
Clone Detection in Reuse of Software Technical
Documentation

Dmitrij Koznov1, Dmitry Luciv1, Hamid Abdul Basit2,
Ouh Eng Lieh3, and Mikhail Smirnov1

1 Saint Petersburg State University
d.koznov@spbu.ru,dluciv@math.spbu.ru,smnsmn1979@gmail.com

2 Lahore University of Management Sciences
hamidb@lums.edu.pk

3 National University of Singapore
issoel@nus.edu.sg

Abstract. As software documentation is becoming more and more com-
plicated, efficiency of maintenance process could be increased through
documentation reuse. In this paper, we apply software clone detection
technique to automate searching of repeated fragments in software tech-
nical documentation to be reused. Our approach supports adaptive reuse,
which means extracting “near duplicate” text fragments (repetitions with
variations) and producing customizable reusable elements. We present a
process and a tool, which can work with both DocBook documentation
(widely used XML markup language) and DRL (DocBook extension with
adaptive reuse features), as well as with plain text. Our tool is based on
Clone Miner software clone detection tool, and integrated to DocLine
environment (adaptive reuse documentation framework), providing vi-
sualization and navigation facilities on the clone groups found, and also
supporting refactoring to extract clones into reusable elements.

Keywords: software technical documentation, documentation reuse, soft-
ware clone detection, adaptive reuse, refactoring, DocBook, DocLine,
DRL

1 Introduction

Software documentation is a significant component of modern software. It is sup-
posed to help software engineers to comprehend a given software system and ac-
complish development and modification tasks more efficiently [1]. There are two
types of software documentation: technical documentation (requirement speci-
fications, design documents, etc.), and user documentation (e.g., user guides).
Sometimes API documentation is considered, that is a special case of techni-
cal documentation and describes application programming interfaces of reusable
code libraries [2]. In this paper, we consider technical software documentation
only.

It should be noted, that technical documentation may have considerable size
and complex structure, and like the software itself, is constantly changed during



development process. The quality of technical documentation is a well-known
problem that has not been resolved in the last decades [3]. One of the reasons that
leads to essential decrease of documentation quality during maintenance process
is that documents may contain numerous repetitions. If there is no traceability
between duplicate text fragments, we need to modify each fragment manually
while making changes. But in practice it is hard to keep the documentation
updated because of huge volumes and lack of time. That leads to accumulation
of mistakes and contradictions in documentation.

The situation is even more complicated because very often duplicate infor-
mation is “near duplicate”, e.g., in one document the same software features may
be described many times with different level of details. Also, there are sets of
similar objects, which are described on the documentation: functions, interrup-
tions, signals, etc. If objects belong to the same set then their descriptions have
a lot of commonalities, but at the same time they differ from each other. This
leads to repetitions with variations, and makes it difficult to apply usual text
search techniques to find such repetitions. Moreover, it is necessary not only to
search duplicate text fragments, but to manage them consistently.

Systematic reuse techniques attempt to simplify the software maintenance
process. Different techniques of software reuse have been proposed [4, 5]. One
of these techniques is XVCL [6], which is based on adaptive reuse introduced
by Paul Bassett [7]. These ideas were applied for software documentation reuse
in DocLine framework [8]. In this context, refactoring of XML documentation
technique was also explored [9] to simplify the maintenance process of existing
documentation extracting reusable text fragments. But the challenge of auto-
matically searching for reusable document fragments still remained open.

This paper closes the gap using software clone detection technique [10, 11].
Our approach is designed for operating with XML documentation in Doc-
Book [12] and DRL [8] markup languages, as well as with plain Text (i.e.
ASCII/UNICODE format). DocBook is a wide-spread XML language for soft-
ware documentation development in Linux/Unix community, while DRL is an
extension of DocBook for implementation of adaptive reuse approach. We used
Clone Miner [13] as a clone detection tool, filtering and correcting its outputs.
Based on clones found by the tool, the approach supports refactoring of doc-
umentation, i.e. producing customizable reusable elements and inserting them
into the text. We consider not only exact duplicates, but also “near duplicate"
text fragments, applying adaptive reuse technique [6, 7]. We implemented the ap-
proach as a tool that incorporates visualization and navigation facilities on the
detected clone groups and provides seamless invocation of DocLine refactoring
operations. The paper includes the results of the evaluation the proposed ap-
proach whereby we applied our tool for DocBook documentation of several open
source projects, and, in particular, for Linux Kernel Documentation (LKD) [14].

Acknowledgements. The authors thank the students Artem Shutak, Dmitry
Kopin, Mikhail Smarzhevskij and Adeel Khan, who implemented the draft ver-
sions of selected parts of the solution, and participated in discussions.



2 Related works

Technical documentation development currently widely employs XML markup
languages. The widely used standards are DocBook [12] and DITA [15], both sup-
porting modular approach and enabling development of reusable documentation
components. In [8] adaptive software reuse technique of Bassett-Jarzabek [6,
7], has been applied to documentation. But all of these approaches imply that
documentation is developed as reusable modules from the very beginning, and
they do not offer approaches and tools for searching and extracting repetitions.
Meanwhile, documentation maintenance often requires eliminating inconsisten-
cies, because previous corrections were local and made by different persons,
in different manners. Searching “near duplicate” text fragments and extracting
reusable text elements could simplify the maintenance process. Moreover, this
may also lead to correction of descriptions of similar code objects (signals, func-
tions of API, handlers, etc.) for better unification to facilitate future changes.
The adaptive reuse technique of XVCL is helpful in this regard. In [9] refactoring
of documentation was suggested to extract adaptive reusable elements. But no
tools to search repeatable fragments were available.

A systematic review of the software documentation domain is presented
in [16]. Below, we overview some of the studies, which provide automatic analysis
and transformation of documentation.

Zhong et. al. [17] suggested an approach to infer resource specifications from
API documentation. The approach overcomes the problem that developers tend
to ignore information in API documentation. But if some part of the code is
automatically generated on technical documentation, the problem is solved. The
paper proposes to generate resource specification on documentation.

An approach to detect documentation errors comparing code samples and
corresponding document fragments is proposed in [18]. The approach is based on
comparing code objects that are mentioned in the text (data types, procedures,
variables, etc.) with the ones in the samples.

Garousi et. al. [1] suggests to analyze the usage and quality of software
projects’ documentation during development and maintenance phases, based on
projects’ data and experts’ opinion from a survey-based questionnaire.

Metrics to measure documentation quality are proposed in [19, 20]. The au-
thors also adapt the VizzAnalyzer clone detection tool [21] to provide a mea-
surement of a documents uniqueness. However, further use of found clones is
only briefly discussed and their automatic transformation for future reuse is not
done.

To summarize, little attention is given to search repetitions in software tech-
nical documentation to extract reusable elements. The issue is only touched
upon in [19, 20], but no approach applies the idea of adaptive reuse to software
technical documentation.



3 Background

3.1 DocBook

DocBook [12] is a collection of standards and tools for technical writing, partic-
ularly used for large and highly structured content. The key difference between
DocBook and other structured formats (e.g., LaTeX ) is that the style (bold,
font size, italics etc.) is separated from the structured content. This allows one
source document to have many presentations, such as HTML, PDF, etc. Unlike
other document markup tools, DocBook is not WYSIWYG technology (What
You See Is What You Get). It provides more flexibility, and allows to create more
reliable documents, but demands for technical writers to be more experienced
than Microsoft Word users (discussion about usage of markup languages by tech-
nical writers can be found in [22]). DocBook may be easily extended, and it is
possible to use these extensions in practice: you only need to perform prepro-
cessing specifications to eliminate extended constructs into plain DocBook, and
after that you may use the standard DocBook utilities to get target document
presentations (e.g., PDF).

3.2 DocLine

DocLine [8] is created for the development and maintenance of complicated soft-
ware documentation basing on adaptive reuse [6, 7] to operate with duplicate
documentation fragments. Adaptive reuse means that reusable text fragments
can be configured for each context where they are inserted.

DocLine provides a new XML markup language DRL, a model of documen-
tation development process, and a toolset integrated into Eclipse IDE. DRL
(Documentation Reuse Language) extends DocBook [12] providing two mecha-
nisms of adaptive reuse: customizable information elements and multi-view item
catalogs.

Customizable information elements. This can be understood with the help
of a simple example. Let us consider a news aggregator that provides news feed
from different sources. A description of the module to refresh news from RSS
and Atom feeds can be the following:

When module instance receives refresh_news call, it updates its
data from RSS and Atom feeds it is configured to listen to and
pushes new articles to the main storage. (1)

Meanwhile, the news aggregator can also use Twitter as a news feed, and the
description of corresponding module can be as follows:

When module instance receives refresh_news call, it updates its
data from Twitter feeds it is subscribed to and pushes new
articles to the main storage. (2)



To provide reuse of duplicate text in (1) and (2) using an adaptive reuse
technique, the corresponding information element must be specified in DRL:

<infelement id="refresh_news">
When module instance receives refresh_news call, it updates its
data from <nest id="SourceType"></nest> and pushes new articles
to the main storage.</infelement> (3)

In this example, we define an information element (<infelement/> tag) and
an extension point inside it (<nest/> tag). When this information element is
included in a particular context, the extension point can be removed, replaced
or appended with custom content without having to modify the information
element itself. The following customization transforms(3) into (2):

<infelemref infelemid="refresh_news">
<replace-nest nestid="SourceType">Twitter feeds it is subscribed
to </replace-nest> </infelemref> (4)

The example (4) shows a reference to the information element defined in
(3) (<infelemref/>) and the replacement of the extension point defined in this
information element by new content (<replace-nest/>).

Multi-view item catalogs. In the documentation of most Software products
one can find descriptions of typical items of the same kind. To organize adaptive
reuse for that case a multi-view item catalog is introduced in DRL. The catalog
contains a collection of items represented by a set of attributes. When a technical
writer includes a catalog item into a particular context, s/he must indicate the
corresponding representation template and the item identifier. Then, the content
of the template will be inserted into the target context and all the references to
the attributes will be replaced by corresponding attribute values. A particular
case of the catalog is a dictionary, which contains a set of terms without presen-
tation templates. Dictionaries are useful for creating glossary to unify naming
policy in documentation. More details about multi-view item catalogs can be
found in [8, 9].

3.3 Refactoring Documentation

Refactoring is the process of changing a software system in such a way that it
does not change the external behavior of the code, yet improves its internal struc-
ture [24]. In [9], refactoring was adapted to XML documentation maintenance. In
this case, refactoring means the change of internal document specification (XML
markup constructs), and preservation of output document presentation (e.g., pdf
file). Based on this idea, a number of refactoring operations were designed for
DocLine [9].The operations can be divided into the following groups:

1. Operations for extracting common assets, and, in particular, for transition
to DRL from plain text or DocBook.



2. Operations to facilitate core assets tuning (extending their configurability).
3. Operations to facilitate the use of small-grained reuse constructions — dic-

tionaries and multi-view item catalogs.
4. Operations for renaming various structural elements of documentation.

3.4 Software Clone Detection and Clone Miner

Very often software is reused by means of copy/paste. It produces duplicate code
(software clones), and that may lead to serious maintenance problems. Clone
detection methods and tools are aimed to find different kinds of duplicate code
to perform refactoring based on reuse techniques. Systematic review of clone
detection methods and tools can be found in [11], while interesting discussion
about code cloning and clone detection is presented in [10].

This area is quite mature; there are a number of ready-to-use tools. We
selected Clone Miner tool [13] as it is a simple command line tool that could
easily integrate into the DocLine framework. Clone Miner is a token-based code
clone detector. It converts the input source code into a string of lexical tokens and
then applies suffix array based string matching algorithms to find the repeated
parts of this string as clone groups.

The tool allows varying the minimal length of clones to be searched, measur-
ing it in terms of the number of tokens. A token in the context of text documents
is one single word separated from other words by some separator: ‘.’, ‘(’, ‘)’, etc.
For example, the following text fragment consists of 2 tokens: “FM registers”.

Clone Miner was extended for this project to support plain text and Unicode
inputs, which made it possible to apply the tool to Russian language documents
as well.

4 The Process of Clone Detection and Refactoring

4.1 Overview

The general scheme of the process is shown in Fig. 1. The input of the process
is a DRL file, which the user prepares for clone detection. After that s/he starts
document clone detection by launching Clone Miner which generates the output
results. Once the user gets the list of clone groups, s/he can execute the auto-
mated refactoring for any clone group. In refactoring, all occurrences of clone
selected are replaced by references to reusable element definition.

4.2 Preparation for Clone Detection

DocLine operations are executed for DRL constructs, in particular, the searching
of clones is applied to information elements. If the user wants to apply document
clone detection for plain text or DocBook documents, s/he has to first perform
refactoring operation “Transition to DRL”. As a result, a new information el-
ement appears that includes the whole original text. Clone detection is then
performed on this information element.



Input
document

Preparation for
clone detection

Clone detection
(Clone Miner)

FilteringRefactoring
Modified

document

Document clone
detection

Fig. 1. Process overview

4.3 Clone Detection

We start Clone Miner in the “search in flat text” mode since actually we need
flat text search: the repetitions in question might be found inside XML struc-
tures. Therefore, the found clones might violate XML markup. (5) shows a text
fragment with a found clone emphasized. It includes the start tag but not the
end tag. The clones become correct in terms of XML as a result of refactoring
operations, and so does their context in the document.

<section id="file-tree-isa-directory">
<title>Reviving incoming calls </title>
<para>
Once you receive an incoming call, the phone gets CallerID
information and reads it out. But if...</para>
</section> (5)

4.4 Filtering

We use clones detected in refactoring, since it is the technical writer who is
responsible for choosing the candidates for refactoring based on their seman-
tic meaningfulness. Meanwhile the number of clone groups detected is so large
that they need to be filtered. Our algorithm filters Clone Miner output by the
following steps:

1. A clone group is rejected if clone length in the group is less than 5 symbols
(e.g. “is a” contains 3 symbols): as a rule, such clones have no semantics, but
usually a lot of such groups are found. Some terms can be lost, especially
abbreviations, but this is the way to reduce considerably the number of
insignificant clone groups. It should be reminded that we measure the clone
length in number of tokens in the paper (it means the number of symbol
sequences separated by the comma, space, etc.), but in this case we do it in
terms of symbols, because the length is too small.

2. We eliminate the groups containing clones consisting only of XML constructs
and do not contain output text: we have no task to organize XML markup
constructs reuse.



3. We remove the clone groups consisting of phrases “that is”, “there is a”, etc.:
these clones have no software semantics (this issue is discussed in section 6).
To avoid such clones we have elaborated the dictionary of such expressions
based on our own experiments, and we check every clone group if its clones
belong to the dictionary. In the future more sophisticated analysis tech-
niques can be used, considering natural-language patterns embedded [23]
into strictly defined DRL markup.

4.5 Refactoring

After previous steps, we have a set of clone groups. But our aim is to use clones to
extract reusable elements. It can be done using the refactoring process described
below. The process uses refactoring operations which have been suggested in [9],
but some additional activities have to be performed. The schema of the refac-
toring process is presented in Fig. 2.

 

Clone groups 

found Search pairs 
Analysis of pairs & 

clone groups 

Extraction information 

elements & dictionaries 

Modified 

document 

Correction of 

XML-structure 
Control of clone 

intersection 

Fig. 2. Refactoring process

Searching close pairs. We have the list of clone groups found by Clone Miner
in (𝑆𝑒𝑡𝐺). To provide adaptive reuse, we search clone groups from 𝑆𝑒𝑡𝐺 where
clones are located close to each other. For example, the following phrase can be
found in the text 5 times with different variations (various port numbers): “inet
daemon can listen on ... port and then transfer the connection to appropriate
handler”. In this situation we have 2 clone groups with 5 clones in every group:
one group include clones “inet daemon can listen on”, while the other includes
“port and then transfer the connection to appropriate handler”. We want to
combine these clone groups in a single information element with one extension
point to capture different port numbers.

To find out such kinds of clone groups we propose an algorithm. The algo-
rithm works only with two clone groups, because our observations show that
this is the most popular case (we plan to extend the algorithm in the future for
𝑛 clone groups). We define the distance between two clones as the number of
symbols between them (we do not consider a case of intersected text fragments).



We define the distance between two clone groups 𝐺1 and 𝐺2 under the following
constraints:

1. They have the same number of clones: #𝐺1 = #𝐺2.
2. We introduce an ordering for clones in a group based on their appearance

in the document, and assign a number to each clone. As a result we have a
set of clone pairs, where the first member belongs to one group, the second
belongs to another, and for all pairs the first members belong to the same
group, and the second members belong to the second one. Clones in the same
pair are not intersecting, i.e. they are not overlapping in the text:
∀𝑘 ∈ (1..#𝐺1) 𝑔

𝑘
1 ∩ 𝑔𝑘2 = ∅,

where 𝑔𝑘1 and 𝑔𝑘2 are members of 𝐺1 and 𝐺2 groups respectively.
3. For every pair of clones (one clone belongs to first group, another belongs to

the second group, and both clones have the same number) clone from one
group occurs before clone from the other group in the document:
(∀𝑘 ∈ (1..#𝐺1)𝐵𝑒𝑓𝑜𝑟𝑒(𝑔𝑘1 , 𝑔

𝑘
2 ))

⋁︀
(∀𝑘 ∈ (1..#𝐺1)𝐵𝑒𝑓𝑜𝑟𝑒(𝑔𝑘2 , 𝑔

𝑘
1 )),

where 𝑔𝑘1 and 𝑔𝑘2 are members of 𝐺1 and 𝐺2 groups respectively.

The distance between 𝐺1 and 𝐺2 is 𝑑𝑖𝑠𝑡(𝐺1, 𝐺2) = max(𝑑𝑖𝑠𝑡(𝑔𝑘1 , 𝑔
𝑘
2 )), where

𝑑𝑖𝑠𝑡(𝑔𝑘1 , 𝑔
𝑘
2 ) is a distance between clones (text fragments) 𝑔𝑘1 and 𝑔𝑘2 . We use

this simple formula, because we have just one special requirement for distance
between clone groups: if we choose a clone group it should be possible to com-
pare a distances from this group to others to select the closest one. But we
would not like to consider unreal distances, that is, variation of distances be-
tween clone pairs for selected groups should not be too big. For example, if
the distance between the first clone pair is 1 symbol, and the distance between
the second pair is 10 000 symbols then there is no chance, that these pairs
are semantically connected, and it would not be sensible to create information
element with extension point. Following our experiments, we have defined the
maximum of distance variance between clones from two group as constant 2000:
Var({𝑑𝑖𝑠𝑡(𝑔𝑘1 , 𝑔𝑘2 )|𝑘 ∈ (1..#𝐺1), 𝑔

𝑘
1 ∈ 𝐺1, 𝑔

𝑘
2 ∈ 𝐺2}) ≤ 2000. If the variance is

greater, we do not consider this pair.
The algorithm of searching close pairs considers all clone groups from 𝑆𝑒𝑡𝐺

and for every group finds the closest one. If it is successful, a new pair is added
to the set 𝑃𝑎𝑖𝑟𝐺. If it is not successful for selected clone group (e.g. there is
no other clone group with the same number of clones) the resulting list have no
pair with this clone group.

Analysis of pairs & clone groups. In this step we combine the clone group
pairs and the initial list of clone groups in a list 𝐿 to present the informa-
tion to the user for making decision: what text fragments should be extracted
as information elements/dictionaries (elements of 𝐿 we will call candidates for
refactoring or shortly – candidates). The problem is that reusable text elements
have to have some semantic, e.g. to be a typical description of a function or in-
terruption. If reuse relies only on syntax and have no semantics, it looks useless.
But it is hard to do such analysis automatically, that is why we provide browsing
facilities to help the user to make the right decision.



𝐿 includes clone group pairs and single groups, which are not included in
any pair: 𝐿 = 𝑃𝑎𝑖𝑟𝐺

⋃︀
{𝐺 | 𝐺 ∈ 𝑆𝑒𝑡𝐺 & ̸ ∃𝑃 ∈ 𝑃𝑎𝑖𝑟𝐺 : 𝐺 = 𝑙𝑒𝑓𝑡(𝑃 ) ∨ 𝐺 =

𝑟𝑖𝑔ℎ𝑡(𝑃 )}.
We order 𝐿 by the length of elements measuring length in a symbols in

descending order. The length of clone is the number of the symbols in a clone.
The length of clone group is sum of lengths of all clones from a group: ∀𝐺 ∈ 𝐿
𝑙𝑒𝑛𝑔𝑡ℎ(𝐺) = #𝐺 · 𝑙𝑒𝑛𝑔𝑡ℎ(𝑔), where 𝑔 ∈ 𝐺, and #𝐺 is a number of clones in 𝐺.
It should be reminded that all clones from a group are duplicate text fragments,
that is why all of them have equal length. The length of the clone group pair is the
sum of the lengths of clone groups included in the pair: 𝑙𝑒𝑛𝑔𝑡ℎ(𝑃𝑎𝑖𝑟(𝐺1, 𝐺2)) =
𝑙𝑒𝑛𝑔𝑡ℎ(𝐺1)+𝑙𝑒𝑛𝑔𝑡ℎ(𝐺2). We can see elements at the top of the 𝐿 , which contain
most “amount” of text, and these elements are most preferable for reuse. The
user should select manually a group or a pair to perform refactoring operations.

Extraction information elements & dictionaries. For each clone group
or clone group pair selected before the user can apply the following refactoring
operations (see section 3.3, group 1): extracting information element, extracting
information element with variations, or extracting to dictionary.

Before executing these operations, we check if the selected clone group inter-
sects with other clone groups, which have already been used to extract informa-
tion elements/dictionaries. Clone Miner allows intersection of clone groups, as it
has no information what will happen to the detected clones further. But in our
case, such intersection leads to mistakes in refactoring operations.

If this checking was successful we perform transformation of selected text
fragments to be reused and the remaining context into correct XML. As men-
tioned earlier, Clone Miner outputs XML-incorrect results, but DocLine can
operate only with the correct DocBook/DRL fragments. Generally speaking,
our algorithm opens/closes all the necessary tags, both in the clone and in the
context from which it is extracted. However, these open/close actions should be
“clever”. For example, if we close and reopen the tag <para> (it marks a new
paragraph), then we would have two paragraphs instead of one in the resulting
text (i.e. text on pure DocBook that is produced after the elimination of DRL
constructions and, in particular, after the substitution of reusable information
elements). This is the direction of the future work.

Once the refactoring operation for selected candidates is successfully com-
pleted, it is removed from 𝐿, and document coordinates of the another elements
of 𝐿 are recalculated. After that the user goes back to the “Analysis of pairs &
clone groups” step.

5 The Tool

To support the process presented above we implemented a Documentation Refac-
toring Toolkit [25], and integrated it into DocLine/Eclipse. The tool is imple-
mented in Python and can be invoked as a standalone application (i.e. outside
of Eclipse and DocLine). The tool provides navigation over detected candidates,



and text browsing facility to observe clones in the source text. It is possible to
perform extracting all clones from selected groups into reusable elements, i.e.
perform refactoring.

Fig. 3. Documentation Refactoring Toolkit

The main window is shown on the fig. 3. The tool is launched for a document,
while the title of the document is displayed as the title of the window. The lines
of table in the section «Refactoring candidates» correspond to clone groups or
pairs found for that document. In the pop up menu for a candidate the user
can select a refactoring type – to create either an information element or a
dictionary element. If the candidate is a pair, then variations are highlighted as
yellow/green pieces of text in the «Candidate text» column.

The «Source text» section shows clones in the source document. If a selected
candidate is a clone group then the user needs to select the number of the
clone element in the group (see color numbers at the end of the first cell in the
«Candidate text» column, fig. 3). If a candidate is a pair (see the second cell in
the «Candidate text» column), then the user needs to select a certain pair by
clicking on the corresponding variation. In either case the «Source text» window
will display the clone pair of clones in the source document.

6 Evaluation

We did our experiments using hand-made tests and third party DocBook doc-
umentation of open source industrial projects. The list of projects and corre-
sponding documentation is presented in table 1.



Project Documentation Acronym Size
Linux Kernel is an open op-
erating system kernel, which
is basis for Linux operating
system

«Linux Kernel Documentation» is
designed for programmers who use
Linux Kernel [14]

LKD 892KB

Zend Framework is an open
source framework for devel-
oping web applications and
services using PHP

«Zend PHP Framework documenta-
tion» is a programming guide [26]

Zend 2924KB

Subversion is a versioning
and revision control system

«Version Control with Subversion
For Subversion 1.7» is a tool descrip-
tion for users and system administra-
tors [27]

SVN 1810KB

DocBook is a framework for
single source documentation
development

«DocBook 4 Definitive Guide» is the
complete official documentation on
DocBook markup language 4.0 [28]

DocBook 686KB

Table 1. Documentation used in experiments

Following GQM approach [29] we selected a set of questions to characterize
the way of the assessment in our experiments:

– question 1: quality of documentation clone detection
– question 2: effectiveness of filtering clones
– question 3: evaluation of refactoring facilities

Addressing question 1 we did experiments with Clone Miner and DocLine
clone search facilities. The first experiment was carried out on hand-made tests
for which we know exactly the number and the locations of clones. We found
that Clone Miner made some mistakes, e.g., it sometimes skipped the last token
in clones. We fixed these errors. After that our tool found correctly all the clones
in hand-made tests.

To assess question 2 we used third party documentation listed in table 1.
We used metrics, which are filtering types described in section 4.4. The results
are presented in table 2. It should be noted, that filtering decreases the number
of candidates by 13.2% on average.

Metrics LKD Zend SVN DocBook Average
Rejecting clones under 5 symbols in length, % 7.3 4.8 4.4 7.2 5.9
Rejecting pure XML markup clone groups, % 3.3 5.8 2.4 6.0 4.4
Rejecting common language phrases, % 3.2 2.2 2.9 3.4 2.9
Total, % 13.8 12.8 9.7 16.6 13.2

Table 2. Filtering results

Numbers of refactoring candidates after filtration are presented in table 3 for
two cases: with the minimal lengths of clones of 1 and 5 (divided by slash in



table). In the latter case the numbers of candidates are fewer and the situation
looks more operable. However smaller clones, which were excluded in this case,
can be used as dictionary elements or in other important situations. Therefore,
we recommend that technical writer should work with candidates with the min-
imal length of clone equal to 1. To simplify operations with a large number of
candidates our tool supports ordering by length.

Number of candidates LKD Zend SVN DocBook
Number of single clone groups 12819 / 1034 33400 / 5213 27847 / 3119 8228 / 870
Number of pairs 351 / 108 1400 / 613 616 / 249 232 / 50
Total 13170 / 1254 34800 / 5826 28463 / 3368 8460 / 920

Table 3. Number of candidates in case of minimal length of clone is 1 and 5

Let us consider question 3. We assessed the question using the metric called
amount of reuse, which tracks percentages of reused text [30]. We calculate the
metric by dividing the amount of reusable text by the total size of documentation.
We take all refactoring candidates as reusable text and calculate the amount as∑︀

𝐶∈(all candidates) 𝑙𝑒𝑛𝑔𝑡ℎ(𝐶), where 𝑙𝑒𝑛𝑔𝑡ℎ(𝐶) is the number of symbols in a
clone or a clone pair multiplied by the number of clones in the group (see section
4.5). We measure documentation/text fragments size in symbols. It would be
better to measure it in tokens but we had some technical problems with that.
The average amount of reusable text for all tested documents is between 48%
and 52.9%. The results show that when refactoring is carried out in an automatic
(straightforward) way, reuse happens to be quite significant. But it is hard to
estimate real reuse amount because, as it has been mentioned, technical writer
performs additional semantic filtering of candidates for refactoring. To estimate
the quality of refactoring more precisely, additional experiments with real project
documentation are necessary.

Conclusions

Our experiments have shown that even after filtering we have a lot of insignificant
clones. Some of them are easy to remove with improved filtering, but others can
only be filtered manually. The precision of the algorithm is a baseline for our
future work. Support of adaptive reuse should be also extended, e.g. proving
extraction of information elements with 𝑛 extension points, where 𝑛 > 1.

During our experiments, it became clear that our tool should be improved to
be more convenient in operating with clone groups, e.g. providing more facilities
for construction of information elements.

The proposed approach can be useful in software product line documen-
tation management environment to extract reusable document fragments for
documentation of different product line members and organize reusable docu-
ment structure. It simplifies document maintenance process and, of course, it



is meaningful only if maintenance (product line member or/and its documenta-
tion) is significant. Our approach can also be used in the context of variability
management [31] in software product line development.

Supporting semantic reuse can allow to integrate our approach with various
software traceability techniques [32, 33], and mapping document fragments into
other software artifacts: code, requirements, model entities, etc. In this case,
reuse can improve the quality of this mapping, and semantic-oriented adaptive
reuse could increase the granularity of the mapping.

Apart from software engineering, the proposed approach could also be used
in such areas as Ontology Engineering [34] or Enterprise Architecture Model-
ing [35]: usually, models are stored in XML format, and irregular repetitions are
also possible here, taking into account that a number of analysts can work with a
large volume of information, and a lot of information is unstructured (documents
and comments applied to models, long names of model entities, etc.).

References

1. Garousi, G., Garousi, V., Moussavi, M., Ruhe, G., Smith, B.: Evaluating usage and
quality of technical software documentation: an empirical study. In Proceedings of
EASE ’13, pp. 24–35 (2013)

2. Watson, R.: Developing best practices for API reference documentation: Creating
a platform to study how programmers learn new APIs. In Proceedings of IPCC’12,
pp. 1–9 (2012)

3. Parnas, D. L. Precise Documentation: The Key To Better Software: The Future of
Software Engineering, S. Nanz, Ed.: Springer, (2011)

4. Holmes, R., Walker, R. J.: Systematizing Pragmatic Software Reuse. ACM Trans-
actions on Software Engineering and Methodology, vol. 21(4), 20, 44 p. (2013)

5. Czarnecki, K.: Software Reuse and Evolution with Generative Techniques. In Pro-
ceedings of the IEEE/ACM International Conference on Automated Software En-
gineering, p. 575 (2007)

6. Jarzabek, S., Bassett, P., Zhang H., Zhang, W.: XVCL: XML-based Variant Con-
figuration Language. ICSE 2003, pp. 810–811 (2003)

7. Bassett, P.: The Theory and Practice of Adaptive Reuse. SIGSOFT Software Engi-
neering Notes, 22(3), pp. 2–9 (1997)

8. Koznov, D., Romanovsky, K.: DocLine: A Method for Software Product Lines Docu-
mentation Development. Programming and Computer Software, 34(4), pp. 216–224
(2008)

9. Romanovsky, K., Koznov, D., Minchin, L.: Refactoring the Documentation of Soft-
ware Product Lines. CEE-SET 2008, Brno (Czech Republic), October 13–15, 2008.
LNCS, vol. 4980, Springer 2011, pp. 158–170 (2011)

10. Akhin, M., Itsykson, V.: Clone Detection: Why, What and How? In Proceedings
of CEE-SECR’10, pp. 36–42 (2010)

11. Rattan D., Bhatia, R. K., Singh, M.: Software Clone Detection: A Systematic
Review. Information & Software Technology (INFSOF), 55(7), pp. 1165–1199 (2013)

12. Walsh, N., Muellner, L.: DocBook: The Definitive Guide. O’Reilly, 1999, 644 p.
(1999)

13. Basit, H. A., Smyth, W. F., Puglisi, S. J., Turpin, A., and Jarzabek, S.: Efficient
Token Based Clone Detection with Flexible Tokenization. In Proceedings of ACM



SIGSOFT International Symposium on the Foundations of Software Engineering,
ACM Press, pp. 513–516 (2007)

14. Linux Kernel Documentation, snapshot on Dec 11, 2013 (2013),
https://github.com/torvalds/linux/tree/master/Documentation/DocBook/

15. Darwin Information Typing Architecture (DITA) Version 1.2 Specification (2012),
http://docs.oasis-open.org/dita/v1.2/os/spec/DITA1.2-spec.pdf

16. Zhi J., Garousi V., Sun B., Garousi G., Shahnewaz S., and Ruhe G., Cost, Benefits
and Quality of Technical Software Documentation: A Systematic Mapping . J. of
Systems and Software, Under Review, (2012).

17. Zhong, H., Zhang, L., Xie, T., Mei, H.: Inferring resource specifications from natural
language API documentation. In Proceedings of 24th ASE, pp. 307–318 (2009)

18. Zhong, H., Su, Z.: Detecting API documentation errors. In Proceedings of
SPASH/OOPSLA, pp. 803–816 (2013)

19. Wingkvist, A., Lowe, W., Ericsson, M., Lincke, R.: Analysis and visualization of
information quality of technical documentation. In Proceedings of the 4th European
Conference on Information Management and Evaluation, pp. 388–396 (2010)

20. Wingkvist, A., Ericsson, M., Lowe, W.: A Visualization-based Approach to Present
and Assess Technical Documentation Quality. Electronic Journal of Information
Systems Evaluation, 14 (1) (2011)

21. VizzAnalyzer Clone Detection Tool, http://www.arisa.se/vizz_analyzer.php
22. Cameron, H. G.: Wright: Technical Writing Tools for Engineers and Scientists.

Computing in Science and Engineering, 12(5), pp.98–103 (2010)
23. Grigorev, S., Kirilenko, I.: GLR-based abstract parsing. In Proceedings of the 9th

Central & Eastern European Software Engineering Conference in Russia (2013)
24. Fowler, M., et al.: Refactoring: Improving the Design of Existing Code. Addison-

Wesley (1999)
25. Document Refactoring Toolkit,

http://www.math.spbu.ru/user/kromanovsky/docline/index_en.html
26. Zend PHP Framework documentation, snapshot on Apr 24, 2015 (2015),

https://github.com/zendframework/zf1/tree/master/documentation
27. SVN Book, snapshot on Apr 24, 2015 (2015),

http://sourceforge.net/p/svnbook/source/HEAD/tree/trunk/en/book/
28. DocBook Definitive Guide, snapshot on Apr 24, 2015 (2015),

http://sourceforge.net/p/docbook/code/HEAD/tree/trunk/defguide/en/
29. Basili, V. R., Caldiera, G., Rombach H. D.: The Goal Question Metric Approach.

Encyclopedia of Software Engineering: Wiley (1994)
30. Frakes, W., Terry., C.: Software reuse: metrics and models. ACM Comput. Surv.,

28(2), pp. 415–435 (1996)
31. Krueger, C. W.: Variation Management for Software Product Lines. In Proceedings

of SPL’02, San Diego, CA, USA pp. 37–48 (2002)
32. Abadi, A., Nisenson, M., Simionovici, Y.: A Traceability Technique for Specifica-

tions. In Proceedings of ICPC’08, pp. 103–112 (2008)
33. Terekhov, A. N., Sokolov, V. V.: Document Implementation of the conformation

of MSC and SDL diagrams in the REAL technology. Programming and Computer
Software. 33 (1), pp. 24–33 (2007)

34. Gavrilova, T. A.: Ontological engineering for practical knowledge work. 11th In-
ternational Conference on Knowledge-Based and Intelligent Information and Engi-
neering Systems, KES 2007, LNCS Vol.4693, pp. 1154–1161 (2007)

35. Grigoriev, L., Kudryavtsev, D.: ORG-Master: Combining Classifications, Matrices
and Diagrams in the Enterprise Architecture Modeling Tool. Communications in
Computer and Information Science (CCIS) Series, Springer, pp. 250–258 (2013)


