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Abstract

In this article, we establish existence results for solutions of resonant boundary value problems

for nonlinear singular fractional differential equations

D¢ u(t) = f(t,u(t), Dyu(t)) +e(t), t € (0,1),1 < a < 2,

[127u(t)] =0

Diyu(l) = Y7107 BiDj ul&)-

Our analysis relies on the well known coincidence degree theory. Here f depends on Dg v and may

be singular at ¢ = 0 or ¢ = 1. The resonance case is caused by the multi-point boundary conditions.
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1 Introduction

Fractional differential equations have many applications in modeling of physical and chemical

processes and in engineering and have been of great interest recently. In its turn, mathematical
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aspects of studies on fractional differential equations were discussed by many authors, see the
text books [1,2], the survey papers [3,4] and papers [5-10] and the references therein.

Recently the coincidence degree theory [11] has been used to study the existence of solutions

to boundary value problems for fractional differential equations [12-15].

In [15], the existence of solutions of the resonant boundary value problems for fractional

differential equations

Dgu(t) = f(t,ut), D§ " u(t)) +e(t), t € (0,1),1 <a <2,
Lo+ “u®)]],—p = 0, (1)
u(l) = X7 Buulny),
was studied, where Df, (D§ or D* for short) is the Riemann-Liouville fractional derivative
oforder a, 0 < 1y < «+- < Mo < 1, Bi(i = 1,2,--- ,m — 2) € R with ZZ BT =1,
f:]0,1] x R* — R is continuous and e € L'(0,1).
We see that f in BVP(1.1) depends on DS 'z and solutions of BVP(1.1) are bounded

on [0,1]. To our knowledge, there exists no paper concerned with the existence of unbounded

solutions of boundary value problems for fractional differential equations.

We find that in all above mentioned papers, the solutions obtained are bounded ones
(continuous on [0, 1], f depends on either the fractional derivatives lower than o — 1 [15,18].

Motivated by this reason, we discuss the boundary value problem of the nonlinear fractional

differential equation of the form

D¢ u(t) = f(t,u(t), Diu(t)) +e(t), t € (0,1),1 < a <2,
[2u(t)]'] =0, (2)

t=0

Dlu(1) = S5 Dk ().

where D§, (D* for short) is the Riemann-Liouville fractional derivative of order a, 0 < p <
a—1,0<& < <Eno <1, Bii =1,2---,m—2) € Rwith 7286277 = 1,
f:(0,1) x R* — R is continuous and e € L'(0,1). f may be singular at t =0 or ¢t = 1.

We obtain the existence results for solutions to BVP(1.2) by using the coincidence degree

theory. The solutions obtained may be unbounded since there exists the limit lim;_,q t2~“u(t).

BVP(1.2) happens to be at resonance in the sense that its associated linear homogeneous
boundary value problem
Dg.u(t) =0, te (0,1),1 <a <2,
[2u()]’| =0,

t=0

D0+U(1) = Zz 1 1 0+u(£l)

has u(t) = ct* 2 ¢ € R as nontrivial unbounded solutions. When o = 2 and p = 1 and 3; = 0
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foralli =1,2,--- ,m—2, BVP(1.2) becomes the well known Neumann boundary value problem
u'(t) = f(t,ut),u'(t) +e(t), t € (0,1),
u'(0) =
(1)

I

0
0

Y

which is studied in [16,17]. The result in this paper generalizes those one in [16]. For 1 < a < 2
and 0 < p < a — 1, the following BVP
Dg.u(t) =0, t e (0,1),1 <a <2,
2eu(t) 0
|: 0+ ’LL( )] =0 I
D u(1) =0

has a unique solution u(t) = 0. Hence the resonance case in BVP(1.2) is caused by the multi-

point boundary conditions.

2 Main results

To obtain the main results, we need some notations and an abstract existence theorem by
Gaines and Mawhin [11].

Let X and Y be Banach spaces, L : D(L) C X — Y be a Fredholm operator of index
zero, P: X — X, @ : Y — Y be projectors such that
ImP=KerL, KerQ=ImL, X=KerL®KerP, Y =ImL®ImCqQ.

It follows that
L|D(L)mKerP : D(L)NKer P —Im L
is invertible, we denote the inverse of that map by K.

If Q is an open bounded subset of X, D(L) N Q # ), the map N : X — Y will be called
L—compact on Q if QN (Q) is bounded and K,(I — Q)N : Q — X is compact.

Lemma 1 Let L be a Fredholm operator of index zero and let N be L—compact on 2. Assume

that the following conditions are satisfied:

1. Lz # ANz for every (x,\) € [D(L) \ KerL) N oQ x (0,1);
2. Nz ¢ ImL for every x € KerL NOS);

3. deg(AN"'QN {K@’FL , QN KerL,0) # 0, where A™' : Y/ImL — KerL is the inverse of the
isomorphism A : KerL — Y /ImL.

Then the equation Lx = Nz has at least one solution in D(L) N Q.
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Let I'(«) and B(p, q) be defined by

—+o00 1
INa) = / v te "dz, B(p,q) = / P71 — 2)7 .
0 0

We use the Banach space L'[0, 1] with the norm

1
lully = / u(s)|ds.
Define
z € C(0,1],
Dz € C(0,1],
X =qx:(0,1] = R there exist the limits
lim, otz (t),

limy_,o M2 (t)
\ W

For u € X, define the norm

||u]| = max { sup ¢°7*[u(t)], sup t“+2‘“|D5+u(t)l} :
te(0,1] te(0,1]

By means of the linear functional analysis theory, we can prove that X is a Banach space.
Choose Y = L0, 1].
Define L to be the linear operator from D(L) (X to Y with
D(()X-FU S L1(07 1)7
D(L)={ueX: [2ou(t)]'| =0,
t=0
Dyu(1) = 315" B, Dgu(&)

and
(Lu)(t) = Divu(t), uw e D(L).

Define N : X = Y by
(Nu)(t) = f (t,u(t), Diu(t) +e(t), ue X.
Then BVP(1.2) can be written as
Lu= Nu, ue D(L).

Lemma 2 It holds that

1. KerL = {ct*™% c € R};

2. ImL = { vey, fi(l — ST ls)ds }
=3B o (& — ) (s)ds
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3. L is a Fredholm operator of index zero.

Proof
(1) One sees that D{u(t) = 0 has solutions

u(t) = cit* et 2t € (0,1)
for some ¢; € R, 1 =1,2. We get

I u(t) = eiT ()t + col'(a — 1)

and
(Lo u(t)] = erl(«),
and
['(«) e Na-1)
Du — a—p—1 a—p—2
ou(t) ch(@_M)t +02F(a— _1)15
Since
[Igjau(t)]’}tzo =0,

we get ¢ = 0. Since Y7 B * 7% =1, we find that ¢; € R. Thus KerL = {ct*"2, ¢ € R}.

7

(2) We see that v € ImL if and only if there exists a function u € D(L) such that

Dgu(t) =v(t), te(0,1),1<a<?2,

[1272u(t)] =0

Dyu(1) = Y75° BiDgul&)-

Then
u(t) = IS o(t) + ert® ™ + ept® 2t € (0,1).

It follows that

toz—u—l + ¢y F(CY — 1) ta—u—?

P =l 0 e = Mo—p-1

reu(t) = /0 (t — s)o(s)ds + T (@)t + eoT(cr — 1)
and

2reu(t)] = /O o(s)ds + erT(@). (3)

From []gjo‘u(t)}/ =0, we get ¢; = 0. Now Dhu(1) = S.7,% 8;Dhu(&;) implies that

t=0

/01(1 )2 y(s)ds = Zﬂz/ & — ) Lu(s)ds. (4)
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On the other hand, suppose v € Y and satisfies (2.2). Choose
u(t) = Igvv(t).

One sees by computation that
D§iu(t) = v(t),t € (0,1)

and
Preu(t) = /0 (t — s)o(s)ds, Diut) = 1% u(t).
So . . ,
[IZ-u(t)] = /0 v(s)ds, Dju(t) = m/o (t—s)* " u(s)ds.
One has .
[ISIQU(t)}' o 0, Dyu(l) = Z BiDyu(&).

Furthermore, we know that t* *u € C(0,1], t*** D! u € C(0,1] and there exist the limits
limg o t*~*u(t) and limy_o t"*>~*D{ u(t). Hence v € D(L) and Lu = v. So v € ImL. Then

(2) follows.

To prove (3), we first claim that there exists & € {0,1,2,---,m — 2} such that

Z:;Q Biglet3k=u=3 L 1 1In fact, suppose it is true, we have

3a—pu—3 3a—pu—3 3a—pu—3
1 2 e gmf2
3a—u 3a—u 3a—u
1 3 a Em—2
3a+3(m—2)—pu—3 3a+3(m—2)—pu—3 3a+3(m—2)—pu—3
1 3 Ly
B 1
B2 1
ﬁm—Q 1
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It is equal to

P & e’ 1

1

1

1

Satd(m-2)—p=3  datdm-2-p=3 - Batdm-B-pu-3
By 0
Bs 0
Bna 0
—1 0

However, it is well known that the Vandermont Determinant is not equal to zero, so there is a

contradiction.

(3) It follows from (1) that dim KerL = 1. Let k satisfy

m—2
Z Bi€3a+3k—u—3 7§ 1.
i=1

Define the projectors ) : Y =Y and P: X — X by

fol(l — )" lu(s)ds — 3 i o' (€ - S)a_u_lv(s)dsta—i-k—l
Bla+k,a—pu) (1 — 2?512 Bigfa-k?)k;—u—g)

(Qu)(t) =

for v €Y and

(Pu)(t) = [Ig;(a;t(j)ﬂt:ota2 for ue X,

respectively. It is easy to prove that
Im P =Ker L, Ker Q =1Im L. (5)

Furthermore, for © € X, one sees

Ty e

The definition of P implies

P (U(t) o [Igggj(j)llto ta—2> =0.
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We get

u(t) — [Ig;?:;(_t)ﬂt:o t*? € KerP.

One can see that KerL [ KerP = {0}. Then

X =Ker L @ Ker P.

For v € Y, denote

Bla+k,a—p) <1 -y i§?a+3k_“_3>
Since

/1(1 — )V () dt = /1(1 — ) P ly(t)dt
Jo (1= s)27 1 Yy(s)ds — Y02 By [ (6 — )27+ Lu(s)ds

— X
B(a+k,a—u) (1 — Z;ZQ 515?%%7“73)

1 1
/(1—t)°‘“1t°‘+k1dt:/ (1 —t)*+y(t)dt
0 0

Jo (L= 9)27u(s)ds — 752 B, [ (& — 8)° 7+ o(s)ds

Jo (1= s)emLu(s)ds — S22 B [5(€ — s)o‘_“_lv(s)dsta%_l‘

-2 3a+3k—pu—3
1= m Bg "

)

Electronic Journal. http://www.math.spbu.ru/diffjournal 77



Differential Equations and Control Processes, N 3, 2012

implies

Z@/ (& — 1)V () Zﬁz/ i — 1) T Lo(t)dt

S = s)emrto(s)ds — I B [ (€ — s) " o(s)ds

B 2 5 3a-+3k—u—3 %
B(a+ ko - p) (1= X752 gl

m—2

&i
ﬁi / (61 o t)a—u—ltoz-‘rk—ldt
0

m—2 &
— . L a—p—1
> / (& — o u(t)dt
S =9 u(s)ds — ST B JE — s) T u(s)ds
B(a + k,a — p) (1 TR )
i=1 1 0 51
m—2 &
= i ;— )l d
;B/O (& — )P Ly(t)dt
_ fol(l_s)a_“ fu(s)ds — 3o 1 zfol —5)*” “_1U<S)ds><

1 _ ZZ —1 Zé—30&+3k Hn— 3
—2 1
Z g st hons _ / (1 — )V (1)dt,
i=1 0
we get

Jo (1= s)e Tu(s)ds — Som 2 B 516 — 5)* 7+ Lo(s)ds

v — tot=1 ¢ ImL.
B(Oé + k’,a . M) (1 - Z;m—l Z€3a+3k w— 3)
Together with
1 a—u— m— i a—u—
Jo (L= s)*#1u(s)ds — Zi:12 Bi Jg (& —s)> 1”(5)d3ta+k71 € ImQ
Ba+ ko — ) (1- X757 8,8
and ImL (N Im@Q = {0},we get
Y=ImL&®ImQ, Y/ImL =Im@Q. (7)

So dim KerZ = dim Y/ImL = 1. Hence L is a Fredholm operator of index zero. The proofs
are completed.

Suppose that
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(A) f(t,-,-) : R*> = R is continuous for each ¢ € (0,1) and e € L'(0,1), for each r > 0 there
exists ¢, € L'(0,1) such that

|f(t, 10 2, 7 2y) | < @, (t), te (0,1),]z] <rlyl <

Lemma 3 Suppose that (A) holds. Let Q C X be an open bounded subset with QN D(L) # 0.
Then N is L—compact on €.

Proof Let P: X — X and @ : Y — Y be defined in the proof of (3)of Lemma 2. For
v € ImL, let

(Kpv)(t) = ﬁ/o (t — s)* to(s)ds = I v(t) for v € ImL.

One sees Kpv € D(L) and

(g [ o)

[Ig;algﬂrv(tﬂ ‘t:O a2

= P(Igw(t)) - ['a—1)
_ [I§+U(tﬂ |t:0 =2 _
W = 0.

It follows that (K,v) € KerP. Then Kp: Im L — D(L) N KerP is well defined.

Furthermore, for v € ImL, we have

1

(2kn)) =L (55 [ - (s ) = D (I3 0(t) = o0).

On the other hand, for u € Ker PN D(L), we have

o w®ll=0 o

(Pu)(t) = NCE t*2=0,t € (0,1).

Suppose Dy, u = v. Then

ult) = Ifev®+ =505 Tla—1)

— Ig+7](t)
It follows from the definition of Kp that

(KpL)U(t) = Kng+u(t):KpU(t)
1

= m/0 (t—s5)"v(s)ds
= Ifo(t) = u(t).
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Then Kp is the inverse of L : D(L)(KerL — ImL. The isomorphism A : KerL — Y/ImL is
given by
Aat*™?) = at*™* 1 a € R.

Furthermore, one has

QNu(t) = Q (f(t,u(t), Dy, u(t)) + e(t))
ekt [ (1 — )L (f(t,ult), Dyult)) + e(t)) dt
B(a+k,a—p) (1 05" B )
LR g S (g — ) (F(t ult), Dlu(t)) + e(t)) d
B(a+ ko — p) (1- X2 gl )
K,(I ~ Q)Na(t) = K,(I - Q) (f(t,ult), D u(t)) + (1)
= Kp (f(t,u(t), D= ult)) + e(t))
— KpQ (f(t,ult), Dy7 u(t)) + e(t))
1

:W/o (t = )" (f(s, u(s), DS Muls)) + els)) ds

1| (=)t (f(tult), D ult)) + elt)) dt
F(a) B(Oz + k:,a . ,u) (1 _ er;lQ Bi§?a+3k_“_3>

o S B 6 = 0 (f(tu(), Dhu(t) +e() dt |

B(a+k,a—u) <1 — Y BT H_3>
t
/ (t — s) Lsoth=1gs,
0

Let © be an open bounded subset in Y. Firstly, we show that both QN (Q) and Kp(I —Q)N(Q)
are bounded in Y.

Secondly, we show that both t*~*Kp(I — Q)N(Q) and t*™*~*Dh Kp(I — Q)N(Q) are
equicontinuous on each closed interval [«, 8] C (0, 1].

Finally, we show that both t***Kp(I—Q)N(Q) and t**~*D}, Kp(I—Q)N () are equicon-
vergent at ¢ = 0.

9

Hence Kp(I — Q)N (Q) is compact. Then Kp(I — Q)N is completely continuous. So N is

L—compact on €. The proofs are completed.
Theorem 1 Suppose that (A) holds and

(B) there exist nonnegative functions a,b, c,r, and a constant 0 € [0,1) such that for all (z,y) €
R%* t € (0,1) either

[t 2, y)] < a(t)]a] + b(E)lyl + c®lyl” +r(t) (8)
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or else
| (t, 2, 9)| < a(t)z] +b(®)]y] + c(t)]x]” + r(t). (9)

(C) there emists a constant M > 0 such that for all w € D(L), if [*~*u(t)| > M for all
t €(0,1), then

[ 0= s ). D) + )
m—2 &i
A8 [ (6= 9 (s u(s). D) + el
(D) there exists a constant M* > 0, then either
c {/0 (1—s)er ! {f (t,ct“‘Z,c%tQ_“_Q) + e(t)] dt

for all |¢| > M* or else

c {/01(1 — s)orl [f (t, et 2, c%to‘_“_z) + e(t)] dt
_nfﬁi /ji (& — s) 1 [f (t, ct* 2, c%to‘_”_2> + e(t)} dt} <0

for all |c| > M*.

(B) B (Jy &%ds+ Jy 5kads) <1 with

0 s2—«

B:max{r(al_m7 (a_1)1“(ix—u—1)}'

Then for every e € L'0,1] BVP(1.2) has at least one solution.

Proof

To apply Lemma 1, we should define an open bounded subset €2 of X centered at zero
such that (1), (2) and (3) in Lemma 1 hold. To obtain €2, we do three steps. The proof of this

theorem is divided into four steps. Let

1 1
MNa—1) T(a—p—1)

A= max{ barra -1

Step 1 Let Q; = {u € D(L) \ KerL, Lu = ANu for some A € (0,1)}. We prove that §2; is
bounded.
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For u € Qy, we get Lu = ANwu and Nu € ImL. Then

/0 (1= )% 51 (f(s,u(s), DEu(s)) + e(s))ds

m—2 &
S8 [ 6= o). D) + )
i=1
From (C), there exists ¢ty € (0,1) such that
teu(ty)| < M.
Denote ANu(t) = v(t). By Lemma 2.5[4: page 74], we have

2—a !
[]0+ u(t)] =0 ;a1 m a—2
I'(a) [(a—1)
I27%u(t) |i=o
= [%p(t) + o =002
o+ v(t) + (o —1)

ut) = Igro(t) +

> Io-u(t)]
22—« _ 12—aTa O‘IQUt t=0
" %(t) = IS o(t) + Na—1)
Then
| |t 0| _ 2—a 22—«
F(a = |t5~u(to) — t§ "I v(to)|
1 to
< - _ a—1
< M+ o) /o (to — s)* v(s)ds
1
< -
LAl
One has
I2ru(t)]], o
Pu(t) _ [ OIt(a - llto 2
and
(1 u(t)]|
I _ Lot t=0 ja—pu—2
D" Pu(t) Tla—p—1)

It follows that

||Pul| = { sup |[t*7#Pu(t)|, sup t“+2a]D6‘+Pu(t)]}
te[0,1] t€[0,1]
< ’ I§+au |t 0‘ ‘ [Igjau(t)] ‘t:O}
- Ma—1) 7~ T(a—p-1)
1 —a
- max{m_1 o )
< max{ 1

ot T (M- 0+ ).
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On the other hand, we have by the definition of Kp that Kpv = I§,v. Then D¥Kpv =

I3 "v. Hence

|| K poll

max { sup [t* “Kpuv(t)|, sup "> | D*Kpv(t)|
te[0,1] tef0,1]

0
max { sup t—s)* w(s)ds|,
t€[0,1] [(a) Jo
| [
sup —— t—s) P u(s)ds
tel0,1] F(a - M) 0

< w7y ) 1

Again for u € Qy, we have u € D(L)\ KerL, then (I — P)u € D(L)(\KerP and LPu = 0.

So

Hence

[Jul]

I~ Pl = |KeL( ~ Pl
< max{r(la), F(al_u)}HLU—P)unl
= {7y g Il
< me {1l
< w{ iy )

IN

IN

[ Pull +[|(I = P)ull

max{r(al_ i _1M - 1)} (Mr<a —1)+ %llvlll)

1

ronc{ gy g I

1 1

< mec{ iy ) e

—|—max{

1 1
F(O‘_M)’ (o — DI — o — 1)} [[v]]1-
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If (2.6) holds, from [[t*~“u||s < [|u]| and |[t“T*~*Df, ul|e < [|ul, then

lul| < A+B/ (s, u(s), D uls)) + efs)|ds

IN

At 5] + s o)

S@(,LH—Q—a)

@D ()| r(s) + Je(s)]] ds

Yals) o ioa b ob(s)
A+B/0 o) sl u||m+B/0 ) s

+B/ SG(CLd |[th 2 Dy (% +B/ [r(s) + |e(s)|]ds

0

A+B(/0132()d +/ls,%%ds)llml
+B/01 Sg(i(%dsHuHenLB/l[ (5) + le(s)[|ds

It follows from (E) and € € [0,1) that there exists M; > 0 such that

IN

B2 Dl ol

VAN

[|ull] < M. (10)

If (2.7) holds, similarly to above discussion, we get that there exists M; > 0 such that
(2.8) holds. It follows that €2; is bounded.

Step 2 Let 2y = {x € KerL : Nz € ImL}. We prove that € is bounded.
For x € Qy, then z(t) = ct* 2, and

Fa—1)

Nz(t) = f (t, ct* 2, CF(a - 1t°‘2“> + e(t).

So

Yokt {f (t,ct”,c—rfofoi;l_) 1t0‘2“) —|—e(t)] dt

f -
mZ / ) {f (t,ct"‘Q,cFF(a—_l)t“‘Q‘“) + e(t)} dt.

(a—p—1
From (D), we get that |¢| < M*. This shows (25 is bounded.
Step 3 We prove that either
Qy={rxeKer L: ANz+ (1 =XNQNx=0, \€]0,1]}

or
—{reKer L: ~AAz+(1-NQNz=0, Ae[0,1]}

is bounded.
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If the first inequality in (D) holds for all |¢| > M*, let
Qy={reKer L: AANz+ (1 =XN)QNz =0, X €0,1]},

where A is the isomorphism given by A(ct® %) = ct***~1, We prove that (3 is bounded.

For z(t) = ct*? € Ker L, one sees that

e e W (R e et RO
B(a+k,a —p) (1 - 2?:12 5¢§?a+3k_u_3>
T G = 0 [ (bt oS + )]

B(a+k,a— p) (1 — Z:ZQ Bif§a+3k_“_3>

Then
INCE [ f (t, o2, c%ta*%“) + e(t)] dt
Bla+k,a—pu) (1 — 27:12 ig?a+3k7u—3>
S B fyt (& =ty [f (t, ct*?, C%ta*%“) + e(t)} dt
- B(a+k,a—pu) (1 — Z?:IQ iffa”kf“*g) .

IfA=1,thenc=0. If A €[0,1), and || > M*, we get

—Ac =

0> -\
¢ [H(1 = tyammt [ f (t, cto=?, c%ta—z—“) + e(t)} dt
B+ k,a— ) (1- X752 8,
eI & — e [ (bt e e ) ey ar
B(a+ ko — o) (1= X007 gl )

> 0,
a contradiction. Hence |c¢| < M*. Then 23 is bounded.
If the second inequality in (D) holds for all |¢| > M*, let
Qy={reKer L: Az —(1=-XNQNz=0, A e0,1]},
where A is the isomorphism given by A(ct®?) = ct®™*~1. We prove that 3 is bounded.

Step 4 We shall show that all conditions of Lemma 2.1 are satisfied.
Set Q be a open bounded subset of X centered at zero such that Q D U?_,Q;. By Lemma

2.2 and Lemma 2.3, L is a Fredholm operator of index zero and N is L—compact on £.
By the definition of €2, we have
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(a) Lz # ANz for z € (D(L) \ KerL) N 92 and A € (0,1);
(b) Nz ¢ ImL for x € KerL N oS
(c) deg(QN|Kepy, N KerL,0) # 0. In fact, let H(z,\) = A Az + (1 — \)QNw.

According the definition of 2, we know H(z,\) # 0 for x € 9Q N KerL, thus by
homotopy property of degree,

deg(QN|Kerr 2N KerL,0) = deg(H(-,0),Q2NKerL,0)
= deg(H(-,1),2NKerL,0)
= deg(A, Q2N KerL,0) # 0.

Thus by Lemma 1, Lz = N has at least one solution in D(L)N$2, which is a solution
of BVP(1.2). The proof is complete.

3 An example

Now, we present an example, which can not be covered by known results, to illustrate Theorem
2.1.

Example 1 Consider the boundary value problem for fractional differential equation

D (t) = t%ax(t) + 5 sin (tz D0+a:( ))

1
+3sin <t2 D0+x( )> + 1+ cos?t,
(11)

Proof

Corresponding to BVP(1.2), « = 2, = 1 and

_3 3
0<& <& <1, B >0, By >0such that ;& 2 + 526, ° =1

2—a

1
flt,z,y) = 57 C + ﬂsm(t? y) + 3sin(t%y)%, e(t) =1+ cos’t.

It is easy to see that (A) holds.

. 3
(B) choose a(t) = S5, b(t) = 55, c(t) = 32, r(t) = 0, 0 = %, then for all (z,y) € R?,
€ (0,1), then

f(t 2, y)| < a(t)]a] + b(#)lyl + c@)lyl” + (D). (12)
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(C) choose M = 122, it is easy to find that

12« 1 Tz — 49 1
t t) > —— —3+41= > —iftr e > M

/O (1= )3 (f(s,u(s), Dy u(s)) + es))ds

—B1 /051 (61— 8)
5, /0 “le- 9

8, / (1= 8):(f(s, u(s), DX, u(s)) + e(s))ds
&1

then

N

=

(f (s, u(s), Dy u(s)) + e(s))ds

IS

(f (s, u(s), Dy u(s)) + e(s))ds

v

5, / (1= s)E(f(s, uls), D, u(s)) + e(s))ds
1)
> 0.

It is easy to find that

21 4120 —2
— 4+34+2= < —Ziftr e < -M
o1 P Tt 24 o U0 !

flt,xy)+e(t) <

then

/0 (1= )4 (f(s,uls), Dy u(s)) + e(s))ds

B, /0 Y9
— B2 /052 (&2 — s)

8, / (1= 8)E(f(s,uls), DX u(s)) + e(s))ds

&1

IS

(f (s, u(s), Dy u(s)) + e(s))ds

e

(f (s, u(s), Dy, u(s)) + e(s))ds

IN

By / (1= s)E(f(s, uls), D, u(s)) + e(s))ds
&2
< 0.

Then u € D(L), if [t*~*u(t)| > M for all ¢t € (0, 1), it holds that

/0 (1= )3 (f(s, uls), D2 u(s)) + e(s))ds
&1

4 B / (& — s)}(F (5 u(s), DI u(s)) + e(s))ds

&2 )
+52/0 (& — )7 (f(s,u(s), DS u(s)) + e(s))ds.
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(D) since

f (t, et 2, c%t‘”“) +e(t)
1 I M(a—1) )ta_g_#>

= ﬂc—kﬂsm CF(oz—,u—l

1
3
)taz“) + 1+ cos®t

we get for ¢ > 122 that

N = c{/ol(l — )i [f <t,cta—2,c%ta—2—”) +e(t)] dt
- /0 e [f (t, 2, c%ww) i e@)] ot
—52/052 (& — )1 {f (t,cto‘_g,cr(z(i_il 1) et ] }

c{ﬂl /&1 (1—s)i [f (t,cta—{cr(z(f—;)l)t“ 2 ) +e(t)] dt
)

! 1fe 49 ! c 49
Z C{ﬁl/gl (1—3)4 [ﬂ—ﬂ}dt—Fﬁg/&(l—S) {ﬂ—ﬂ}dt}

It is easy to see that there exists M; > 0 such that N > 0 for all ¢ > M. Similarly we
can prove that there exists M5 > 0 such that N > 0 for all ¢ > M;. Hence there exists
M* > 0 such that N > 0 for all ¢ > M*.

v

N

We see that

B = max{ual_u)a(&_1)p(;_ﬂ—1)}:max{r(;/4)’ r(12/4)}'

max { e iTon } (/ s+ / sfg)ads>
1 1 2
B Em{m/@’ r<1/4>} <t

It follows from Theorem 2.1 that BVP(3.1) has at least one solution .

(E)
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