (13) as (4):

dx

dt
= P0x + qεϕ(r∗x). (14)

Here

P0 = P + kqr∗ =

−α(m1 + 1 + k) α 0
1 −1 1
0 −β −γ

 ,

λP0
1,2 = ±iω0, λ

P0
3 = −d,

ϕ(σ) = ψ(σ)− kσ = (m0 −m1)tanh(σ)− kσ.

Consider system (14) with the parameters

α = 8.4562, β = 12.0732, γ = 0.0052,

m0 = 0.3532, m1 = −1.1468.
(15)

Note that for the considered values of parameters, in the system there are three equilibria: one locally
stable zero equilibrium and two saddle equilibria.
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Now we apply the above procedure of hidden attractors localization to Chua’s system (13) with parameters
(15). For this purpose a starting frequency and a coefficient of harmonic linearization are computed. We have

ω0 = 2.0392, k = 0.2098 .

Compute then the solutions of system (14) with nonlinearity εϕ(x) = ε(ψ(x)− kx), sequentially increasing ε
from the value ε1 = 0.1 to ε10 = 1 with the step 0.1.

By (10) and the matrix S (which can be found using [22]) for the transformation of system (14) to the
form (6), one can obtain the initial data, namely

x(0) = 8.8200, y(0) = 0.5561, z(0) = −12.6008

for the first step of multistage procedure for localization of hidden oscillation. For the value of parameter
ε1 = 0.1, after transient process the computational procedure reaches the starting oscillation x1(t) (Fig. 1).
Then by sequential increasing the parameter εj and the computation of xj(t) (see (Figs. 1-??)), the set Ahidden

is computed for original Chua’s system (13).
The set Ahidden is shown in Fig. 3.
It should be noted that the decreasing of integration step, the increasing of integration time, and the

computation of different trajectories of original system with initial data from a small neighborhood of Ahidden

lead to the localization of the same set Ahidden (all the computed trajectories densely trace the set Ahidden).
Note also that for the computed trajectories it is observed Zhukovsky instability and the positiveness of
Lyapunov exponent [33, 34]4.

The behavior of system trajectories in the neighborhood of equilibria is shown in Fig. 3, where Munst
1,2 are

unstable manifolds and M st
1,2 are stable manifolds. It follows that in a phase space of system there are stable

separating manifolds of saddles.
Thus, by the above and, taking into account the remark on the existence, in system, of locally stable zero

equilibrium F0, which attracts the stable manifolds M st
1,2 of two symmetric saddles S1 and S2, we arrive at

the conclusion that in Ahidden a hidden strange attractor is computed.

4 Lyapunov exponents (LEs) were introduced by Lyapunov for the analysis of stability by the first approximation for regular
time-varying linearizations, where negativeness of the largest Lyapunov exponent indicated stability. Later Chetaev proved that
for regular time-varying linearizations positive Lyapunov exponent indicated instability (a gap in his work is discussed and filled
in [34]). While there is no general methods for checking regularity of linearization and there are known Perron effects [34] of
the largest Lyapunov exponent sign inversions for non regular time-varying linearizations, computation of Lyapunov exponents
for linearization of nonlinear autonomous system along non stationary trajectories is widely used for investigation of chaos,
where positiveness of the largest Lyapunov exponent is often considered as indication of chaotic behavior in considered nonlinear
system.
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Figure 1: Oscillation localization.

Figure 2: Oscillation localization.
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Figure 3: Equilibrium, stable manifolds of saddles, and localization of hidden attractor.

6



4 Conclusions

In the present paper the application of special analytical-numerical algorithm to localization of hidden at-
tractor is discussed and the existence of such hidden attractor in smooth Chua’s system is demonstrated.
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