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Leonov G.A., Kuznetsov N.V. , Yuldashev M.V., Yuldashev R.V.

Draft 1 2

Abstract. Discovery of undesirable hidden oscillations, which cannot be found by simulation, in models
of phase-locked loop (PLL) showed the importance of development and application of analytical methods for
the analysis of such models. Approaches to a rigorous nonlinear analysis of analog PLL with multiplier phase
detector (classical PLL) and linear filter are discussed. An effective analytical method for computation of
multiplier/mixer phase-detector characteristics is proposed. For various waveforms of high-frequency signals,
new classes of phase-detector characteristics are obtained, and dynamical model of PLL is constructed.

Keywords: nonlinear analysis of phase-locked loop (PLL), phase detector characteristics computation,
simulation in phase-frequency space, hidden oscillation, hidden attractor

1 Introduction

Discovery of undesirable hidden oscillations3 which cannot be found by simulation, in phase-locked loop (PLL)
models showed the importance of development and application of analytical methods for the analysis of such
models.
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Figure 1: Bifurcation of hidden oscillation: stable and unstable periodic trajectory are bifurcated from the
semistable periodic trajectories. If stable and unstable periodic solutions are very close one another, then
from a computational point of view, all the trajectories tend to equilibria, but, in fact, there is a bounded
domain of attraction only.

1Nikolay V. Kuznetsov, nkuznetsov239 at gmail.com (correspondence author)
2PDF slides http://www.math.spbu.ru/user/nk/PDF/Nonlinear-analysis-of-Phase-locked-loop-PLL.pdf
3 From computation point of view, in nonlinear dynamical systems attractors can be regarded as self-excited and hidden

attractors. Self-excited attractors can be localized numerically by standard computational procedure — after transient process a
trajectory, started from a point of unstable manifold in a small neighborhood of unstable equilibrium, reaches an attractor and
computes it. Hidden attractors, a basin of attraction of which does not contain neighborhoods of equilibria [2]. Computation
of hidden attractors by standard computational procedure is impossible and requires application of special analytical-numerical
procedures [1, 2, 3].
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To carry out the nonlinear analysis of PLL, it is necessary to consider PLL models in signal and phase-
frequency spaces [5, 6, 7, 8]. For constructing an adequate nonlinear mathematical model of PLL in phase-
frequency space, it is necessary to find the characteristic of phase detector (PD) (PD is a nonlinear element
used in PLL to match tunable signals). The PD inputs are high-frequency signals of reference and tunable
oscillators, and the output contains a low-frequency error correction signal, corresponding to a phase difference
of input signals. For the suppression of high-frequency component at PD output (if such component exists), a
low-pass filter is applied. The characteristic of PD is a function defining a dependence of signal at the output
of PD (in the phase-frequency space) on the phase difference of signals at the input of PD. PD characteristic
depends on the realization of PD and waveforms of input signals.

The characteristics of classical PD-multiplier for typical sinusoidal signal waveforms are well known to
engineers [5, 9, 10, 11, 12].

Furthermore, following [13], on the examples of PD in the form of multiplier, the general principles
of computing phase detector characteristics for various types of signals, based on a rigorous mathematical
analysis of high-frequency oscillations [14, 16], will be considered.

2 Description of Classical PLL in Signal Space

Consider classical PLL on the level of electronic realization (Fig. 2)

Figure 2: Block diagram of PLL on the level of electronic realization.

Here OSCmaster is a master oscillator, and OSCslave is a slave oscillator [tunable voltage-control oscillator
(VCO)], which generates oscillations fp(t) = fp(θp(t)), p = 1, 2 with θp(t) as phases, correspondingly.

The block
⊗

is a multiplier (used as PD) of oscillations f 1(t) and f 2(t), and the signal f 1(θ1(t))f 2(θ(t))
is its output. The relation between the input ξ(t) and the output σ(t) of linear filter is as follows:

σ(t) = α0(t) +
∫ t
0
γ(t− τ)ξ(τ) dτ, (1)

where γ(t) is an impulse response function of filter and α0(t) is an exponentially damped function depending
on the initial data of filter at moment t = 0. By assumption, γ(t) is a differentiable function with bounded
derivative (this is true for the most considered filters [11]).

2.1 High-frequency property of signals

Suppose that the waveforms f 1,2(θ) are bounded 2π-periodic piecewise differentiable functions4 (this is true
for the most considered waveforms). Consider Fourier series representation of such functions

fp(θ) =
∞∑
i=1

(
api sin(iθ) + bpi cos(iθ)

)
, p = 1, 2,

api =
1

π

π∫
−π
fp(θ) sin(iθ)dθ, bpi =

1

π

∫ π
−π f

p(θ) cos(iθ)dθ.

A high-frequency property of signals can be reformulated in the following way. By assumption, the phases
θp(t) are smooth functions (this means that frequencies are changing continuously, which is corresponding to

4the functions with a finite number of jump discontinuity points differentiable on their continuity intervals
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classical PLL analysis [11, 12]). Suppose also that there exists a sufficiently large number ωmin such that the
following conditions are satisfied on the fixed time interval [0, T ]:

θ̇p(τ) ≥ ωmin > 0, p = 1, 2 (2)

where T is independent of ωmin and θ̇p(t) denotes frequencies of signals. The frequencies difference is assumed
to be uniformly bounded ∣∣θ̇1(τ)− θ̇2(τ)

∣∣ ≤ ∆ω, ∀τ ∈ [0, T ]. (3)

Requirements (2) and (3) are obviously satisfied for the tuning of two high-frequency oscillators with close

frequencies [11, 12]. Let us introduce δ = ω
− 1

2
min Consider the relations

|θ̇p(τ)− θ̇p(t)| ≤ ∆Ω, p = 1, 2,

|t− τ | ≤ δ, ∀τ, t ∈ [0, T ],
(4)

where ∆Ω is independent of δ and t. Conditions (2)–(4) mean that the functions θ̇p(τ) are almost constant
and the functions fp(θp(τ)) are rapidly oscillating on small intervals [t, t+ δ].

The boundedness of derivative of γ(t) implies

|γ(τ)− γ(t)| = O(δ), |t− τ | ≤ δ, ∀τ, t ∈ [0, T ]. (5)

3 Phase-Detector Characteristic Computation

Consider two block diagrams shown in Fig. 3. Here, PD is a nonlinear block with characteristic ϕ(θ). The

Figure 3: Phase detector and filter

phases θp(t) are PD block inputs, and the output is a function ϕ(θ1(t) − θ2(t)). The PD characteristic ϕ(θ)
depends on waveforms of input signals.

The signal f 1(θ1(t))f 2(θ2(t)) and the function ϕ(θ1(t)− θ2(t)) are the inputs of the same filters with the
same impulse response function γ(t) and with the same initial state. The outputs of filters are functions g(t)
and G(t), respectively. By (1), one can obtain g(t) and G(t)

g(t)=α0(t) +

∫ t

0

γ(t− τ)f 1
(
θ1(τ)

)
f 2
(
θ2(τ)

)
dτ,

G(t)=α0(t) +

∫ t

0

γ(t− τ)ϕ(θ1(τ)− θ2(τ)
)
dτ.

(6)

Then, using the approaches outlined in [13] and [17, 18, 26], the following result can be proved.
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Theorem 1 Let conditions (2)–(5) be satisfied and

ϕ(θ)=
1

2

∞∑
l=1

(
(a1l a

2
l + b1l b

2
l ) cos(lθ) + (a1l b

2
l − b1l a2l ) sin(lθ)

)
. (7)

Then the following relation:
|G(t)− g(t)| = O(δ), ∀t ∈ [0, T ]

is valid.

Proof. Suppose that t ∈ [0, T ]. Consider the difference

g(t)−G(t) =

t∫
0

γ(t− s)
[
f 1
(
θ1(s)

)
f 2
(
θ2(s)

)
−

− ϕ
(
θ1(s)− θ2(s)

)]
ds.

(8)

...
it can be obtained that

g(t)−G(t) =
m∑
k=0

γ(t− kδ)
∫

[kδ,(k+1)δ][
f 1
(
θ1(s)

)
f 2
(
θ2(s)

)
− ϕ

(
θ1(s)− θ2(s)

)]
ds+O(δ).

(9)

...
The proof of theorem is completed. �
Roughly speaking, this theorem separates low-frequency error-correcting signal from parasite high-frequency

oscillations. This result was known to engineers [11] for sinusoidal signals.
This theorem allows one to compute a phase detector characteristic for the following typical signals [11]

shown in the table hereinafter. The waveforms f 1,2(θ) of input signals are shown in the left diagram and the
corresponding PD characteristic ϕ(θ) is plotted in the right one.
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3.1 Phase detector characteristics for equal signal waveforms

f 1,2(θ) = sin(θ), ϕ(θ) = 1
2

cos(θ)
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f 1,2(θ) = sign (sin(θ)),

ϕ(θ) = 8
π2

∞∑
n=1

1
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)
,
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f 1,2(θ) = − 2
π
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n

sin
(
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)
,
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π2
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n2 cos
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3.2 Phase detector characteristics for mixed signal waveforms

f 1(θ) = sin(θ), f 2(θ) = sign sin(θ), ϕ(θ) = 2
π

cos(θ)
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(2n−1)2 cos
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(2n− 1)θ

)
,

f 2(θ) = sin(θ), ϕ(θ) = 4
π2 sin(θ)
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f 1(θ) = − 2
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n

sin
(
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)
, f 2(θ) = sign sin(θ),

ϕ(θ) = − 4
π2
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f 1(θ) = − 2
π
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n
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(
nθ
)
, ϕ(θ) = − 8
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sin((2n−1)θ)
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f 2(θ) = 8
π2

∞∑
n=1

1
(2n−1)2 cos

(
(2n− 1)θ

)
,
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(
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)
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f 2(θ) = sign sin(θ), ϕ(θ) = 16
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(
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)
,

f 2(θ) = sign sin(θ), ϕ(θ) = 16
π3

∞∑
n=1

sin((2n−1)θ)
(2n−1)3
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4 Description of Classical PLL in Phase-Frequency Space

From the mathematical point of view, a linear filter can be described [11] by a system of linear differential
equations

ẋ = Ax+ bξ(t), σ = c∗x, (10)

a solution of which takes the form (1). Here, A is a constant matrix, x(t) is a state vector of filter, b and c
are constant vectors.

The model of tunable generator is usually assumed to be linear [11, 12]:

θ̇2(t) = ω2
free + LG(t), t ∈ [0, T ]. (11)

where ω2
free is a free-running frequency of tunable generator and L is an oscillator gain. Here it is also possible

to use nonlinear models of VCO; see, e.g., [20] and [21]).
Suppose that the frequency of master generator is constant θ̇1(t) ≡ ω1. Equation of tunable generator (11)

and equation of filter (10), yield

ẋ = Ax+ bf 1(θ1(t))f 2(θ2(t)), θ̇2 = ω2
free + Lc∗x. (12)

The system (12) is nonautonomous and rather difficult for investigation [6]. Here, Theorem 1 allows one
to study more simple autonomous system of differential equations [in place of the nonautonomous (12)]

ẋ = Ax+ bϕ(∆θ), ∆θ̇ = ω2
free − ω1 + Lc∗x,

∆θ = θ2 − θ1.
(13)

Well-known averaging method [22, 23, 24] allows one to show that solutions of (12) and (13) are close
under some assumptions. Thus, by Theorem 1, the block-scheme of PLL in signal space (Fig. 2) can be
asymptotically changed [for high-frequency generators, see conditions (2)–(4)] to the block-scheme on the
level of phase-frequency relations (Fig. 4).

Figure 4: Block scheme of phase-locked loop in phase-frequency space

In Fig. 4, PD has the corresponding characteristics. Thus, using asymptotic analysis of high-frequency
oscillations, the characteristics of PD can be computed. Methods of nonlinear analysis for this model are well
developed [6].

The simulation approach for PLL analysis and design, based on the obtained analytical results, is discussed
in [25].

It should be noted that, instead of conditions (3) and (5) for simulations of real system, one have to
consider the following conditions:

|∆ω| << ωmin, |λA| << ωmin,

where λA is the largest (in modulus) eigenvalue of the matrix A. Also, for correctness of transition from
equation (8) to (9) one have to consider T << ωmin. Theoretical results are justified by simulation of PLL
model in phase-frequency space and signal space (Fig. 5). Unlike the filter output for the phase-frequency
model, the output of the filter for signal space PLL model contains additional high-frequency oscillations.
These high-frequency oscillations interfere with qualitative analysis and efficient simulation of PLL.
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Figure 5: ω2
free = 99 Hz, ω1 = 100 Hz, L = 10, filter transfer functions 1

s+1
, and triangle waveforms

The passage to analysis of autonomous dynamical model of PLL (in place of the nonautonomous one)
allows one to overcome the aforementioned difficulties, related with modeling PLL in time domain, which were
noted in survey lecture of well-known American specialist D. Abramovitch at American Control Conference,
2008: One has to simultaneously observe ”very fast time scale of the input signals” and ”slow time scale of
signal’s phase”.

5 Conclusion

The approach, proposed in this brief, allows one (mathematically rigorously) to compute multiplier PD
characteristics in the general case of signal waveforms and to proceed from analysis of classical PLL in time
space to analysis and simulation in phase-frequency space. This allows one to effectively simulate classical
PLL.
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