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1 Introduction

Fourth-order differential equations with or without p−Laplacian occur in beam theory [1,3].
The solvability of such equations with different boundary conditions has been studied in papers
[4-11,13-30,32-34]. The methods used in above mentioned papers are the fixed point theorems
in cones in Banach spaces [1,9,13,16,17,21,19,20,28,30,33], the continuation theorem of coinci-
dence degree [11,26,23,27], the upper and lower solutions methods with the monotone iterative
technique [4-6,8,15,32,34] and the Leray-Schauder fixed point theorem [7,13,25,28,33].

The properties of solutions of the fourth order ordinary or functional differential equations
are also studied by many authors, for example, Amster and Mariani [2] studied the oscillatory
properties of solutions of a fourth order differential equation. In paper [31], Tanigawa estab-
lished oscillation and non-oscillation theorems for a class of fourth order differential equations
with p−Laplacian.

1Supported by Natural Science Foundation of Hunan province, P.R.China(No:06JJ5008) and Natural Science Foun-
dation of Guangdong province(No:7004569)
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However, the results on the existence of periodic solutions of the fourth order functional
differential equations with p−Laplacian have not been found in known literature.

To fill this gap, in this paper, we use Mawhin′s continuation theorem of coincidence de-
gree (Theorem IV.13 of [12]) to establish sufficient conditions for the existence of at least
one T−periodic solution of the following fourth order functional differential equations with
p−Laplacian

[q(t)φ(x′′(t))]′′ = f(t, x(t), x(τ1(t)), · · · , x(τm(t))), t ∈ R, (1-1)

where T > 0 is a constant, τk ∈ C1(R) for all k = 1, · · · , m are invertible, the inverse function
of τ = τi(t) is denoted by t = µi(τ)(i = 1, 2, · · · , m), f : R × Rm+1 → R is a Caratheddory
function, i.e., f : t → f(t, x0, x1, x2, · · · , xm) is T−periodic and measurable on [0, T ], f :
(x0, x1, · · · , xm) → f(t, x0, x1, · · · , xm) is continuous and for each r > 0 there exists φr ∈
L1[0, T ] such that |f(t, x0, x1, x2, · · · , xm)| ≤ φr(t) holds for all t ∈ [0, T ] and |xi| ≤ r(i =
0, 1, 2, 3, · · · , m), q : R → (0,+∞) is T−periodic, φ(x) = |x|p−2x with p > 1, which is called a
p−Laplacian, and its inverse function is φ−1(x) = |x|q−2x with 1/q + 1/p = 1.

The remainder is divided into two sections. In Section 2, we present the main results. In
Section 3, we give some examples to illustrate the main theorems.

2 Main Results

Let PC0 be the set of all continuous T−periodic functions on R and X = PC0 × PC0, the
norm is defined by

||(x, y)|| = max

{

max
t∈[0,T ]

|x(t)|, max
t∈[0,T ]

|y(t)|

}

for (x, y) ∈ X . Then X is a real Banach space.

Let PL1 be the set of all T−periodic functions which are measurable on [0, T ] and Y =
PL1 × PL1, the norm is defined by

||(u, v)|| = max

{
∫ T

0

|u(t)|dt,

∫ T

0

|v(t)|dt

}

for (u, v) ∈ Y . Then Y is a real Banach space.

We also use the Sobolev spaces

PW 2,1 =

{

x : R → R
∣

∣

∣

x, x′ are absolutely continuous

and T−periodic on R with x′′ ∈ PL1

}

and

PW 2,1
q =

{

x : R → R
∣

∣

∣

qx, (qx)′ are absolutely continuous

and T−periodic on R with (qx)′′ ∈ PL1

}

.

Let D(L) = PW 2,1 × PW 2,1
q . Define the linear operator L : D(L) ∩X → Y by

L

(

x(t)

y(t)

)

=

(

x′′(t)

(q(t)y(t))′′

)

for all (x, y) ∈ D(L) ∩X. (2-2)

Electronic Journal. http://www.math.spbu.ru/diffjournal 12



Differential Equations and Control Processes, N 2, 2011

Define the nonlinear operator N : X → Y by

N

(

x(t)

y(t)

)

=

(

φ−1(y(t))

f(t, x(t), x(τ1(t)), · · · , x(τm(t)))

)

for all (x, y) ∈ X. (2-3)

Now, we will briefly recall some notation and an abstract existence result. Let X, Y be real
Banach spaces, L : D(L)

⋂

X → Y be a Fredholm map of index 0 and P : X → X , Q : Y → Y
be continuous projectors such that ImP = KerL, KerQ = ImL and X = KerL

⊕

KerP,
Y = ImL

⊕

ImQ. It follows that L
D(L)

⋂
KerP : D(L)L

⋂

KerP → ImL is invertible. We

denote the inverse of that map by Kp. If Ω is an open bounded subject of X such that
D(L)

⋂

Ω 6= ∅, the map N : X → Y will be called L−compact on Ω if QN(Ω) is bounded and
Kp(I −Q)N : Ω → X is compact.

Lemma 2.1.[12] Let X and Y be Banach spaces. Let L : D(L)
⋂

X → Y be a Fredholm
operator of index zero and Ω be an open bounded subset of X with Ω

⋂

D(L) 6= ∅. Suppose
that N : X → Y be L−compact on Ω and the following conditions are satisfied:

(i) Lx 6= λNx for every (x, λ) ∈ [(D(L) \KerL) ∩ ∂Ω]× (0, 1);

(ii) Nx /∈ ImL for every x ∈ KerL ∩ ∂Ω;

(iii) deg(∧QN
∣

∣

KerL , Ω ∩KerL, 0) 6= 0, where ∧ : KerL → Y/ImL is the isomorphism.

Then the equation Lx = Nx has at least one solution in D(L) ∩ Ω.

Let X = PC0×PC0 and Y = PL1×PL1 and L,N be defined by (2) and (3) respectively.
It is easy to show the following results. We omit their proofs since the proofs are simple and
standard.

(i) KerL = {(a, b/q(t)) : a, b ∈ R};

(ii) ImL = {(u, v) ∈ X :
∫ T

0
u(s)ds = 0,

∫ T

0
v(t)dt = 0};

(iii) L is a Fredholm operator of index zero;

(iv) there exist the projectors P : X → X and Q : X → X such that KerL = ImP and
KerQ = ImL. There exists an isomorphism ∧ : KerL → Y/ImL.

(v) Let Ω ⊂ X be an open bounded subset with Ω∩D(L) 6= ∅, then N is L−compact on
Ω;

(vi) (x, y) ∈ D(L) is a solution of the operator equation L(x, y) = N(x, y) implies that x
is a T−periodic solution of equation (1).

In fact, let F (t) = f(t, x(t), x(τ1(t)), · · · , x(τm(t))). We have, for a, b ∈ R, (x, y) ∈ X and
(u, v) ∈ Y , that
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P

(

x(t)

y(t)

)

=

(

x(0)

q(0)y(0)/q(t)

)

,

Q

(

u(t)

v(t)

)

=

(

1
T

∫ T

0
u(t)dt

1
T

∫ T

0
v(t)dt

)

,

Kp

(

u(t)

v(t)

)

=

(
∫ t

0
(t− s)u(s)ds− 1

T

∫ T

0
(T − s)u(s)ds

1
q(t)

(

∫ t

0
(t− s)v(s)ds− 1

T

∫ T

0
(T − s)v(s)ds

)

)

,

Kp(I −Q)N

(

x(t)

y(t)

)

= Kp(I −Q)

(

φ−1(y(t))

f(t, x(t), x(τ1(t)), · · · , x(τm(t)))

)

=

(
∫ t

0
(t− s)φ−1(y(s))ds− 1

T

∫ T

0
(T − s)φ−1(y(s))ds

1
q(t)

(

∫ t

0
(t− s)F (s)ds− 1

T

∫ T

0
(T − s)F (s)ds

)

)

−

(

t2

2T

∫ T

0
φ−1(y(s))ds− T

2

∫ T

0
φ−1(y(s))ds

1
q(t)

(

t2

2T

∫ T

0
F (s)ds− T

2

∫ T

0
F (s)ds

)

)

,

∧

(

a

b/q(t)

)

=

(

b

a

)

.

Let us list some assumptions:

(B1) there exist the numbers β > 0, θ > 1, the nonnegative functions pi ∈ PC0(i =

0, 1, 2, · · · , m), the function r : R → R with
∫ T

0
|r(t)|

θ+1

θ dt < ∞, and the Caratheddory func-
tions g(t, x0, · · · , xm), h(t, x0, · · · , xm) such that

f(t, x0, · · · , xm) = g(t, x0, · · · , xm) + h(t, x0, · · · , xm),

g(t, x0, x1, · · · , xm)x0 ≤ −β|x0|
θ+1,

and

|h(t, x0, · · · , xm)| ≤
m
∑

i=0

pi(t)|xi|
θ + r(t),

for all t ∈ R, (x0, x1, · · · , xm) ∈ Rm+1.

(B2) there exists a positive constant µ such that q(t) > µ for all t ∈ [0, T ], and there exist
nonnegative constants M0

i such that |τi(T )− τi(0)| ≤ M0
i T for i = 1, · · · , m.

Lemma 2.2. Let δi = maxt∈[0,T ]
1

|τ ′i(t)|
, (i = 1, · · · , m), and Ω1 = {(x, y) : L(x, y) =

λN(x, y), ((x, y), λ) ∈ [(D(L) \KerL)]× (0, 1)}. Suppose that (B1) and (B2) hold. Then Ω1 is
bounded if

sup
t∈[0,T ]

|p0(t)|+
m
∑

i=1

sup
t∈[0,T ]

|pi(t)|M
0
i δ

θ
θ+1

i < β. (2-4)

Proof. For (x, y) ∈ Ω1, we have L(x, y) = λN(x, y), λ ∈ (0, 1), i.e.
{

x′′(t) = λφ−1(y(t)),

(q(t)y(t))′′ = λf(t, x(t), x(τ1(t)), · · · , x(τm(t))).
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It follows that
[q(t)φ(x′′(t))]′′ = φ(λ)λf(t, x(t), x(τ1(t)), · · · , x(τm(t))). (2-5)

Thus
[q(t)φ(x′′(t))]′′x(t) = φ(λ)λf(t, x(t), x(τ1(t)), · · · , x(τm(t)))x(t).

Integrating it from 0 to T , we get
∫ T

0

q(t)φ(x′′(t))x′′(t)dt = φ(λ)λ

∫ T

0

f(t, x(t), x(τ1(t)), · · · , x(τm(t)))x(t)dt, (2-6)

together with (B1) and
∫ T

0
q(t)φ(x′′(t))x′′(t)dt ≥ 0, we get that

β

∫ T

0

|x(t)|θ+1dt

≤ −

∫ T

0

g(t, x(t), x(τ1(t)), · · · , x(τm(t)))x(t)dt

≤

∫ T

0

h(t, x(t), x(τ1(t)), · · · , x(τm(t)))x(t)dt

≤

∫ T

0

|h(t, x(t), x(τ1(t)), · · · , x(τm(t)))||x(t)|dt

≤

∫ T

0

p0(t)|x(t)|
θ+1dt+

m
∑

i=1

∫ T

0

pi(t)|x(τi(t))|
θ|x(t)|dt+

∫ T

0

r(t)|x(t)|dt

≤ max
t∈[0,T ]

|p0(t)|

∫ T

0

|x(t)|θ+1dt+

[
∫ T

0

|r(t)|
θ+1

θ dt

]

θ
θ+1
[
∫ T

0

|x(t)|θ+1dt

]

1

θ+1

+

m
∑

i=1

max
t∈[0,T ]

|pi(t)|

[
∫ T

0

|x(τi(t))|
1+θdt

]

θ
θ+1
[
∫ T

0

|x(t)|θ+1dt

]

1

θ+1

≤ max
t∈[0,T ]

|p0(t)|

∫ T

0

|x(t)|θ+1dt+

[
∫ T

0

|r(t)|
θ+1

θ dt

]

θ
θ+1
[
∫ T

0

|x(t)|θ+1dt

]

1

θ+1

+

m
∑

i=1

max
t∈[0,T ]

|pi(t)|

[

∫ τi(T )

τi(0)

|x(s)|1+θdµi(s)

]
θ

θ+1 [∫ T

0

|x(t)|θ+1dt

]

1

θ+1

≤ max
t∈[0,T ]

|p0(t)|

∫ T

0

|x(t)|θ+1dt+

[
∫ T

0

|r(t)|
θ+1

θ dt

]

θ
θ+1
[
∫ T

0

|x(t)|θ+1dt

]

1

θ+1

+
m
∑

i=1

max
t∈[0,T ]

|pi(t)|

∣

∣

∣

∣

∣

∫ τi(T )

τi(0)

|x(s)|1+θ ds

|τ ′i(t)|

∣

∣

∣

∣

∣

θ
θ+1 [∫ T

0

|x(t)|θ+1dt

]

1

θ+1

≤ max
t∈[0,T ]

|p0(t)|

∫ T

0

|x(t)|θ+1dt+

[
∫ T

0

|r(t)|
θ+1

θ dt

]

θ
θ+1
[
∫ T

0

|x(t)|θ+1dt

]

1

θ+1

+

m
∑

i=1

max
t∈[0,T ]

|pi(t)|δ
θ

θ+1

i M0
i

∫ T

0

|x(t)|θ+1dt.

Since

β > max
t∈[0,T ]

|p0(t)|+
m
∑

i=1

δ
θ

θ+1

i M0
i max

t∈[0,T ]
|pi(t)|, (2-7)
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there is a constant M1 > 0 such that
∫ T

0
|x(t)|θ+1dt ≤ M1. So there is ξ ∈ [0, T ] such that

|x(ξ)| ≤ (M1/T )
1

θ+1 . Further more we have
∫ T

0

q(t)|x′′(t)|pdt =

∫ T

0

q(t)φ(x′′(t))x′′(t)dt

= φ(λ)λ

∫ T

0

f(t, x(t), x(τ1(t)), · · · , x(τm(t)))x(t)dt

= φ(λ)λ

∫ T

0

g(t, x(t), x(τ1(t)), · · · , x(τm(t)))x(t)dt

+φ(λ)λ

∫ T

0

h(t, x(t), x(τ1(t)), · · · , x(τm(t)))x(t)dt

≤ φ(λ)λ

∫ T

0

h(t, x(t), x(τ1(t)), · · · , x(τm(t)))x(t)dt

≤

∫ T

0

|h(t, x(t), x(τ1(t)), · · · , x(τm(t)))||x(t)|dt

≤ max
t∈[0,T ]

|p0(t)|

∫ T

0

|x(t)|θ+1dt+

[
∫ T

0

|r(t)|
θ+1

θ dt

]

θ
θ+1
[
∫ T

0

|x(t)|θ+1dt

]

1

θ+1

+
m
∑

i=1

max
t∈[0,T ]

|pi(t)|δ
θ

θ+1

i M0
i

∫ T

0

|x(t)|θ+1dt

≤ ||p0||M1 +

[
∫ T

0

|r(t)|
θ+1

θ dt

]

θ
θ+1

M
1

θ+1

1 +

m
∑

i=1

||pi||δ
θ

θ+1

i M0
i M1.

Since there exists η ∈ [0, T ] such that x′(η) = 0, it is easy to see from (B2) that

|x(t)| =

∣

∣

∣

∣

x(ξ) +

∫ t

ξ

x′(s)ds

∣

∣

∣

∣

≤ (M1/T )
1

θ+1 +

∫ T

0

|x′′(t)|dt

≤ (M1/T )
1

θ+1 +
T

p−1

p

µ
1

p

(

µ

∫ T

0

|x′′(t)|pdt

)

1

p

≤ (M1/T )
1

θ+1 +
T

p−1

p

µ
1

p

(
∫ T

0

q(t)|x′′(t)|pdt

)

1

p

≤ (M1/T )
1

θ+1 +
T

p−1

p

µ
1

p

(

||p0||M1 + T
θ

θ+1 ||r||M
1

θ+1

1 +

m
∑

i=1

||pi||δ
θ

θ+1

i M0
i M1

)
1

p

Hence there is a constant M2 > 0 such that ||x|| ≤ M2.

It is easy to show that there exist numbers ξ, η ∈ [0, T ] such that [qy]′(ξ) = 0 and [qy](η) =
0. Hence

|[q(t)y(t)]′| =

∣

∣

∣

∣

∫ t

ξ

[q(t)y(t)]′′dt

∣

∣

∣

∣

≤

∫ T

0

|[q(t)y(t)]′′|dt

≤

∫ T

0

|f(t, x(t), x(τ1(t)), · · · , x(τm(t)))|dt

≤ T max
t∈[0,T ],|xi|≤M2,i=0,··· ,m

|f(t, x0, · · · , xm)|.
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So

|q(t)y(t)| ≤

∫ T

0

|(q(t)y(t))′|dt ≤ T 2 max
t∈[0,T ],|xi|≤M2,i=0,··· ,m

|f(t, x0, · · · , xm)|, t ∈ [0, T ].

Then

|y(t)| ≤
T 2

µ
max

t∈[0,T ],|xi|≤M2,i=0,··· ,m
|f(t, x0, · · · , xm)|, t ∈ [0, T ].

This implies that

||y|| ≤
T 2

µ
max

t∈[0,T ],|xi|≤M2,i=0,··· ,m
|f(t, x0, · · · , xm)|, t ∈ [0, T ].

It follows that, for (x, y) ∈ Ω1, one has that there is H > 0 such that ||(x, y)|| ≤ H . Hence Ω1

is bounded.

Suppose

(B3) There exists a constant M > 0 such that

a

∫ T

0

f(t, a, · · · , a)dt > 0 for all |a| > M.

Lemma 2.3. Suppose that (B3) holds. Then Ω2 = {(x, y) ∈ KerL : N(x, y) ∈ ImL} is
bounded.

Proof. For (a, b/q(t)) ∈ KerL, we have N(a, b) = (φ−1(b/q(t)), f(t, a, · · · , a)). N(a, b) ∈
ImL implies that

∫ T

0

φ−1(b/q(t))dt = 0,

∫ T

0

f(t, a, · · · , a)dt = 0.

It follows from condition (B3) that |a| ≤ M and b = 0. Thus Ω2 is bounded.

Lemma 2.4. Suppose that (B3) holds. Then Ω3 = {(x, y) ∈ KerL : λ ∧ (x, y) + (1 −
λ)QN(x, y) = 0, λ ∈ [0, 1]} is bounded, where ∧ : KerL → Y/ImL defined by ∧(a, b/q(t)) =
(b, a).

Proof. For (a, b/q(t)) ∈ Ω3, we have

−(1− λ)

∫ T

0

φ−1(b/q(t))dt = λbT, −(1− λ)

∫ T

0

f(t, a, · · · , a)dt = λaT,

where λ ∈ [0, 1].

If λ = 1, then a = b = 0. If λ 6= 1, and |a| > M , it follows from (B3) that

0 ≥ −(1− λ)a

∫ T

0

f(t, a, · · · , a)dt = λa2T > 0,

a contradiction. So |a| ≤ M . Similarly, since

0 > −(1− λ)

∫ T

0

bφ−1(b/q(t))dt = λb2T ≥ 0 for λ ∈ [0, 1), b 6= 0,

Electronic Journal. http://www.math.spbu.ru/diffjournal 17



Differential Equations and Control Processes, N 2, 2011

we get b = 0. Hence Ω3 is bounded.

Theorem L. Suppose that (B1), (B2) and (B3) hold. Then equation (1) has at least one
T−periodic solution if (4) holds.

Proof. Set Ω be a open bounded subset of X centered at zero such that Ω ⊃ ∪3
i=1Ωi, where

Ω1 is defined in Lemma 2.2, Ω2 in Lemma 2.3 and Ω3 in Lemma 2.4. By the definition of Ω,
we have Ω ⊃ Ω1 and Ω ⊃ Ω2, thus, from Lemma 2.2 and Lemma 2.3, that L(x, y) 6= λN(x, y)
for (x, y) ∈ D(L) \KerL) ∩ ∂Ω and λ ∈ (0, 1); N(x, y) /∈ ImL for (x, y) ∈ KerL ∩ ∂Ω.

We know that L is a Fredholm operator of index zero and N is L−compact on Ω. Since
(x, y) is a solution of L(x, y) = N(x, y) implies that x is a solution of equation (1). It suffices to
get a solution (x, y) of L(x, y) = N(x, y). To apply Lemma 2.1, we prove that (iii) of Lemma
2.1 (Theorem IV.13 of [12]) hold.

In fact, let H((x, y), λ) = ±λ ∧ (x, y) + (1 − λ)QN(x, y). According the definition of Ω,
we know Ω ⊃ Ω3, thus H((x, y), λ) 6= 0 for (x, y) ∈ ∂Ω ∩ KerL, thus, from Lemma 2.3, by
homotopy property of degree,

deg(QN |KerL,Ω ∩KerL, 0) = deg(H(·, 0),Ω ∩KerL, 0)

= deg(H(·, 1),Ω∩KerL, 0) = deg(±∧,Ω ∩KerL, 0) 6= 0 since 0 ∈ Ω.

Thus by Lemma 2.1 (Theorem IV.13 of [12]), L(x, y) = N(x, y) has at least one solution in
D(L) ∩ Ω, then x is a T−solution of equation (1). The proof is completed.

3 Examples

In this section, we present examples to illustrate the main result in section 2.

Example 3.1. Consider the equation

x′′′′(t) = −
[x(t)]

3

5

1 + 2[sin x(t)]8
+

m
∑

i=1

pi(t)[x(t− τi)]
3

5 + r(t), (3-8)

where T = 2π, pi, r are all non-negative continuous 2π−periodic functions, τi > 0(i = 1, · · · , m)
are constants.

Corresponding to the assumptions of Theorem L, one sees

f(t, x0, x1, · · · , xm) = −
x

3

5

0

1 + 2(sin x0)8
+

m
∑

i=1

pi(t)x
3

5

i + r(t),

we set

g(t, x0, x1, · · · , xm) = −
x

3

5

0

1 + 2(sin x0)8
,

and

h(t, x0, · · · , xm) =
m
∑

i=1

pi(t)x
3

5

i + r(t)

and β = 1/3, θ = 3/5. It is easy to see that (B1) holds.
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Since

c

∫ 2π

0

f(t, c, · · · , c)dt =

∫ 2π

0

(

−
c

8

5

1 + 2[sin c]8
+

m
∑

i=1

pi(t)c
8

5 + cr(t)

)

dt

= −
2πc

8

5

1 + 2[sin c]8
+

m
∑

i=1

∫ 2π

0

pi(t)dtc
8

5 + c

∫ T

0

r(t)dt

≥

(

m
∑

i=1

∫ 2π

0

pi(t)dt− 2π

)

c
8

5 + c

∫ 2π

0

r(t)dt

implies that there is M > 0 such that c
∫ 2π

0
f(t, c, · · · , c)dt > 0 for all |c| > M if

∑m

i=1

∫ 2π

0
pi(t)dt− 2π. So (B3)holds if

∑m

i=1

∫ 2π

0
pi(t)dt− 2π.

It is easy to see that µ = 1, δi = 1,M0
i = 1, it follows that (B2) holds.

It follows from Theorem L that (8) has at least one 2π−periodic solution if

m
∑

i=1

∫ 2π

0

pi(t)dt > 2π,

m
∑

i=1

max
t∈[0,2π]

pi(t) <
1

3
.

Example 3.2. Consider the equation

[((sin t)2 + 2)φ(x′′(t))]′′ = −
[x(t)]5

1 + 2[sin x(t)]8
+

m
∑

i=1

pi(t)[x(t− τi)]
5 + r(t), (3-9)

where T = 2π, φ(x) = |x|4x, q(t) = (sin t)2+2,pi, r are all non-negative with
∑m

i=1

∫ 2π

0
pi(t)dt >

2π, τi(i = 1, 2, · · · , m) are constants.

Corresponding to the assumptions of Theorem L, one sees

f(t, x0, x1, · · · , xm) = −
x5
0

1 + 2(sin x0)8
+

m
∑

i=1

pi(t)x
5
i + r(t),

we set

g(t, x0, x1, · · · , xm) = −
x5
0

1 + 2(sin x0)8
,

and

h(t, x0, · · · , xm) =
m
∑

i=1

pi(t)x
5
i + r(t)

and β = 1/3, θ = 5. It is easy to see that (B1) holds.

It is easy to see µ = 2, δi = 1,M0
i = 1, it follows that (B2) holds.

Since

c

∫ 2π

0

f(t, c, · · · , c)dt =

∫ 2π

0

(

−
c6

1 + 2[sin c]8
+

m
∑

i=1

pi(t)c
6 + cr(t)

)

dt

= −
2πc6

1 + 2[sin c]8
+

m
∑

i=1

∫ 2π

0

pi(t)dtc
6 + c

∫ T

0

r(t)dt

≥

(

m
∑

i=1

∫ 2π

0

pi(t)dt− 2π

)

c6 + c

∫ 2π

0

r(t)dt
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implies that there is M > 0 such that c
∫ 2π

0
f(t, c, · · · , c)dt > 0 for all |c| > M if

∑m

i=1

∫ 2π

0
pi(t)dt− 2π > 0. So (B3) holds if

∑m

i=1

∫ 2π

0
pi(t)dt− 2π > 0.

It follows from Theorem L that equation (9) has at least one solution if

m
∑

i=1

∫ 2π

0

pi(t)dt > 2π,
1

3
>

m
∑

i=0

max
t∈[0,T ]

pi(t).
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