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Abstract. The classical attractors of Lorenz, Rossler, Chua, Chen, and other widely-known attractors
are those excited from unstable equilibria. From computational point of view this allows one to use numerical
method, in which after transient process a trajectory, started from a point of unstable manifold in the
neighborhood of equilibrium, reaches an attractor and identifies it. However there are attractors of another
type: hidden attractors, a basin of attraction of which does not contain neighborhoods of equilibria. In the
present Letter for localization of hidden attractors of Chua’s circuit it is suggested to use a special analytical-
numerical algorithm.
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1 Introduction

The classical attractors of Lorenz [1], Rossler [2], Chua [3], Chen [4], and other widely-known attractors
are those excited from unstable equilibria. From computational point of view this allows one to use nu-
merical method, in which after transient process a trajectory, started from a point of unstable manifold
in the neighborhood of equilibrium, reaches an attractor and identifies it. However there are attractors of
another type: hidden attractors, a basin of attraction of which does not contain neighborhoods of equilibria.
The simplest examples of systems with such attractors are counterexamples to widely-known Aizerman’s
and Kalman’s conjectures on absolute stability (see, e.g.,[8, 10]). Numerical localization, computation, and
analytical investigation of such attractors are much more difficult problems. In the present Letter for
localization of hidden attractors of Chua’s circuit it is suggested to use a special analytical-numerical algo-
rithm.

Chua’s circuit can be described by differential equations in dimensionless coordinates:

ẋ = α(y − x) − αf(x),

ẏ = x− y + z,

ż = −(βy + γz).

(1.1)

Here the function

f(x) = m1x+ (m0 −m1)sat(x) = m1x+
1

2
(m0 −m1)(|x+ 1| − |x− 1|) (1.2)

characterizes a nonlinear element, of the system, called Chua’s diode; α, β, γ,m0, m1 are parameters of the
system. In this system it was discovered the strange attractors [11, 12] called then Chua’s attractors (for
the current state of chaotic behavior investigation in Chua’s circuit see, e.g., recent work [13] and references
within).

To date all known Chua’s attractors are the attractors that are excited from unstable equilibria. This
makes it possible to compute different Chua’s attractors [14, 15, 16] with relative easy.

The applied in this Letter algorithm shows for the first time the possibility of existence of hidden attractor in
system (1.1). Note that L. Chua himself, analyzing in the work [3] different cases of attractor existence in
Chua’s circuit, does not admit the existence of such hidden attractor.
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2 Analytical-numerical method for attractors localization

Consider a system with one scalar3 nonlinearity

dx

dt
= Px + qψ(r∗x), x ∈ R

n. (2.3)

Here P is a constant (n × n)-matrix, q, r are constant n-dimensional vectors, ∗ is a transposition operation,
ψ(σ) is a continuous piecewise-differentiable4 scalar function, and ψ(0) = 0. Define a coefficient of harmonic
linearization k in such a way that the matrix

P0 = P + kqr∗ (2.4)

has a pair of purely imaginary eigenvalues ±iω0 (ω0 > 0) and the rest of its eigenvalues have negative real
parts. We assume that such k exists. Rewrite system (2.3) as

dx

dt
= P0x + qϕ(r∗x), (2.5)

where ϕ(σ) = ψ(σ) − kσ.
Introduce a finite sequence of functions ϕ0(σ), ϕ1(σ), . . . , ϕm(σ) such that the graphs of neighboring func-

tions ϕj(σ) and ϕj+1(σ) slightly differ from one another, the function ϕ0(σ) is small, and ϕm(σ) = ϕ(σ).
Using a smallness of function ϕ0(σ), we can apply and mathematically strictly justify [5, 6, 7, 8, 9, 10] the
method of harmonic linearization (describing function method) for the system

dx

dt
= P0x + qϕ0(r∗x) (2.6)

and determine a stable nontrivial periodic solution x0(t). For the localization of attractor of original system
(2.5), we shall follow numerically the transformation of this periodic solution (a starting oscillating attractor
— an attractor, not including equilibria, denoted further by A0) with increasing j. Here two cases are possible:
all the points of A0 are in an attraction domain of attractor A1, being an oscillating attractor of the system

dx

dt
= P0x + qϕj(r∗x) (2.7)

with j = 1, or in the change from system (2.6) to system (2.7) with j = 1 it is observed a loss of stability
(bifurcation) and the vanishing of A0. In the first case the solution x1(t) can be determined numerically by
starting a trajectory of system (2.7) with j = 1 from the initial point x0(0). If in the process of computation
the solution x1(t) has not fallen to an equilibrium and it is not increased indefinitely (here a sufficiently large
computational interval [0, T ] should always be considered), then this solution reaches an attractor A1. Then
it is possible to proceed to system (2.7) with j = 2 and to perform a similar procedure of computation of A2,
by starting a trajectory of system (2.7) with j = 2 from the initial point x1(T ) and computing the trajectory
x2(t).

Proceeding this procedure and sequentially increasing j and computing xj(t) (being a trajectory of system
(2.7) with initial data xj−1(T )) we either arrive at the computation of Am (being an attractor of system (2.7)
with j = m, i.e. original system (2.5)), either, at a certain step, observe a loss of stability (bifurcation) and
the vanishing of attractor.

3The case of vector nonlinearity can be considered similarly [9]
4This condition can be weakened if a piecewise-continuous function being Lipschitz on closed continuity intervals is considered

[8]
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To determine the initial data x0(0) of starting periodic solution, system (2.6) with nonlinearity ϕ0(σ) is
transformed by linear nonsingular transformation S to the form

ẏ1 = −ω0y2 + b1ϕ
0(y1 + c∗3y3),

ẏ2 = ω0y1 + b2ϕ
0(y1 + c∗3y3),

ẏ3 = A3y3 + b3ϕ
0(y1 + c∗3y3).

(2.8)

Here y1, y2 are scalar values, y3 is (n − 2)-dimensional vector; b3 and c3 are (n − 2)-dimensional vectors,
b1 and b2 are real numbers; A3 is an ((n− 2) × (n− 2))-matrix, all eigenvalues of which have negative real
parts. Without loss of generality, it can be assumed that for the matrix A3 there exists a positive number
d > 0 such that

y∗

3(A3 + A∗

3)y3 ≤ −2d|y3|
2, ∀y3 ∈ R

n−2. (2.9)

Introduce the describing function

Φ(a) =

2π/ω0
∫

0

ϕ
(

cos(ω0t)a
)

cos(ω0t)dt.

Theorem 1 [8] If it can be found a positive a0 such that

Φ(a0) = 0, (2.10)

then for the initial data of periodic solution x0(0) = S(y1(0), y2(0),y3(0))∗ at the first step of algorithm we
have

y1(0) = a0 +O(ε), y2(0) = 0, y3(0) = On−2(ε), (2.11)

where On−2(ε) is an (n− 2)-dimensional vector such that all its components are O(ε).

For the stability of x0(t) (if the stability is regarded in the sense that for all solutions with the initial data
sufficiently close to x0(0) the modulus of their difference with x0(t) is uniformly bounded for all t > 0), it is
sufficient to require the satisfaction of the following condition

b1
dΦ(a)

da

∣

∣

∣

∣

a=a0

< 0.

In practice, to determine k and ω0 it is used the transfer function W (p) of system (2.3):

W (p) = r∗(P− pI)−1q,

where p is a complex variable. The number ω0 is determined from the equation ImW (iω0) = 0 and k is
computed then by formula k = −(ReW (iω0))

−1.

3 Localization of hidden attractor in Chua’s system.

We now apply the above algorithm to analysis of Chua’s system. For this purpose, rewrite Chua’s system
(1.1) in the form (2.3)

dx

dt
= Px + qψ(r∗x), x ∈ R

3. (3.12)

Here

P =





−α(m1 + 1) α 0
1 −1 1
0 −β −γ



 , q =





−α
0
0



 , r =





1
0
0



 ,

ψ(σ) = (m0 −m1)sat(σ).
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Introduce the coefficient k and small parameter ε, and represent system (3.12) as (2.6)

dx

dt
= P0x + qεϕ(r∗x), (3.13)

where

P0 = P + kqr∗ =





−α(m1 + 1 + k) α 0
1 −1 1
0 −β −γ



 , λP0
1,2 = ±iω0, λ

P0
3 = −d,

ϕ(σ) = ψ(σ) − kσ = (m0 −m1)sat(σ) − kσ.

By nonsingular linear transformation x = Sy system (3.13) is reduced to the form (2.8)

dy

dt
= Ay + bεϕ(c∗y), (3.14)

where

A =





0 −ω0 0
ω0 0 0
0 0 −d



 , b =





b1
b2
1



 , c =





1
0
−h



 .

The transfer function WA(p) of system (3.14) can be represented as

WA(p) =
−b1p+ b2ω0

p2 + ω2
0

+
h

p+ d
.

Further, using the equality of transfer functions of systems (3.13) and (3.14), we obtain

WA(p) = r∗(P0 − pI)−1q.

This implies the following relations

k =
−α(m1 +m1γ + γ) + ω2

0 − γ − β

α(1 + γ)
,

d =
α + ω2

0 − β + 1 + γ + γ2

1 + γ
,

h =
α(γ + β − (1 + γ)d+ d2)

ω2
0 + d2

,

b1 =
α(γ + β − ω2

0 − (1 + γ)d)

ω2
0 + d2

,

b2 =
α
(

(1 + γ − d)ω2
0 + (γ + β)d

)

ω0(ω2
0 + d2)

.

(3.15)

Since system (3.13) can be reduced to the form (3.14) by the nonsingular linear transformation x = Sy,
for the matrix S the following relations

A = S−1P0S, b = S−1q, c∗ = r∗S (3.16)

are valid. Having solved these matrix equations, we obtain the transformation matrix

S =





s11 s12 s13

s21 s22 s23

s31 s32 s33



 .
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Here
s11 = 1, s12 = 0, s13 = −h,

s21 = m1 + 1 + k, s22 = −
ω0

α
, s23 = −

h(α(m1 + 1 + k) − d)

α
,

s31 =
α(m1 + k) − ω2

0

α
, s32 = −

α(β + γ)(m1 + k) + αβ − γω2
0

αω0

,

s33 = h
α(m1 + k)(d− 1) + d(1 + α− d)

α
.

By (2.11), for small enough ε we determine initial data for the first step of multistage localization procedure

x(0) = Sy(0) = S





a0

0
0



 =





a0s11

a0s21

a0s31



 .

Returning to Chua’s system denotations, for determining the initial data of starting solution of multistage
procedure we have the following formulas

x(0) = a0, y(0) = a0(m1 + 1 + k), z(0) = a0

α(m1 + k) − ω2
0

α
. (3.17)

Consider system (3.13) with the parameters

α = 8.4562, β = 12.0732, γ = 0.0052, m0 = −0.1768, m1 = −1.1468. (3.18)

Note that for the considered values of parameters there are three equilibria in the system: a locally stable
zero equilibrium and two saddle equilibria.

Now we apply the above procedure of hidden attractors localization to Chua’s system (3.12) with param-
eters (3.18). For this purpose, compute a starting frequency and a coefficient of harmonic linearization. We
have

ω0 = 2.0392, k = 0.2098 .

Then, compute solutions of system (3.13) with nonlinearity εϕ(x) = ε(ψ(x) − kx), sequentially increasing ε
from the value ε1 = 0.1 to ε10 = 1 with the step 0.1.

By (3.15) and (3.17) we obtain the initial data

x(0) = 9.4287, y(0) = 0.5945, z(0) = −13.4705

for the first step of multistage procedure for the construction of solutions. For the value of parameter ε1 = 0.1,
after transient process the computational procedure reaches the starting oscillation x1(t). Further, by the
sequential transformation xj(t) with increasing the parameter εj, using the numerical procedure, for original
Chua’s system (3.12) the set Ahidden is computed. This set is shown in Fig. 1.

It should be noted that here the decreasing of integration step, the increasing of integration time, and
the computation of different trajectories of original system with initial data from a small neighborhood of
Ahidden lead to the localization of the same set Ahidden (all these trajectories densely trace the set Ahidden).
We remark that for the computed trajectories it is observed Zhukovsky instability and the positiveness of
Lyapunov exponent [17, 18]5.

5 Lyapunov exponents (LEs) were introduced by Lyapunov for the analysis of stability by the first approximation for regular

time-varying linearizations, where negativeness of the largest Lyapunov exponent indicated stability. Later Chetaev proved that
for regular time-varying linearizations positive Lyapunov exponent indicated instability (a gap in his work is discussed and filled
in [18]). While there is no general methods for checking regularity of linearization and there are known Perron effects [18] of
the largest Lyapunov exponent sign inversions for non regular time-varying linearizations, computation of Lyapunov exponents
for linearization of nonlinear autonomous system along non stationary trajectories is widely used for investigation of chaos,
where positiveness of the largest Lyapunov exponent is often considered as indication of chaotic behavior in considered nonlinear
system.
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Figure 1: Equilibrium, stable manifolds of saddles, and localization of hidden attractor.

By the above and with provision for the remark on the existence, in system, of locally stable zero equi-
librium and two saddle equilibria, we arrive at the conclusion that in Ahidden a hidden strange attractor is
computed.

We study now a behavior of the system in a neighborhood of equilibria. The considered system has
three stationary points: the stable zero point F0 and the symmetric saddles S1 and S2. To zero equilibrium
F0 correspond the eigenvalues λF0

1 = −7.9591 and λF0
2,3 = −0.0038 ± 3.2495i and to the saddles S1 and S2

correspond the eigenvalues λ
S1,2

1 = 2.2189 and λ
S1,2

2,3 = −0.9915 ± 2.4066i. The behavior of trajectories of
system in a neighborhood of equilibria is shown in Fig. 1. Here Munst

1,2 are unstable manifolds, corresponding

to the eigenvalues λ
S1,2

1 , M st
1,2 are stable manifolds, corresponding to the eigenvalues λ

S1,2

2,3 .
It is also can be mentioned here that the existence of hidden attractor Ahidden is not due to the fact that

the nonlinearity is a piecewise constant function. If replace nonlinearity sat(σ) by smooth nonlinearity tanh(σ)
then hidden attractor can also be found.

4 Conclusions

In the present Letter the application of special analytical-numerical algorithm for hidden attractor localization
is discussed and the existence of such hidden attractor in Chua’s circuits is demonstrated.

References

[1] Lorenz E.N. Deterministic nonperiodic flow // J. Atmos. Sci. 1963. V.20. 130-141

[2] Rossler O.E. An Equation for Continuous Chaos // Physics Letters. 1976. V.57A. N5. 397-398

6

http://www.math.spbu.ru/user/nk/PDF/Hidden-attractor-localization-Chua-circuit.pdf
http://www.math.spbu.ru/user/nk/PDF/Hidden-attractor-localization-Chua-circuit.pdf
http://www.math.spbu.ru/user/nk/PDF/Hidden-attractor-localization-Chua-circuit.pdf
http://www.math.spbu.ru/user/nk/PDF/Hidden-attractor-localization-Chua-circuit.pdf
http://www.math.spbu.ru/user/nk/PDF/Hidden-attractor-localization-Chua-circuit.pdf


[3] Chua L.O., Lin G.N. Canonical Realization of Chua’s Circuit Family // IEEE Transactions on Circuits
and Systems. 1990. V.37. N4. 885-902

[4] Chen, G. & Ueta, T. Yet another chaotic attractor, // Int. J. Bifurcation and Chaos. 1999. N9, 1465–
1466.

[5] Leonov G.A. On harmonic linearization method.
Doklady Akademii Nauk. Physcis. 2009. 424(4), pp. 462–464.

[6] Leonov G.A. On harmonic linearization method
Automation and remote controle. 2009. 5, pp. 65–75.

[7] Leonov G.A. On Aizerman problem // Automation and remote control. 2009. N7, pp. 37–49.

[8] Leonov G.A. Effective methods for periodic oscillations search in dynamical systems // App. math. &
mech. 2010. 74(1), pp. 37–73.

[9] Leonov G.A., Vagaitsev V.I., Kuznetsov N.V. Algorithm for localizing Chua attractors based on the
harmonic linearization method // Doklady Mathematics. 2010. 82(1), 663–666.

[10] Leonov G.A., Bragin V.O., Kuznetsov N.V. Algorithm for Constructing Counterexamples to the Kalman
Problem // Doklady Mathematics. 2010. 82(1), pp. 540–542.

[11] Chua L.O. A Zoo of Strange Attractors from the Canonical Chua’s Circuits // Proceedings of the IEEE
35th Midwest Symposium on Circuits and Systems (Cat. No.92CH3099-9). 1992. V.2. 916-926

[12] Chua L.O. A Glimpse of Nonlinear Phenomena from Chua’s Oscillator // Philosophical Transactions:
Physical Sciences and Engineering. 1995. V.353. N1701. 3-12

[13] Luo A.C. J., Xue B. An analytical prediction of periodic flows in the chua circuit system // Journal of
Bifurcation and Chaos, Vol. 19, No. 7, 2009, pp. 2165-2180.

[14] Bilotta E., Pantano P. A gallery of Chua attractors // World scientific series on nonlinear science,
Series A. 2008. V.61

[15] Shi Z., Hong S., and Chen K. Experimental study on tracking the state of analog Chua’s circuit with
particle filter for chaos synchronization // Physics Letters A, Vol. 372, Iss. 34, 2008, pp. 5575–5580

[16] Anishchenko V.S., Kapitaniak T., Safonova M.A. and Sosnovzeva O.V. Birth of double-double scroll
attractor in coupled Chua circuits // Physics Letters A, Vol. 192, Iss. 2-4, 1994, pp. 207–214

[17] Leonov G.A. Strange attractors and classical stability theory. St.Petersburg university Press. 2008.

[18] Leonov G.A., Kuznetsov N.V., Time-Varying Linearization and the Perron effects, International Journal
of Bifurcation and Chaos, Vol. 17, No. 4, 2007, pp. 1079-1107.

7


	Localization of Chua's hidden chaotic attractors
	Introduction
	Analytical-numerical method for attractors localization
	Localization of hidden attractor in Chua's system.
	Conclusions


