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Abstract— This paper presents a new algorithm for maxi-
mizing the flight duration of a single UAV (Uninhabited Air
Vehicle) and UAVs group using the thermal model developed
by Allen at NASA Dryden.

As a first step, we suggest a new algorithm based on
Simultaneous Perturbation Stochastic Approximation for quick
and precise detection of the center of a thermal updraft where
the vertical velocity of the air stream is the highest. The
method takes into account the unstable behavior of the updraft
dynamics and the drift of its center in time.

Then, a multi-agent system for joint flight of multiple UAVs
is presented. A protocol for UAV communication providing ef-
fective information exchange on updrafts locations is proposed.
A sufficient condition for the protocol to be effective is deduced
theoretically. We show that the energy consumption of each UAV
can be significantly reduced using the multi-agent approach.

I. INTRODUCTION

Large birds and glider pilots commonly use updrafts

caused by convection in the lower atmosphere to extend flight

duration, increase cross-country speed, improve range and

conserve energy. UAV may also have the ability to exploit

updrafts to improve performance. Results obtained in paper

[1], [2], [3], [4] show that a UAV with nominal endurance

of 2 hours can fly a maximum of 14 hours using updrafts

during the summer and a maximum of 8 hours during the

winter.

Extending the endurance of UAVs flight is currently an

area of major research interest, because they are very popular

for aircraft missions that would be dangerous or too boring

for human pilots. And such missions as military surveillance

or commercial usage as atmospheric satellites need extremely

long endurance of UAV flight.

This paper is based on two key ideas for UAV soaring

improvement. The first one is using simultaneous perturba-

tion stochastic approximation method (SPSA) [5], [6], [7] for

thermal updraft center detection. This method allows to treat

the updrafts center drift effectively because of the tracking

properties of SPSA shown in papers [8], [9]. It also helps

to compensate the effect of horizontal wind considered as

systematic noise as shown in work [10], [11].

The second idea is to use a group of UAVs instead of

one unit for more effective location of updrafts and thus

increasing average expected flight time for each UAV [12].

The multi-agent approach and the distributed decision

making systems have become particularly popular because of

their robustness and effectiveness when applied to problems
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with incomplete data solving. There are different approaches

for gathering and processing information by autonomous

agents. Each of them can only observe the environment

partially and upload the observation data into a shared pool.

All agents have their goals and values used in decision

making. They have some beliefs and expectations regarding

their complex surroundings that help them to define their

behavior on each step.

Such distributed models are successful because there is no

central control node with the major load on it. Each agent has

its role that is changed with time. It helps to develop more

flexible and fault-tolerant systems because of distributed data

storage and traffic minimization between players.

Numerous frameworks for multi-agent cooperation have

been developed recently and some simulations of multi-UAV

cooperation have been made. Very significant results were

obtained in Carnegie Melonie University where a group of

UAVs flied together [13] in order to detect and destroy all

RF emitters within a test area . Using Bayesian approach

they built a distribution map of their expectations for each

cell of the terrain. Then they corrected their paths in order

to collect more information on unvisited regions and obtain

the full picture of emitters locations. Similar results were

obtained in the task of weapons detection by UAVs. The high

potential of the multi-agent approach in tasks of this sort was

proved in works both theoretically and by simulation results.

In our research a multi-agent system of UAVs was used

for flight endurance maximization. Each UAV flies through

its waypoints and gathers information on thermals location.

A similar approach was studied in [14] for two UAVs. Due

to the multi-agent approach all agents can obtain the whole

picture of updrafts in the region quickly and correct their

paths in order to pass through as many updrafts as possible.

We also carried out a simulation to show the benefits of

the multi-agent approach in this task. Increasing the UAVs

number to three increases the flight duration of each UAV

more than twice.

II. PROBLEM STATEMENT

A. Soaring of One UAV

The airplane we modeled was based on a small unmanned

powered glider. The objective of our vehicle is to conserve

battery energy and soar as long as possible over the test area.

In our experiments the UAV uses a very simple strategy. It

flies along a predefined path, measuring the vertical airspeed

using the readings of an onboard GPS module. Thermal

updrafts are identified as areas with positive airspeed values.

The UAV should locate thermal updrafts within its flight path
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and use them to gain altitude. After climbing to the maximum

available altitude it should return to its course and use the

energy obtained by switching to soaring mode, i. e. keep its

engine off, gliding.

It is known from observations that the maximum vertical

speed in the updraft can be found in its center, while the

edges remain relatively still. In fact, the vertical speed on

the outskirts of the updraft is usually negative due to the

fact the air is circulating inside the updraft. It is therefore

vital for the UAV to detect the updraft center as quick as

possible in order to benefit from its energy.

So, the first problem we tried to solve is the detection

of the center of a thermal. Methods already used for this

purpose usually give inaccurate results. They also either do

not take into account the drift of the updraft’s center in time

and horizontal wind influence on the calculations or use very

complicated models for this purpose.

Constraints :

It is absolutely necessary for the UAV to be able to glide

with minimal altitude loss, in order to use the potential

energy efficiently.

The soaring flight can only take place during daytime and

the UAV path may not cross large water basins, as updrafts

do not form neither above water, nor during the dark time.

We assume that the vehicle uses an onboard GPS receiver

to calculate its vertical velocity in each point.

It is known that thermal updrafts often end with clouds on

their tops. The wind conditions inside the clouds are known

to be extremely severe, with rapid upward and downward

streams. Entering the clouds level will usually result in a loss

of the UAV. We therefore consider that there is an algorithm

that allows the UAV to detect the top of the updraft and

prevent it from entering the clouds.

B. Soaring of a Group of UAVs

A group of UAVs is flying over the test area as long

as possible. They should therefore maximize their soaring

time and effectively locate thermals within the field. They

communicate each with other and exchange information on

their locations and vertical velocity in this point. After each

vehicle receives information on a newly detected updraft it

has to decide between two behaviors: flying further along

the predefined path or flying to the newly found updraft.

The decision each UAV makes relies on its current altitude

and an estimation of its energy balance. If the thermal found

is too far from the UAV’s current location it will not fly to it

as more energy is likely to be consumed while approaching

the updraft than energy that can be gained from it.

Constraints :

We assume that there exists a path planning algorithm that

keeps the vehicles from colliding each with other. There are

numerous methods that allow to generate paths for multiple

UAVs in real time, from starting locations to goal locations

in the presents obstacles of different sorts. A convenient

solution was presented in paper [15] where the RRT-based

planning algorithm was considered.

The distance between the vehicles is maintained according

to a previously known average diameter of thermal updrafts

at this time of year, time of day and geographic location and

according to the units’ radio range to assure they would be

able to communicate.

III. SPSA BASED SOLUTION

Our algorithm discretizes the flying area into 10-meter

square cells. The expected vertical velocity in each cell is

initially set to a random negative or very small positive

integer value. The UAV can sense its own vertical velocity

in each cell. Each airplane knows its altitude in the current

moment and can therefore decide whether it is necessary to

seek an updraft to climb. We introduce an altitude threshold

above which the UAV will not run the algorithm of thermal

center location. Upon detecting a cell with vertical velocity

value above a fixed threshold and provided the unit altitude

is below the altitude threshold, the UAV will start the SPSA

algorithm with 2-dimensional vector (x, y) and velocity

value as profit function.

In our model we assume that updraft has Gausian velocity

distribution. In the updraft center the velocity reaches its

highest value. Thus, in order to use the energy of the updraft

effectively we need an algorithm capable of detecting the

maximum value of a function in a very noisy environment.

Under these conditions we are facing a classical optimization

problem.

The main assumption of the experiment was that stochastic

gradient-free optimization methods are effective approaches

for updraft center detection. Optimization methods are usu-

ally reduced to iterative alteration of some adjustable pa-

rameters from some initial guess (or a set of guesses) to

a value that offers an improvement in the objective func-

tion. Let us consider a very simple case with only two

optimization parameters which is suitable for our problem

and with x and y coordinates and velocity function that

depend on them. Maximization of the velocity function is

the iterative process of coordinates adjustment SPSA presents

a recursive optimization algorithm that does not depend on

direct gradient information or measurements. This algorithm

is based on an approximation of the gradient formed from

(generally noisy) measurements of the objective function.

Detailed description of SPSA can be found in the book

[10], [16] or on http://www.jhuapl.edu/SPSA/. The algorithm

starts with an initial “guess” at a solution, and this estimated

solution is updated on an iteration-by-iteration basis with

the aim of improving the performance measure (objective

function).

The following step-by-step summary shows how SPSA

iteratively produces a sequence of updraft center estimates.

Step 1: Initialization and coefficient selection. Set

counter index k = 1. Pick initial guess and non-negative

coefficients a, b and c which are heuristically chosen values

in the SPSA gain sequences ak = a/k and ck = b + c/
√

k.

The initial guess in our implementation of the algorithm is

the point where a positive updraft was first measured.
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Step 2: Generation of the simultaneous perturbation

vector. Generate by Monte Carlo a 2-dimensional random

perturbation vector ∆k, where x and y components of ∆k

are independently generated from a zero mean probability

distribution satisfying the preceding conditions. A common

choice for each component of ∆k is to use a Bernoulli ±1
distribution with probability of 1/2 for each ±1 outcome.

Step 3: Proceeding to the new waypoints. Proceed to

next two points (x+

k , y+

k ) and (x−

k , y−

k ):

(x±

k , y±

k ) = (xk, yk) ± ck∆k.

Step 4: Velocity function evaluations. Obtain two mea-

surements of the velocity matrix w(x, y): w±

k = w(x±

k , y±

k )
Step 5: Quasigradient calculation. Calculate the quasi-

gradient:

ĝ = ∆k

w+

k − w−

k

ck

Step 6: Updating center estimation. Use the standard

stochastic approximation form

(xk+1, yk+1) = (xk, yk) + akĝ

to update the current center estimation.

Step 7: Iteration or termination. Return to Step 2

with k + 1 replacing k. Terminate the algorithm if there is

little change in estimations obtained on several successive

iterations or the maximum allowed number of iterations has

been reached.

Step 8: Climbing in the updraft. Circle around estimated

updraft center in order to climb.

This method provides good approximation of the updraft

center using a small number of measurements and no apriori

knowledge on updraft location. Once a center of the updraft

was encountered, a 30 sec. time penalty was put on the

simulation to account the time that an actual vehicle would

spend engaging an updraft and increasing velocity climbing

around the center.

IV. MULTI UAVS SOLUTION

Consider a group of UAVs flying over a test area. The

main objective of the mission is to maximize soaring time.

The algorithm of battery power usage was designed to turn

off power and begin soaring when the vertical velocity is

above the threshold. So, each vehicle switches the soaring

mode on and off depending on atmospheric conditions. When

one agent detects an updraft it launches the updraft center

location algorithm and sends a message containing informa-

tion on its location, the estimated center of the updraft, the

estimated velocity and the expected maximum altitude of

the thermal to other agents. The other agents receive this

message and choose the best strategy for them.

They estimate how much energy they will lose in the flight

to the updraft and compare this value with the estimated

energy gain from the updraft. If they can benefit from this

updraft they shift their next waypoint to the center of the

thermal, otherwise the UAVs continue their normal flight.

So, let us describe two algorithms used to model the UAVs

behavior and communication.

Algorithm 1 Updraft detection and notification

loop

if altitude is above safety threshold then

switch engine off and soar along the flight path;

else

switch engine on and fly along the flight path;

end if

if current altitude is below the maximum altitude thresh-

old then

if current measured vertical velocity is above the

updraft trigger velocity then

run the SPSA-based center detection algorithm;

send a broadcast message containing the current

location, the estimated updraft center and the ver-

tical velocity in it;

else

if received a message with updraft coordinates

from another unit then

run Algorithm 2;

end if

end if

end if

end loop

The vertical velocity in the updraft center can be estimated

by a simulation suggested in work [1]. Using measurements

obtained by the UAV in its current location and some knowl-

edge on the structure of an updraft it is possible to estimate

the diameter of the updraft and the velocity distribution in

it.

As it was described in the work [1] the convective-

layer thickness, H , is the maximum height-above-ground

that updrafts generally obtain. The mixing layer thickness

was calculated using predawn rawinsonde balloon data and

measured surface temperatures. Maximum velocity value in

updraft reaches on the height 0.25H . The expected altitude

gain of the UAV could be found as difference of gain =
0.7H − h, where h is assumed as the current UAV altitude.

All values are some heuristics derived from experiment.

Algorithm 2 Processing of the received signal and decision

making

Calculate the distance between current location and the

center of the updraft;

Estimate the altitude sink if we proceed to the located

updraft center with engine off;

if the value obtained on step 2 is above the gain value

then

Stick to current path

else

Proceed to the updraft

end if

This simple method allows the UAVs to make effective

decisions during their flight. On one hand, they fly rather
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close to each other and can benefit from updrafts detected by

other UAVs, but on the other hand, they always correct their

paths to avoid getting too close each to the other, thus being

able to discover distinct updrafts in the test area. The optimal

distance between the UAVs is calculated heuristically based

on average updraft diameter in this day time and geographic

location.

Let us show mathematically the advantage of multi-UAV

soaring. Consider a group of K UAVs flying in an area

with size S, in which n thermal updrafts of mean radius r
are uniformly distributed. Suppose that the UAVs are flying

along straight line parallel paths with mean distance of L
between them and L ≤ 2r. It will guarantee that any updraft

situated between neighbor paths will be found by the group.

Should any of the machines locate an updraft, the other UAVs

will fly to the updraft location, climb and return to their

paths. Note, that for the ease of the following proof, all the

vehicles always proceed to the newly located updraft, unlike

in Algorithm 3. For the matter of the following reasoning let

us also consider the probability of a simultaneous detection

of distinct updrafts by two or more vehicles of the group

negligible.

Theorem 1. Let c designate the energy sink rate for a single

UAV flying at the cruise speed and b — the energy benefit

obtained from using the thermal updraft. It is sufficient for

the multi-UAV strategy to be efficient (the expectation of

total energy consumption for each UAV is minimized by this

strategy) that the following equation is held:

L =
b

2c(K − 1)
. (1)

Proof. Let p1 be the mathematical expectation of the number

of updrafts located by a single vehicle over a straight line

path of length l.

p1 =
2rln

S

It is actually the probability of the updraft center being in a

rectangle whose area is 2rl multiplied by the total number

of thermals within the field. This is, in fact, a lower bound

estimation, that does not put any restrictions on the location

of updrafts and the distance between them.

Let us introduce the expectation of energy consumption

by a single UAV:

Esingle = lc − p1b = l
(

c − 2rb
n

S

)

.

Similarly, we can obtain the expectation of the number of

updrafts located for the group of K UAVs which are flying

along straight line parallel paths with mean distance of L
between them.

pK =
(2r + L(K − 1))ln

S

Taking into account that the mean distance from an UAV to

the found updraft is equal to L(K − 1)/2, we can derive for

the mean energy consumption when using the multi-agent

strategy.

Emulti = lc − p1b − (pK − p1)

(

b − 2
L(K − 1)

2
c

)

=

= l
(

c − [2rb + L(K − 1)(b − L(K − 1)c)]
n

S

)

.

The first part of the expression is similar to the single UAV

case. The second part is the energy benefit obtained from the

updrafts located by the (K − 1) fellow vehicles minus the

energy penalty for flying to the location of the updraft.

Minimizing the last formula by L we derive (1) and the

difference between energy consumption expectation when

using the single UAV and the optimal multi-UAV strategies,

which is:

Emulti − Esingle = −
ln

S

b2

2c
.

The expectation of energy consumption when using the

multi-UAV strategy is, therefore, lower.

In the above reasoning we assumed the distance between

neighbor paths remains constant throughout the whole mis-

sion. In practice, however, the distance might and should be

adapted according to observations of mean thermal diame-

ter, mean distance between thermals and other atmospheric

conditions, such as horizontal wind speed.

V. SIMULATION RESULTS

For this project, we chose to use a thermal updraft model

developed by Allen at NASA Dryden (Ref. [1]) for a similar

autonomous UAV soaring project. This model was developed

using atmospheric data collected by NOAA in Nevada using

rawinsonde balloons released every 12 hours over the course

of a year.

We used Allen’s model to create a dynamic field of

thermal updrafts within the specified test area, that the UAV

was constrained to fly in. Updraft positions were randomly

chosen and held for 20 min at a time. The 20-min thermal

lifespan was chosen from estimates given in [17] and from

personal observation of cumulus clouds. As updrafts have

finite lifetime, the value function estimate of particular

visited cell becomes less and less accurate depending on

how recently the UAV has visited it. To reflect this increasing

uncertainty with time, a discount factor 0.95 was applied at

each time step such that the estimated velocity of each cell

gradually decays toward zero. Fig. 1 shows an example of

such a field at a particular time during the simulation:
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TABLE I

RESULTS OF SPSA

x, p,
Average velocity value Average velocity

in the point where in the updraft center
spsa was initiated as found by SPSA

0.55 1.9
0.74 2.65
0.55 2.29
0.65 2.43
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Fig. 1. Sample thermal updraft field.

A. Soaring of One UAV

In our experiment the UAV flies through randomly chosen

waypoints. As the airplane flies it tries to detect the updrafts

its path coincides with. When the vehicle finds any points

with positive vertical velocity and provided its altitude is less

than a preset threshold it starts center detection algorithm to

gain altitude using the upward directed vertical wind.

The summarized results of the experiment are tabulated

in Table 1. In order to obtain these statistics we made 100

experiments with SPSA updraft center detection using only

10 measurements. The vertical velocity changes between

−0.12 and 2.75 over the test field.

The results of a sample experiment are also shown on

Fig. 2 where the estimated updrafts center are the red circles.

Fig. 2. Path with centers detection using SPSA.

B. Soaring of a Group UAVs

To demonstrate the effectiveness of our algorithm we

made some simulations in which a group of UAVs is flying

across a square test field. In the experiment all updrafts are

placed randomly within the test area. Each UAV flies along

a straight line and measures its vertical velocity using GPS

in every cell. When it observes a cell with positive vertical

velocity, the vehicle communicates with others UAVs and

shares this information. As mentioned above, all the vehicles

use Algorithm 3 that helps them to decide whether they

should stick to their current path or rather approach the

newly found updraft. A typical sample path obtained by this

simulation is shown on Fig. 3. We assume that a collision

avoidance algorithm is employed when the vehicles proceed

to the updraft location.

Fig. 3. Multi-UAV Soaring (K = 9).
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We also carried out a simulation using the Monte-Carlo

method performing 100 iterations with variable number of

UAVs in order to show the relation between energy sink

rate and the number of UAVs. We consider that the power

sink rate for vehicle flying at its cruise speed, without using

thermal updrafts is 100 units per 1000 distance units. The

results of the simulation are shown on Fig. 4.
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Fig. 4. Power Sink Rate for Variable Number of UAVs

It is clearly visible from the diagram that the power sink

rate decreases as the the number of UAVs in the party grows.

The sink rate for a single vehicle in a group of five UAVs

is as low as 30, which is about a half of the sink rate for

single UAV soaring.

VI. CONCLUSION

In our work we have demonstrated a quick and accurate

method of locating the center of a thermal updraft. The

method proposed does not require any apriori information

on the number and the location of thermals in the test area.

In contrary to the online machine learning method proposed

in [18] our algorithm allows locating updrafts “on the fly”,

without need in additional passes to collect more data.

We have also considered the expansion of the algorithm for

using it with multiple vehicles. We showed theoretically the

sufficient condition for the multi-UAV soaring to be effective.

It was shown using simulation that the multiagent approach

can be exploited to increase the effectiveness of updrafts

location, thus increasing the overall airborne time for the

whole party.

It is obvious, however, that the operation of UAV groups

becomes complicated as the number of UAVs grows, the

benefit of more effective updraft detection thus becoming

less noticeable. The general approach proposed is therefore

that the number of UAVs should be reasonably increased in

tasks involving long-range operation, while remaining low

enough for the group to be still efficient.

VII. FUTURE WORK AND ACKNOWLEDGEMENTS
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that this project explored. For more realistic simulations we
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a real UAV platform, using the Java JADE framework for

implementing the multi-agent cooperation.
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