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Introduction 

The computation of Lyapunov quantities is closely 
connected with the important in engineering mechanics 
question of dynamical system behavior near to boundary of 
the stability domain. Followed by the work of Bautin [1], 
one differs "safe" or "dangerous" boundaries, a slight shift 
of which implies a small (invertible) or noninvertible 
changes of system status, respectively. Such changes 
correspond, for example, to scenario of "soft" or "hard" 
excitations of oscillations, considered by Andronov [2]. 

In classical works of Poincare [3] and Lyapunov 
[4] for the analysis of system behavior near boundary of the 
stability domain was developed the method of computation 
of so-called Lyapunov quantities (or Poincare-Lyapunov 
constants, Lyapunov coefficients, focus values), which 
determine a system behavior in the neighborhood of 
boundary. This method also permits us effectively to study 
the bifurcation of birth of small cycles [1, 6–15], which 
correspond in mechanics to small vibrations. 

In the present work the method of Lyapunov 
quantities is applied to investigation of small limit cycles. 
A new method for computation of Lyapunov quantities, 
developed for the Euclidian coordinates and in the time 
domain, is suggested. The general formula for computation 
of the third Lyapunov quantity for Lienard system is 
obtained. 
Also, the computer modeling of large (normal amplitude) 
limit cycles are carried out. The transformation of 
quadratic system to a special type of Lienard system is used 
for investigation of large limit cycles. For this type of 
Lienard systems there is obtained a domain on the plane of 
two parameters of system, which the systems with three 
small and one large cycles correspond to (around two 
different stationary point). In our computer experiments the 
effects of trajectories "flattening", that make the 
computational modeling difficult, are observed. 
 
Methods of calculation of Lyapunov quantities 

 

For computation of Lyapunov quantities one usually 
consider a sufficiently smooth two-dimensional system 
with two purely imaginary eigenvalues of lineal part of 
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Here x,y∈R and the functions ),( ⋅⋅f and g ( ⋅⋅, ) have 
continuous partial derivatives of (n)-st order in the open 
neighborhood U of radius UR  of the point (x,y)=(0,0). 
Suppose, the expansion of the functions f, g begins with the 
terms not lower than the second order and therefore we 
have 
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By assumption on smoothness in the neighborhood U 
we have  
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The study of limit cycles and Lyapunov quantities of 
two-dimensional dynamical systems was stimulated by as 
purely mathematical problems (the center-and-focus 
problem, Hilbert's sixteenth problem, and isochronous 
centers problem) as many applied problems (the 
oscillations of electronic generators and electrical 
machines, the dynamics of populations) [1–21]. The 
problems of greater dimension (when there are two purely 
imaginary roots and the rest are negative) can be reduced to 
two-dimensional problems with the help of procedure, 
proposed by Lyapunov [4]. 
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At present, there exist different methods for 
determining Lyapunov quantities and the computer 
realizations of these methods, which permit us to find 
Lyapunov quantities in the form of symbolic expressions, 
depending on expansion coefficient of the right-hand sides 
of equations of system (see., for example, [3-10, 15] and 
others). These methods differ in complexity of algorithms 
and compactness of obtained symbolic expressions. The 
first method for finding Lyapunov quantities was suggested 
by Poincare [3]. This method consists in sequential 
constructing time-independent holomorphic integral for 
approximations of the system. Further, different methods 
for computation, which use the reduction of system to 
normal forms, was developed (see, for example, [6, 10]).  

Another approach to computation of Lyapunov 
quantities is related with finding approximations of 
solution of the system. So, a classical approach [4] it is 
used changes for reduction of turn time of all trajectories to 
a constant (as, for example, in the polar system of 
coordinates) and procedures for recurrent construction of 
solution approximations. 

In the works [12,15] a new method of computation of 
Lyapunov quantities is suggested which based on 
constructing approximations of solution (as a finite sum in 
powers of degrees of initial data) in the original Euclidean 
system of coordinates and in the time domain. The 
advantages of given method are due to its ideological 
simplicity and visualization power. This approach can also 
be applied to the problem of distinguishing of isochronous 
center since it permits us to find out approximation of time 
of trajectory "turn" (time constants) depend upon initial 
data [7,9,21]. 

The first and second Lyapunov quantities have been 
computed in the 40-50s of last century [1,23]. The third 
Lyapunov quantity was computed in terms of ijf  and ijg  

in [14,15] and its expression occupies more then four pages 
and the expression for the fourth Lyapunov quantity 
occupies 45 pages. 

Note that for reduction of symbolic expression and 
simplification of analysis of system, special 
transformations of system to complex variables [6,10,21] 
are often used. 

**** 
Direct Method for Computation of Lyapunov 
Quantities (in Euclidean Coordinates and in the Time 
Domain) 
 

Here the new method, developed for the Euclidian 
coordinates and in time domain, not requiring the reduction 
to normal form, is described. The advantages of this 
method are due to its ideological simplicity and a 
visualization power. 

The first steps in the development of this method were 
made in the works [11–15] and some related with it results 
can be found in the work [22]. 

Here we assume that 
( 1)( , ), ( , ) : ( ).nf g U+⋅ ⋅ ⋅ ⋅ × → ∈     (7) 

The existence condition of (n+1)th partial derivatives 
with respect to x and y for f and g is used for simplicity of 
exposition and can be weakened. 
Approximation of solutions. Further we will use a 
smoothness of the functions f and g and will follow the first 
Lyapunov method on finite time interval (see f.e. classical 
works [23, 24] and others). 

Let x(t,x(0),y(0)), y(t,x(0),y(0)) be a solution of system 
(1) with the initial data  

x(0)=0, y(0)=h (8) 
Denote  

x(t,h)=x(t,0,h), y(t,h)=y(t,0,h). 
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Note that, the functions  
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and their time derivatives are smooth functions of t and 
have the order of smallness o(h) uniformly with respect to t 
on a considered finite time interval [0,4π ]. 

Introduce the following denotations 
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are the mth approximation of solution of system with 
respect to h. Substitute representation (10) in system (1). 
Then, equating the coefficients of 1h  and taking into 
account (2), we obtain  
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(11) 

 
Hence, by conditions on initial data (8) for the first 
approximation with respect to h of the solution 
(x(t,h),y(t,h)), we have  
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Similarly, to obtain the second approximation 
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(13) 

 
in formula (3) for f(x,y) and g(x,y). Note that in expressions 
for f and g (denote their by f

h
u 2  and g

h
u 2 , respectively) in 
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virtue of (2) the coefficients of 2h  depend only on )(~
1 txh  

and )(~
1 tyh , i.e., by (12) they are known functions of time 

and are independent of the unknown functions )(~
2 txh . 

Thus, we have 
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Substituting (13) in system (1), for the determination of 
)(~

2 txh  and )(~
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Lemma 3 For solutions of the system  
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with the initial data  
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Repeating this procedure for the determination 

of the coefficients khx~  and khy~  of the 

functions )(tu f
hk  and )(tu g
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we obtain sequentially the approximations 
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Computation of Lyapunov quantities in the time 
domain. Consider for the initial datum h∈ (0,H] the time 
T(h) of first crossing of the solution (x(t,h),y(t,h)) of the 
half-line {x=0, y>0}. Complete a definition (by continuity) 
of the function T(h) in zero: T(0)=2π . Since by (12) the 
first approximation of solution crosses the half-line 
{x=0,y>0} at the time 2π , then the crossing time can be 
represented as  

T(h)=2π + ∆ T(h), 
 

where ∆ T(h)=O(h). We shall say that ∆ T(h) is a residual 
of crossing time.  

By definition of T(h) we have  
 

x(T(h),h)=0. (20)  
 

),( ⋅⋅x  has continuous partial derivatives with respect to 
either arguments up to the order n inclusive and x 
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(t,h)=cos(t)h+o(h)), by the theorem on implicit function, 
the function  is n times differentiable. It is possible to 
show that T(h) is also differentiable n times in zero. By the 
Taylor formula we have  
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is the kth approximation of the residual of the time T(h) of 
the crossing of the solution (x(t,h),y(t,h)) of the half-line 
{x=0, y>0}. Substituting relation (21) for t=T(h) in the 
right-hand side of the first equation of (18) and denoting 
the coefficient of kh  by kx~ , we obtain the series x(T(h),h) 
in terms of powers of h: 
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In order to express the coefficients kx  by the 

coefficients kT~  of the expansion of residual of crossing 
time we assume that in (18) t=2π +τ : 
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Substitute this representation in (24) for the solution 
x(2π +τ ,h) for τ = ∆ T(h), and bring together the 
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coefficients of the same exponents h. By (20) and taking 
into account (21) for T(h), we obtain  
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From the above we sequentially find jT~ . The 

coefficients 1,...,1 −= nkT  can be determined sequentially 
since the expression for kx~  involves only the coefficients 

kmT <  and the factor )2('~
1 πhx  multiplying 1−kT  is equal 

to -1. 
We apply a similar procedure to determine the 
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obtain the following relations  
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for the sequential determination of niy ,...,1
~
= . Here 

)(~
,..,1

⋅
= nkhy  and 1,..,1

~
−= nkT  are the obtained above quantities. 

Thus, for n=2m+1 we sequentially obtained the 
approximations of the solution (x(t,h),y(t,h)) at the time 
t=T(h) of the first crossing of the half-line {x=0,y>0} 
accurate to )( 12 +mho  and the approximation of the time 

T(h) itself accurate to )( 2mho . If in this case 0~ =ky  for 
k=2,..,2m, then 12

~
+my  is called the mth Lyapunov quantity 

mL . Note, that, according to the Lyapunov theorem, the 
first nonzero coefficient of the expansion iy~  is always of 
an odd number and for sufficiently small initial data h the 
sign of iy~  (of the Lyapunov quantity) designates a 
qualitative behavior (winding or unwinding) of the 
trajectory (x(t,h),y(t,h)) on plane [4]. 
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