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Abstract 

  The unsteady free-convection flow of a viscous, heat conducting fluid near an infinite, inclined and rotating plate 
(or surface) is investigated, with the rotation vector titled from the vertical. Exact solution of this problem is 
obtained with the help of Laplace transform technique, when the Prandtl number is arbitrary and the plate rotates in 
its own plane with constant angular velocity. The asymptotic or steady-state solution which corresponds to the 
present problem for large time is expressed analytically. The results thus obtained are also discussed.  
 

1. Introduction 

  Free-convection flows near the inclined or vertical plates or surfaces find applications in many 
engineering and environmental studies such as cooling of nuclear reactors, solar energy collectors, 
cooling of equipments and crystal growth, among others. It is also known that these convection flows are 
greatly influenced by rotation [1]. Especially, the Coriolis force, which is a result of a motion of rotating 
frame, is responsible for the production of rotation in the geofluid (cf. the rotation in the environment 
[2]). 
  Chandrasekhar [3] has made significant contributions to the theory of hydrodynamic flow phenomena in 
numerous situations. He pointed out the significant role of the Coriolis force on problems of thermal instability 
and on stability of viscous flow. Then, studies carried out by several investigators [4, 5, 6, 7] disclosed that 
Coriolis force is significant as compared to viscous and inertia occurring in the basic equations of the problems 
involving unsteady free-convection flow past an infinite or semi-infinity vertical plate in rotating fluid about 
horizontal axis. 
  On the other hand, Hathaway and Somerville [8] have studied the three-dimensional free-convection 
flow in an inclined rotating layer, with the rotation vector titled from the vertical. Using numerical 
simulation, they deduced that the titling of the rotation vector was significant change in the flow structure. 
A combined numerical and experimental study was carried out by Ker and Lin [9] in order to investigate 
the steady convective flow structure and flow stability in an inclined cubic air cavity subject to 
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differential heating and to a constant rotation. Similar problem of natural convection flow of air in an 
inclined open cavity without rotation has been studied numerically by Nateghi and Armfield [10]. The 
problem of the unsteady free-convection flow of a viscous, heat conducting fluid near an infinity vertical 
plate in a rotating system has been solved exactly by Chandran et al. [11] for the special case of Prandtl 
number (P) equal to unity. 
  In the present work I extend the work of Chandran et al. [11], by regarding the free-convection flow in 
an inclined rotating plate, with the rotation vector titled from the vertical and without any restrictions on 
Prandtl number of the heat conducting fluid. So, the unsteady free-convection flow due to an inclined 
rotating plate is generalized and exact solution of this problem is obtained with the help of Laplace 
transform technique. The asymptotic nature of this unsteady flow field is investigated, given real 
expressions for this ultimate steady-state solution of hydrodynamic boundary flow. Finally, the results 
thus obtained are discussed in last section. 
 

2. Analysis of the Problem  

  Let us consider three-dimensional free-convection flow of a viscous incompressible fluid near an 
infinite, inclined plate (or surface). On this plate an arbitrary point has been chosen as the origin O of a 
Cartesian coordinate system, with the axes Ox΄ and Oy΄ fixed on the plate and the Oz΄ normal to it into 
the fluid. This plate is inclined from the vertically direction so that the axis Oz΄ inclines from the 
vertically upward direction by an angle   [9]. 
  Initially, the fluid and the plate are at the same temperature T΄∞ and stationary condition. Subsequently 
(t΄ >0), this plate is assumed to be in state of rigid rotation in its own plane about the axis Oz΄ with a 
constant angular velocity Ω΄ (>0), and the plate temperature is raised to Τ΄w(≠T’∞). Now, this fluid flow 
near the inclined plate is driven by the Carioles force and the thermal buoyancy.  
  On the physical grounds of the present problem all the quantities are assumed to be functions of the 
space coordinate z΄ and time t΄; so that the vector of the velocity of the fluid is given by )0,,(  u . 
Then, it can be shown that the resulting flow subject to rotation and under the Boussinesq approximation 
is governed by the following equations of energy and motion  
 

 

(1a) 
 
 
(1b) 
 
 
(1c) 
 

where ρ denotes the fluid density,   the kinematic viscosity, T΄ the temperature, g the acceleration due to 
gravity, β’ the coefficient of volume expansion, κ the thermal conductivity, and cP  the specific heat at 
constant pressure [9]. The angle )0(  of inclination of the rotating axis Oz  ́ from the direction of the 
vertical is assumed constant for free-convection flow. The terms   2  and u2  are the components 
of the Coriolis acceleration [2]  
  Assuming that no slipping occurs between the plate and the fluid, the initial and the boundary conditions 
corresponding to the present problem are 
 

 

(2a) 
 
(2b) 
 
(2c) 

  The above equations can be reduced to non-dimensional forms by the introduction of the following 
dimensionless quantities: 
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(3a) 
 
(3b) 
 
 
(3c) 

where   is the non-dimensional temperature, P the Prandtl number and L a defined characteristic length. 
Then, we get the non-dimensional forms of the equations of our problem  
 

 

(4a) 
 
 
(4b) 
 
 
(4c) 
 

where the appropriate initial and boundary conditions are in non-dimensional form [11]: 
 

 

(4d) 
 
(4e) 
(4f) 

  The equations (4b) and (4c) can be combined into a single equation of motion 
 

 

 
(5a) 
 

where we use the non-dimensional complex velocity 
 

 

(5b) 
 

  The system of equations (4a) and (5a) are the governing equations of our problem, which we shall 
solved exactly in the following section, with the initial and boundary conditions 
 

 

(6a)  
(6b)  
(6c) 

 

3. Solution of the Problem  

  In order to obtain the exact solution of the present problem we shall use the Laplace transform 
technique. 
  Applying the Laplace transform (with respect to time t) to the system of equations (4a) and (5a) and the 
boundary conditions (6), we get 
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(7a) 
 
(7b) 
 

with boundary conditions 
 

 

(7c) 
 
(7d) 
 

where a bar over a quantity denotes its Laplace transform with s as the transform variable. 
  The system of Eqs. (7a,b) is a ordinary differential equations system. So, it is found that the solution of 
this system in the transform domain is  
 

 

 
(8a) 
 
(8b) 
 

  Then, the exact solution of the system of equations (4a) and (5a) can be obtained by taking the inverse 
transforms of Eqs. (8). So, the solution of the problem for the temperature ),( tz  and velocity ),( tzq  
for 0t , 
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where 
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with the abbreviations 
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  The general solution (9) was exemplified above without any restrictions on Prandtl number P of fluids, 
and we can prove that these results satisfy the equations of the present problem.  
  Indeed, Eqs. (9) are exact solutions of the system of differential equations (4a) and (5a). First of all, it 
can be easily verified that the initial and boundary conditions by ),( tz  and ),( tzq . The verification of 

),( tz  given by (9a) as solution of (4a) is straightforward, and is not done here. 
  We shall, however, show that Eq. (9b) represents the exact solution of Eq. (5a). In order to do so, we 
must find out the partial derivatives of ),( tzq  given from (9b). So, we obtain  
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(12a) 
 
 
 
 
(12b) 
 

  Then, substituting expressions (12) and (9b) into the left-hand side of Eq. (5a) can be reduced in the 
form 
 

 

 
(13) 
 

  In latter equations, we use the relation (10a) and the solution (9a). So, it can be seen that Eq. (5a) is 
identically satisfied. 
  Finally, knowing the velocity field from Eq. (9b), we can now calculate the axial and transverse 
components of skin friction of the flow at the plate, which is important for practical applications. In non-
dimensional form these are given in the complex form  
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4. The Asymptotic Solution for Large Time 

  The result (9b) for velocity includes the asymptotic or steady-state solution, which corresponds to the 
present problem for large time. 
  This result for steady-state flow can be deduced by taking into account the asymptotic representation of 
erfc(z) for a complex argument z in the form [4] 
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u and υ from (9b) for large time t in the form 
 

 

 
 
(16a) 
 
 
 
 
(16b) 
 

where Aj and Bj , j=1, 2  are defined by  

.as1)(
2

2/1   ze
z

zerfc z



 
       

 
        ,4/expsincos4/exp2sin2cos

)/(cos1),(

,4/expsincos4/exp2sin2cos

)/(sin1),(

2
22

2
11

2/1
2
1

2
22

2
11

2/1
2
1

tPztAtBtztAtB

tPzerfcttz

tPztBtAtztBtA

tPzerfcttzu

















       .expexp/2 21
2
1

02

2

tititPzerfcqqit
q

 y
q 





 

      

 
    ;1Pfor,exp1

)2(exp

2/1
2/1

2/12/1
2/12/1

0






















titierf
i

tPPterfcterfcPi
z
qi

z
yx 




.
1
2

,
1

201
210

212
2

2

2
1

2

2
0

2

2

2

q
P
Pqq

t
q

t
q

t
q

Ù
i

t
q

q
P

Pq
z
q

z
q

z
q

Ù
i

z
q


















































         .1Pfor,1exp
exp 2/12/1

2/12/1 



 tierftiti

t
tii

i yx 






Differential Equations and Control Processes, № 3, 2009  

 
Electronic Journal. http://www.neva.ru/journal, http://www.math.spbu.ru/user/diffjournal  40 

 

 

 
(17a) 
 
 
 
(17b) 
 
 
(17c,d) 
 

  Also, the axial and transverse components of skin friction in the steady state of this case are given by 
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5. Discussion 

  The general problem of the unsteady convective flow of a viscous, heat conducting fluid near a rotating, 
infinite and inclined plate has been solved exactly without any restrictions on Prandtl number (P). 
  The new general solution for the velocity field is exemplified in complex form (cf. Eq. (9b)). In order to 
obtain the primary and secondary velocity components u and υ, we use the real and imaginary parts of 
complex velocity q of the expression (9b), namely 
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(22a) 
 
 
(22b) 
 
 
(22c) 
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where the functions Φ1(z,t) and Ψ1(z,t) denote  
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(26a) 
 
 
(26b) 
 
 
(26c) 
 
 
(26b) 
 
 

where the functions Φ3(z,t) and Ψ3(z,t) are given by  

 

(27a) 
 
 
 
(27b) 
 
 
(27c) 
 
 
(27d) 
 
 

  In the expressions (20)-(27) is 

 

(28) 
 

and the functions H1j and H2j , with j=1, 2, 3, 4, 5, 6, are given in the Appendix (see, Eqs. A2,3). 
  It may be noted that the general results of expressions (9), (14), (16) and (20) include the results of the 
solution the same problem with vertical plate (or surface). Indeed, when the plate is vertical, the axis Oz΄ 
is inclined at an angle 090  from the vertically upward direction and all the above expressions have 
exactly the same forms with the characteristic length (cf., Eq. 3c) 

 

 
(29) 
 

  Also, the general results (9), (14) and (20) include the results obtained by Chandran et al [11], with 
090 and the Prandtl number P=1. In this special case, we have 0),(2 tzq  (from Eq. 8b) in Eq (9b) 

and, consequently, 0),(),(),(),( 3232  tztztzutzu   in Eqs. (20) and the last term of Eqs (14) is 
equal to zero. Also, for P=1, we get 022  BA  in Eqs. (16) and the last terms of Eqs (18) are obviously 
vanished. A detailed discussion for this simple case is given on the work of Chandran et al. [11].  
  The general conclusion for the exact solution of the present problem is that this general solution can be 
used readily for most gases, whose Prandtl number P is between 0,7 and 0,85, for liquids, whose P is 
generally greater than one; and for restricted classes of gas (namely, steam and ammonia) with P=1.  
 
Appendix  
On a complementary error function 
The complementary error function of a complex variable can be separated into real and imaginary parts, in 
accordance with Strand’s method [13]. For any complex number iyxz  , with x>0 and y0, we have  
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(A1) 

where  

 

 
(A2) 
 
 
 
(A3) 
 
 
(A4) 
 
(A5) 
 
 
(A6) 
 
 
(A7) 

  Since )()( zerfczerfc  , we also obtain 

 

(A7) 

  It should be pointed out that for a complex number iyxz   , with 0)Re(  xz , one can use the 
relation )(2)( zerfczerfc   . So, the above method of computation is employed for )( zerfc   with 

0)Re(  xz .  
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