Sums of a Special Class of Generalized Stoynov Distributions¹

P. T. Stoynov, Sofia University "St. Kliment Ohridski" Sofia, Bulgaria todorov@feb.uni-sofia.bg

Generalized Stoynov distributions are weighted versions of generalized Laplace distributions. By analogy with generalized Laplace distributions, two kinds of generalized Stoynov distributions are considered, one-sided and two-sided. The formulas for the sum of a special class of generalized Stoynov distributions are presented.

Key words: Laplace distribution, Stoynov distribution, generalized Laplace distribution, generalized Stoynov distribution.

1. Generalized Stoynov Distributions

Generalized Stoynov distribution can be considered as weighted generalized Laplace distribution by a polynomial weight function. We define generalized (double-side) Stoynov distribution as a distribution of random variable ξ with probability density function given by the equation

$$f_{\xi}(x) = C_D(\mu, \sigma, k, m, s, p)e^{-(\frac{|x-\mu|}{\sigma})^k} (1 + |\frac{x-\mu}{s}|^p)^m,$$

$$\mu \in R, \sigma \in R^+, p \in N, m \in N, k \in N$$
(1)

We will denote this distribution as $\xi \in GSD(\mu, \sigma, k, m, s, p)$.

We define generalized (one-side) Stoynov distribution with normalized weight argument as a distribution of random variable ξ with probability density function given by the equation

$$f_{\xi}(x) = C_O(\mu, \sigma, k, m, s, p)e^{-(\frac{x-\mu}{\sigma})^k} (1 + (\frac{x-\mu}{s})^p)^m,$$

$$x \ge \mu, \mu \in R, \sigma \in R^+, p \in N, m \in N, k \in N$$
(2)

We will denote this distribution as $\xi \in GSO(\mu, \sigma, k, m, s, p)$.

¹©P. T. Stoynov, 2013

2. Some Special Cases of Generalized Stoynov Distributions

It is clear that generalized Laplace distributions are special case of generalized Stoynov distribution. We have $GSO(\mu,\sigma,k,0,s,p)=GLO(\mu,\sigma,k)$ and $GSD(\mu,\sigma,k,0,s,p)=GLO(\mu,\sigma,k)$. The special case $\xi\in GSO(0,\lambda^{-1},1,1,1,1)$ is the distribution of Lindley. The special case $\xi\in GSO(0,\lambda^{-1},2,1,1,1)$ is the distribution of Stoynov described in [1]. In this case $C_O(0,\lambda^{-1},2,1,1,1)=\frac{\lambda^3}{\lambda^2+2\lambda+2}$.

3. Sum of Two $GSO(0, \sigma, 1, m, 1, 1)$ Distributions

Here we will consider sum of two $GSO(0, \sigma, 1, m, 1, 1)$ distributions. Let $\xi \in GSO(0, \sigma_1, 1, m_1, 1, 1)$ and $\eta \in GSO(0, \sigma_2, 1, m_2, 1, 1)$. We will calculate the density of the sum $\phi = \xi + \eta$. We have

$$f_{\xi}(x) = C_O(0, \sigma_1, 1, m_1, 1, 1) e^{\frac{-x}{\sigma_1}} (1+x)^{m_1} =$$

$$= \frac{1}{\sigma_1 \sum_{k=1}^{m_1} k! \binom{m_1}{k} \sigma_1^k} e^{\frac{-x}{\sigma_1}} (1+x)^{m_1}, x > 0,$$

$$f_{\varepsilon}(x) = 0, x < 0$$
(3)

and

$$f_{\eta}(x) = C_{O}(0, \sigma_{2}, 1, m_{2}, 1, 1)e^{\frac{-x}{\sigma_{2}}}(1+x)^{m_{2}} =$$

$$= \frac{1}{\sigma_{2} \sum_{k=1}^{m_{2}} k! \binom{m_{2}}{k} \sigma_{2}^{k}} \sigma_{2}^{k} (1+x)^{m_{2}}, x > 0$$

$$f_{\eta}(x) = 0, x < 0.$$

$$(4)$$

We have

$$f_{\phi}(u) = \frac{1}{\sigma_{1} \sum_{k=1}^{m_{1}} k! \binom{m_{1}}{k} \sigma_{1}^{k}} \frac{1}{\sigma_{2} \sum_{k=1}^{m_{2}} k! \binom{m_{2}}{k} \sigma_{2}^{k}} *$$

$$*e^{\frac{-u}{\sigma_{1}}} \int_{0}^{u} e^{v \left(\frac{1}{\sigma_{1}} - \frac{1}{\sigma_{2}}\right)} (1 + u - v)^{m_{1}} (1 + v)^{m_{2}} dv =$$

$$= \frac{1}{\sigma_{1} \sum_{k=1}^{m_{1}} k! \binom{m_{1}}{k} \sigma_{1}^{k}} \frac{1}{\sigma_{2} \sum_{k=1}^{m_{2}} k! \binom{m_{2}}{k} \sigma_{2}^{k}} \frac{e^{\frac{-u}{\sigma_{1}}} I, u > 0, \quad (5)}{k}$$

where

$$I = \int_0^u e^{v\left(\frac{1}{\sigma_1} - \frac{1}{\sigma_2}\right)} (1 + u - v)^{m_1} (1 + v)^{m_2} dv.$$
 (6)

Now we will calculate the integral I. We will consider the case where $\sigma_1 = \sigma_2 = \sigma$. In this case,

$$I = \int_{0}^{u} e^{v\left(\frac{1}{\sigma_{1}} - \frac{1}{\sigma_{2}}\right)} (1 + u - v)^{m_{1}} (1 + v)^{m_{2}} dv =$$

$$= \int_{0}^{u} (1 + u - v)^{m_{1}} (1 + v)^{m_{2}} dv =$$

$$= \int_{0}^{u} \sum_{k=1}^{m_{1}} {m_{1} \choose k} (1 + u)^{k} (-1)^{m_{1} - k} v^{m_{1} - k} *$$

$$* \sum_{s=1}^{m_{2}} {m_{2} \choose s} v^{s} dv =$$

$$= \sum_{k=1}^{m_{1}} {m_{1} \choose k} (1 + u)^{k} (-1)^{m_{1} - k} *$$

$$* \sum_{s=1}^{m_{2}} {m_{2} \choose s} \int_{0}^{u} v^{m_{1} - k + s} dv =$$

$$= \sum_{k=1}^{m_{1}} {m_{1} \choose k} (1 + u)^{k} (-1)^{m_{1} - k} *$$

$$* \sum_{s=1}^{m_{2}} {m_{2} \choose s} \frac{v^{m_{1} - k + s + 1}}{m_{1} - k + s + 1} |_{0}^{u} =$$

$$= \sum_{k=1}^{m_{1}} {m_{1} \choose k} (1 + u)^{k} (-1)^{m_{1} - k} *$$

$$* \sum_{s=1}^{m_{2}} {m_{2} \choose s} \frac{u^{m_{1} - k + s + 1}}{m_{1} - k + s + 1}.$$

$$(7)$$

In the case when $\xi \in GSO(0, \sigma, 1, 2, 1, 1)$ and $\eta \in GSO(0, \sigma, 1, 2, 1, 1)$ we have sum of Stoynov distributions. In this case,

$$f_{\xi}(x) = f_{\eta}(x) = C_O(0, \sigma, 1, 2, 1, 1)e^{\frac{-x}{\sigma}}(1+x)^2 =$$

$$= \frac{1}{\sigma(1+\sigma+\sigma^2)}e^{\frac{-x}{\sigma}}(1+x)^2, x > 0$$
(8)

$$f_{\xi}(x) = f_{\eta}(x) = 0, x < 0.$$

Next,

$$f_{\phi}(u) = \frac{1}{\sigma^{2}(1+\sigma+\sigma^{2})^{2}}e^{\frac{-u}{\sigma}} *$$

$$* \int_{0}^{u} (1+u-v)^{2}(1+v)^{2} dv =$$

$$= \frac{1}{\sigma^{2}(1+\sigma+\sigma^{2})^{2}}e^{\frac{-u}{\sigma}}I, u > 0$$
(9)

where

$$I = \int_0^u (1+u-v)^2 (1+v)^2 dv =$$

$$= \frac{30u + 60u^2 + 40u^3 + 10u^4 + u^5}{30}.$$
 (10)

4. Acknowledgements

This work was supported by the European Social Fund through the Human Resource Development Operational Programme under contract BG051PO001-3.3.06-0052 (2012/2014).

Список литературы

 Stoynov, P. Negative binomial distribution and applications. Proceedings of the Third International Conference Financial and Actuarial Mathematics — FAM 2010. Perun-Sprint Publishing, Sofia, 2010, 2-20.