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Abstract 
 

In this paper we investigate stability and boundedness of solutions of some nonlinear differential 
equations of third order with delay. By constructing a Lyapunov functional, sufficient conditions for 
the stability and boundedness of solutions for equations considered are obtained.  
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1. Introduction 

 
The results existing in the literature on the stability and boundedness of solutions of nonlinear 

differential equations of third order with bounded delay have been developed over the last several 
decades. After a literature survey about nonlinear equations of third order with bounded delay, one can 
conclude that there are not so many results on the stability and boundedness of solutions. Up to this 
moment, the investigations concerning stability and boundedness of solutions of nonlinear equations of 
third order with bounded delay have not been fully developed. Certainly, these results should be 
obtained to be able to benefit from the applications of the theory of stability and boundedness of 
solutions. At the same time, we should recognize that some significant theoretical results concerning 
the stability and boundedness of solutions of third order nonlinear differential equations with delay 
have been achieved, see  for example the papers of  Sadek [9], Tejumola and Tchegnani [10], Tunç 
([11], [12]), Zhu [14] and the references citied in these papers. It should be noted that, in 1969, 
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Palusinski et al. [8] applied an energy metric algorithm for the generation of a Lyapunov function for 
third order ordinary nonlinear differential equation of the form: 

0)( 321 =+′′+′′+′′′ xaxxfxax . 

They found some conditions for the stability of zero solution of this equation as follows: 

01 >a , 0)( 32 >>′ axf . 

In this paper we are concerned with the third order ordinary nonlinear delay differential equations of 
the type 
 

        ))()),(()),((),(),(,()())((()()( 321 txtrtxtrtxtxtxtptxatrtxftxatx ′′−′−′=+−′+′′+′′′      (1) 

or its equivalent system  
 

)(tx′ = )(ty , )(ty′ = )(tz , 

)(tz′ = )())(()( 321 txatyftza −−− + ∫
−

′
t

trt

dsszsyf
)(

2 )())((  

   + ))()),(()),((),(),(,( tztrtytrtxtytxtp −− ,                                        (2) 

where r  is a bounded delay, γ≤≤ )(0 tr , β≤′ )(tr , 10 << β , β  and  γ  are some positive constants, 
γ  which will be determined later; 1a  and 3a  are some positive constants; the functions 2f   and p  
depend only on the arguments displayed explicitly and the primes in equation (1) denote differentiation 
with respect to t. It is principally assumed that 0)0(2 =f  and the functions 2f   and p are continuous 
for all values their respective arguments on ℜ  and 5ℜ×ℜ+ , ( )∞=ℜ+ ,0 , respectively. This fact 
guarantees the existence of the solution of delay differential equation (1).  Besides, it is supposed that 

the derivative 
dy
df

yf 2
2 )( ≡′  exists and is continuous. In addition, it is also assumed that the functions 

)))(((2 trtyf −  and ))()),(()),((),(),(,( tztrtytrtxtytxtp −−  satisfy a Lipschitz condition in 
))((  , ))(( ),(  ),( trtytrtxtytx −−  and )(tz ; throughout the paper )(  and  )(   ),( tztytx  are, 

respectively, abbreviated as x , y  and z . Then the solution is unique (See [2, pp.14].)   
The motivation for the present work has been inspired basically by the paper of Palusinski et al. [8] 

and the papers mentioned above. Our aim here is to discuss the result verified by Palusinski et al. [8] 
on the stability of the solutions to the equation (1) for the stability and  boundedness of solutions of 
this equation in the case 0=p  and 0≠p , respectively.    

 
 

2. Preliminaries 
 
In order to reach our main result, we give some important basic information for the general non-

autonomous delay differential system (see also Burton [1], Èl’sgol’ts [2], Èl’sgol’ts and Norkin [3], 
Hale [4], Kolmanovskii and Myshkis [5], Kolmanovskii and  Nosov [6], Krasovskii  [7] and 
 Yoshizawa [13]. 

Now, we consider the general non-autonomous delay differential system 
 

),( txtfx =& , )()( θθ += txxt , 0≤≤− θr , 0≥t ,                  (3) 
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where [ ) n
HCf ℜ→×∞ ,0:  is a continuous mapping, 0)0,( =tf , and we suppose that f  takes closed 

bounded sets  into bounded sets of nℜ . Here ( ) .  ,C  is the Banach space of continuous function 

[ ] nr ℜ→− 0 ,:φ   with supremum norm, 0>r , HC  is the open H -ball in C ; 
[ ]( ){ }HrCC n

H <ℜ−∈= φφ :  ,0,: .  Standard existence theory, see Burton [1, pp.312], shows that if 

HC∈φ  and 0≥t , then there is at least one continuous solution ),,( 0 φttx  such that on [ )α+00  , tt  
satisfying equation (3) for 0tt > ,   )(),,(

00
stsx tt φφ =  and α  is a positive constant. If there is a closed 

subset HCB ⊂  such that the solution remains in B , then ∞=α . Further, the symbol  .  will denote 

the norm in nℜ  with x = ini x≤≤1max . 
 
Definition 1: (See [1, pp.223].) A continuous function [ ) [ )∞→∞  ,0 ,0:W  with 0)0( =W , 

0)( >sW  if 0>s , and W  strictly increasing is a wedge. (We denote wedges by W  or iW , where i  an 
integer.) 

 
Definition 2:  (See [1,  pp. 260].)  Let ),( φtV  be a continuous functional defined for 0≥t , 

HC∈φ . The derivative of V  along solutions of (3) will be denoted by )3(V&  and is defined by the 
following relation  

 

h
txtVtxhtV

tV tht

h

)),(,()),(,(
suplim),( 00

0
)3(

φφ
φ

−+
= +

→

& , 

where ),( 0 φtx  is the solution of (3) with φφ =),( 00
txt . 

 
Definition 3: (See [13, pp.184].) A function ),( 0 φtx is said to be a solution of (3) with the initial 

condition HC∈φ  at 0tt = , 00 ≥t , if there is a constant 0>A  such that ),( 0 φtx  is a function from 
[ ]Atht +− 00  ,  into nℜ  with the properties: 

(i) Ht Ctx ∈),( 0 φ  for Attt +<≤ 00 , 
(ii) φφ =),( 00

txt , 
(iii) ),( 0 φtx  satisfies (3) for Attt +<≤ 00 . 
 
Theorem 1: (See [13, pp.184].) If ),( φtf  in (3) is continuous in t , φ , for every 

1HC∈φ , HH <1 , 
and  0t , ct <≤ 00 , where c  is a positive constant, then there exist a solution of (3) with  initial value 
φ  at 0tt = , and this solution has a continuous derivative for 0tt > . 

 
For the general autonomous delay differential system )( txfx =& , which is a special case of (3), the 

following lemma is given.  
 
Proposition: (See [7].)  Suppose 0)0( =f . Let V  be a continuous functional defined on  CCH =  

with 0)0( =V , and let )(su  be a function, non-negative and continuous for ∞<≤ s0 , ∞→)(su  as 

∞→u  such that for all C∈φ  
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(i)   ),())0(( φφ Vu ≤  0)( ≥φV , 

(ii) 0)()3( <φV&  for   0≠φ . 
Then all solutions of )( txfx =&  approach zero as ∞→t  and the origin is globally asymptotically 
stable. 

Note that CCH =  when ∞=H ; and that the set R  of φ  in C  for which 0)()3( =φV&  has a largest 

invariant set { }0=M  by the condition 0)()3( <φV&  for   0≠φ . 
 

 

3. Main results 

 
First for the case 0))()),(()),((),(),(,( =−− tztrtytrtxtytxtp  the following result is established. 
 
Theorem 2: In addition to the basic assumptions imposed on the functions 2f  and p  that 

appeared in equation (1) ,  we assume that there are positive constants 1a , 2a , 3a , 0ε , L  and μ  such 
that the following conditions are satisfied  

0321 >− aaa , 0)0(2 =f , 02
2 )(

ε≥− a
y

yf , )0( ≠y , and Lyf ≤′ )(2   for all y . 

Then for sufficiently small γ  the zero solution of (1) is globally asymptotically stable provided that  

⎭
⎬
⎫

⎩
⎨
⎧

+
−

<
μ

ε
γ

2
)(2

,
2

min
2

3210

La
aaa

L
. 

Proof: The proof of this theorem depends on a scalar differentiable Lyapunov functional. V = 
),,( ttt zyxV .  The idea of Lyapunov’s method is to impose some conditions on the functional  V  and 

its time derivative ),,( ttt zyxV
dt
d  which both imply the stability of the zero solution of equation (1). 

We introduce the Lyapunov’s functional V = ),,( ttt zyxV : 
 

),,( ttt zyxV = 22
32

1 xa + xyaa 32 + 2
22

1 za + yza3 + ∫
y

dfa
0

22 )( ξξ  

 + 2
312

1 yaa + ∫ ∫
− +

0

)(

2 )( 
tr

t

st

dsdz θθμ ,                                                 (4) 

where 1a , 2a , 3a  and μ  are some positive constants and the constant μ  which will be determined 
later in the proof. Now, the Lyapunov functional  V = ),,( ttt zyxV  defined in (4) can be rearranged in 
the form: 
 

),,( ttt zyxV =
2

3

22
32

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+ y

a
axa +

2

2

3
22

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+ y

a
a

za  
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+ ξξ
ξ
ξ

d
f

a
a
a

aaa
y

∫ ⎥
⎦

⎤
⎢
⎣

⎡
+−−

0

2
2

2

2
32

231
)( + ∫ ∫

− +

0

)(

2 )( 
tr

t

st

dsdz θθμ .          (5)    

In view of the assumption 02
2 )(

ε+≥ a
y

yf
, it is clear  that  

ξξ
ξ
ξ

d
f

a
a
a

aaa
y

∫ ⎥
⎦

⎤
⎢
⎣

⎡
+−−

0

2
2

2

2
32

231
)(

≥ ( ) ξξε daa
a
a

aaa
y

∫ ⎥
⎦

⎤
⎢
⎣

⎡
++−−

0
022

2

2
32

231  

= ξξε da
a
a

aa
y

∫ ⎥
⎦

⎤
⎢
⎣

⎡
+−

0
02

2

2
3

31  

= 0
2

2

2

0
2
2

2
3321 >⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +−
y

a
aaaaa ε

. 

Hence, it is evident, from the terms contained in (5), that there exist sufficiently small positive 
constants iD , )3 ,2 ,1( =i , such that  

V ≥ 2
1xD + 2

2 yD + 2
3 zD + ∫ ∫

− +

0

)(

2 )( 
tr

t

st

dsdz θθμ  

≥ ( )222
4 zyxD ++  ,                                                                             (6) 

since the integral ∫ ∫
− +

0

)(

2 )( 
tr

t

st

dsdz θθμ  is non-negative, where { }3214 ,,min DDDD = .  

Now, calculating the time derivative of the functional ),,( ttt zyxV  with respect to t  along a 
solution ))(),(),(( tztytx  of the system (2), we have  

 

  ),,( ttt zyxV
dt
d = ( ) 2

321 zaaa −− 2
2

2
3

)( ya
y

yfa ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−  

+ ∫
−

′
t

trt

dsszsyfza
)(

22 )())(( + ∫
−

′
t

trt

dsszsyfya
)(

23 )())((  

+ 2)( ztrμ - ∫
−

′−
t

trt

dssztr
)(

2 )())(1(μ  

= ( ) 2
321 )( ztraaa μ−−− 2

2
2

3
)( ya

y
yfa ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−  

+ ∫
−

′
t

trt

dsszsyfza
)(

22 )())(( + ∫
−

′
t

trt

dsszsyfya
)(

23 )())((  

- ∫
−

′−
t

trt

dssztr
)(

2 )())(1(μ .                                                            (7) 
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By noting the assumption Lyf ≤′ )(2  and the inequality 222 baab +≤ , we obtain the following 
relations: 

∫
−

′
t

trt

dsszsyfza
)(

22 )())(( ≤
2
2 La )()( 2 tztr +

2
2 La

∫
−

t

trt

dssz
)(

2 )(  

and  

∫
−

′
t

trt

dsszsyfya
)(

23 )())(( ≤
2
3La

)()( 2 tytr +
2
3La

∫
−

t

trt

dssz
)(

2 )( . 

Hence, using the assumptions 02
2 )(

ε≥− a
y

yf
, γ≤≤ )(0 tr , β≤′ )(tr , 10 << β ,  and the above 

discussion, we get from (7) that  
 

),,( ttt zyxV
dt
d

≤ 2
2

2
3 )(

2
)(

ytrLa
y

yf
a ⎥

⎦

⎤
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−  

                              ( ) 22
321 )(

2
2 ztrLaaaa ⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +

−−−
μ  

+ ( ) ∫
−

+
t

trt

dsszLaa
)(

2
32 )(  

2
- ∫

−

′−
t

trt

dssztr
)(

2 )())(1(μ  

≤ 2
03 2

yLa ⎥⎦
⎤

⎢⎣
⎡ −− γε  ( ) 22

321 2
2

z
La

aaa ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +

−−− γ
μ  

 + ∫
−

⎥⎦
⎤

⎢⎣
⎡ −−+ t

trt

dssz
Laa

)(

232 )(  
2

)1()( βμ
.                                          (8)  

If we choose  
β

μ
−
+

=
1

)( 32 Laa
, then we have from (8) that  

),,( ttt zyxV
dt
d

≤ 2
03 2

yLa ⎥⎦
⎤

⎢⎣
⎡ −− γε ( ) 22

321 2
2

z
La

aaa ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +

−−− γ
μ .           (9) 

Therefore, in view of (9), one can conclude for some positive constants α  and ρ  that 

),,( ttt zyxV
dt
d

≤ 2yα− 2zρ−                                                                         (10)                             

provided 

⎭
⎬
⎫

⎩
⎨
⎧

+
−

<
μ

ε
γ

2
)(2

,
2

min
2

3210

La
aaa

L
. 

Finally, it is followed that 0),,( ≡ttt zyxV
dt
d  if and only if ty = tz =0, 0)( <φV

dt
d  for 0≠φ  and 

0))0(()( ≥≥ φφ uV . Thus, in view (6), (10) and the last discussion, it is seen that all the conditions of 
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the above Proposition are satisfied. This shows that the trivial solution of equation (1) is globally 
asymptotically stable. Hence, the proof of Theorem 2 is complete. 
 

Example 1:  Consider the third order nonlinear delay differential equation  

0)(2))((sin))((4)(3)( =+−′+−′+′′+′′′ txtrtxtrtxtxtx                                (11) 

Equation (11) is equivalent to the system  

)(tx′ = )(ty , )(ty′ = )(tz , 

)(tz′ = )(3 tz− )(sin)(4 tyty −−  )(2 tx− + ( )∫
−

+
t

trt

dsszsy
)(

)()(cos4  ,                (12) 

where we suppose that γ≤≤ )(0 tr , β≤′ )(tr , 10 << β , β   and  γ  are  positive constants, γ   which 
will be determined later, [ )∞∈ ,0t . It is obvious that  
 

y
ysin43 +≤   

for all y , ).0( ≠y   
Our main tool is the Lyapunov functional  
 

),,( ttt zyxV =
2

2
2 ⎟

⎠
⎞

⎜
⎝
⎛ +

yx + ( )22
2
1 yz + + ξξ

ξ
ξ d

y

∫ ⎥
⎦

⎤
⎢
⎣

⎡
+

0

sin5  

+ ∫ ∫
− +

0

)(

2 )( 
tr

t

st

dsdz θθμ ,                                                           (13) 

                                         
where μ  is a positive constant which will be determined later.  
It is clear that the functional ),,( ttt zyxV  is positive definite. Hence, it is evident, from the terms 
contained in (13), that there exist sufficiently small positive constants iD , )7 ,6 ,5( =i , such that  

),,( ttt zyxV ≥ 2
5 xD + 2

6 yD + 2
7 zD + ∫ ∫

− +

0

)(

2 )( 
tr

t

st

dsdz θθμ  

≥ 2
5 xD + 2

6 yD + 2
7 zD  

≥ ( )222
8 zyxD ++  , 

where  8D = { }765 ,,min DDD .                                                                         

Now, the time derivative of the functional  ),,( ttt zyxV  in (13) with respect to the system (12) can 
be calculated as follows: 

 

),,( ttt zyxV
dt
d = ( ) 2)(1 ztrμ−− 2sin32 y

y
y
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−  
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+ ∫
−

+
t

trt

dsszsyz
)(

)())(cos4( + ∫
−

+
t

trt

dsszsyy
)(

)())(cos4(2  

- ∫
−

′−
t

trt

dssztr
)(

2 )())(1(μ .                                                          (14)                              

Making use of the facts 5cos4 ≤+ y , 1sin
≤

y
y , γ≤≤ )(0 tr , β≤′ )(tr , 10 << β  and  the 

inequality 222 vuuv +≤ , we obtain  the following inequalities for all terms contained  in the equality 
(14), respectively: 
 

( ) 2)(1 ztrμ−− ≤ ( ) 21 zμγ−− , 

2sin32 y
y

y
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+− ≤ 24y− , 

∫
−

+
t

trt

dsszsyz
)(

)())(cos4( ≤
2
5 )()( 2 tztr +

2
5
∫

−

t

trt

dssz
)(

2 )(  

≤
2

5γ )(2 tz +
2
5
∫

−

t

trt

dssz
)(

2 )( , 

∫
−

+
t

trt

dsszsyy
)(

)())(cos4(2 ≤ 5 )()( 2 tytr +5 ∫
−

t

trt

dssz
)(

2 )(  

≤ γ5 )(2 ty +5 ∫
−

t

trt

dssz
)(

2 )(  

and 

- ∫
−

′−
t

trt

dssztr
)(

2 )())(1(μ ≤ - ∫
−

−
t

trt

dssz
)(

2 )()1( βμ .    

Gathering all of these inequalities into (14), we have  
 

),,( ttt zyxV
dt
d

≤ 2

2
522 y⎟

⎠
⎞

⎜
⎝
⎛ −−

γ 2

2
51 z⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +−− γμ - ∫

−

⎟
⎠
⎞

⎜
⎝
⎛ −−

t

trt

dssz
)(

2 )(
2

15)1( βμ . 

Let us choose 
)1(2

15
β

μ
−

= . Then, it easy to see that  

      ),,( ttt zyxV
dt
d

≤ 2

2
522 y⎟

⎠
⎞

⎜
⎝
⎛ −−

γ 2

2
51 z⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +−− γμ .                             (15) 

Now, in view of (15), one can conclude for some positive constants α  and ρ  that 
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),,( ttt zyxV
dt
d

≤ 2yα− 2zρ− .                                                                       (16) 

provided 

⎭
⎬
⎫

⎩
⎨
⎧

+
<

5
4,

52
2min
μ

γ . 

It is also easy to see that 0),,( ≡ttt zyxV
dt
d  if and only if tz = tx =0, 0)( <φV

dt
d  for 0≠φ  and 

0))0(()( ≥≥ φφ uV . Thus all the conditions of the above Proposition are satisfied. This shows that the 
trivial solution of equation (11) is globally asymptotically stable.  
 

For the case 0))()),(()),((),(),(,( ≠−− tztrtytrtxtytxtp  the following result is established. 
 

Theorem 3: In addition to the basic assumptions imposed on the functions 2f  and p  that 
appeared in equation (1) ,  we assume that there are positive constants 1a , 2a , 3a , 0ε , L , μ , H  and 

1H  such that the following conditions are satisfied for every x , y  and z  in   
 

{ }HHHzHyHxzyx <<<<ℜ∈=Ω 1111
3  ,  ,  ,:),,(: : 

(i) 0321 >− aaa , 0)0(2 =f , 02
2 )(

ε≥− a
y

yf , )0( ≠y , and Lyf ≤′ )(2 . 

(ii)  )())()),(()),((),(),(,( tqtztrtytrtxtytxtp ≤−− , 

where max ∞<)(tq  and ),0(1 ∞∈ Lq , ),0(1 ∞L  is space of integrable Lebesgue functions. 

Then, there exists a finite positive constant K  such that the solution )(tx of equation (1) defined by the 
initial functions  
 

)()( ttx φ= , )()( ttx φ′=′ , )()( ttx φ ′′=′′  

satisfies the inequalities 
Ktx ≤)( , Ktx ≤′ )( , Ktx ≤′′ )(   

for all 0tt ≥  , where [ ]( )ℜ−∈  ,, 00
2 trtCφ ,  provided that  

⎭
⎬
⎫

⎩
⎨
⎧

+
−

<
μ

ε
γ

2
)(2

,
2

min
2

3210

La
aaa

L
. 

Proof: As in the Theorem 2, the proof of this theorem also depends on the scalar differentiable 
Lyapunov functional V = ),,( ttt zyxV , which is defined in (4). Now, since 

0))()),(()),((),(),(,( ≠−− tztrtytrtxtytxtp , in view of (4), (2) and (10), it can be easily followed that 
the time derivative of the functional ),,( ttt zyxV   satisfies the following inequality:  
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),,( ttt zyxV
dt
d

≤ 2yα− 2zρ− + ))()),(()),((),(),(,(.23 tytrtytrtxtytxtpzaya −−+  

 ≤ 2yα− 2zρ− + ).(23 tqzaya +                                                  

Hence, it follows that  

),,( ttt zyxV
dt
d

≤ 2yα− 2zρ− + ( ) )(9 tqzyD +  

≤ ( ) )(9 tqzyD +  

for a constant 09 >D ,  where { }329 ,max aaD = . 
Making use of the inequalities 21 yy +<  and 21 zz +< , it is clear  that  

),,( ttt zyxV
dt
d ≤ ( ) )( 2 22

9 tqzyD ++ .                                                   

By (6), we have  

( )22 zy + ≤ ),,( 1
4 ttt zyxVD − . 

Hence  

),,( ttt zyxV
dt
d ≤ ( ) )(),,(2 1

49 tqzyxVDD ttt
−+ . 

Now, integrating the last inequality from 0  to t , using the assumption ),0(1 ∞∈ Lq  and Gronwall-
Reid-Bellman inequality, we obtain  
 

),,( ttt zyxV ≤ ),,( 000 zyxV + ( ) dssqzyxVDDAD
t

sss )(),,(2
0

1
499 ∫−+  

≤ ( )ADzyxV 9000 2),,( + ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∫−
t

dssqDD
0

1
49 )(exp  

≤ ( )ADzyxV 9000 2),,( + ( ) ∞<=−
1

1
49exp KADD ,                   (17) 

where 01 >K  is a constant, 1K = ( )ADzyxV 9000 2),,( + ( )ADD 1
49exp −  and ∫

∞

=
0

)( dssqA .  

Now, the inequalities (6) and (17) together yield that  

)()()( 222 tztytx ++ ≤ KzyxVD ttt ≤− ),,(1
4 , 

where 1
41
−= DKK . Thus, we conclude that  

Ktx ≤)( , Kty ≤)( , Ktz ≤)(  

for all 0tt ≥ . That is,  
Ktx ≤)( , Ktx ≤′ )( , Ktx ≤′′ )(  
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for all 0tt ≥ .  
The proof of the theorem is now complete. 
 

 
Example 2:  Consider the third order nonlinear delay differential equation  

)(2))((sin))((4)(3)( txtrtxtrtxtxtx +−′+−′+′′+′′′  

=
)())(())(()()(1

2
222222 txtrtxtrtxtxtxt ′′+−′+−+′+++

.               (18) 

Clearly, equation (18) is equivalent to the system  

)(tx′ = )(ty , )(ty′ = )(tz , 

)(tz′ = )(3 tz− )(sin)(4 tyty −−  )(2 tx− + ( )∫
−

+
t

trt

dsszty
)(

)()(cos4  

             
)())(())(()()(1

2
222222 tztrtytrtxtytxt +−+−++++

+ ,            (19) 

Observe that  

)(
1

2
)())(())(()()(1

2
2222222 tq

ttztrtytrtxtytxt
=

+
≤

+−+−++++
 

for all +ℜ∈t , )(tx , )(ty , ))(( trtx − , ))(( trty − , )(tz , and  

∞<=
+

= ∫∫
∞∞

π
0

2
0 1

2)( ds
s

dssq , that is,  ),0(1 ∞∈ Lq . 

To show the boundedness of the solutions we use as a main tool the Lyapunov functional in (13). Now, 
in view of (16), the time derivative of the functional  ),,( ttt zyxV  with respect to the system (19) can 
be revised as follows: 

 

 ),,( ttt zyxV
dt
d = 2yα− 2zρ− +

)())(())(()()(1
24

222222 tztrtytrtxtytxt
zy

+−+−++++
+ .    (20)                             

Making use of the fact  

2222222 1
1

)())(())(()()(1
1

ttztrtytrtxtytxt +
≤

+−+−++++
 

we get   

),,( ttt zyxV
dt
d

≤ 2yα− 2zρ− + 21
22

t
zy

+

+
.                                                       

Hence, it is obvious that  
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),,( ttt zyxV
dt
d

≤ 21
22

t
zy

+

+
≤

( )
21

4
t

zy
+

+
 

≤
( )

2

22

1
24

t
zy

+
++   ≤ 21

8
t+

+ ( )
2

22

1
4

t
zy

+
+  

≤ 21
8
t+

+ ),,(
1
4

2

1
8

ttt zyxV
t

D
+

−

.                                                       (21) 

Now, integrating (21) from 0  to t , using the fact  ),0(
1

1 1
2 ∞∈

+
L

t
 and Gronwall-Reid-Bellman 

inequality,  it can be easily concluded the boundedness of all solutions of equation (18). 
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