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Abstract.

The weak shadowing property was introduced by R.M. Corless and S.Yu.
Pilyugin and studied by these authors, K. Sakai, O.B. Plamenevskaya and oth-
ers. It was shown by Plamenevskaya that for omega-stable diffeomorphisms
this property may be bount to the numerical properties of the eigenvalues of
the hyperbolic saddle points of the diffeomorphisms.

In this paper, we prove that if the phase diagram of an omega-stable dif-
feomorphism of a manifold does not contain chains of length more than three,
then it has the weak shadowing property.
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A03-2.8-322).
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1 Introduction

The weak shadowing property of dynamical systems was introduced in [1], where
it was shown that this property is C0-generic.

The study of the weak shadowing property for Ω-stable diffeomorphisms is
essentially complicated: it was shown by Plamenevskaya [2] (see below) that
this property may be bount to the numerical properties of the eigenvalues of
hyperbolic saddle points of the diffeomorphisms.

In this paper we prove Theorem 2.1 stating that Ω-stable diffeomorphisms
(on manifolds of arbitrary dimension) having only “short” connections in phase
diagrams have the weak shadowing property.

2 Definitions and main results

Let M be a closed smooth manifold with Riemannian metric dist. Denote by
U(a, A) the a-neighborhood of a set A ⊂ M .

Denote by Diff 1(M) the space of diffeomorphisms of M with the C1 topol-
ogy. For a diffeomorphism f , we denote by O(x, f) the trajectory of x.

A sequence ξ = {xk : k ∈ Z} ⊂ M is called a d-pseudotrajectory of f if

dist(f(xk), xk+1) < d, k ∈ Z.

We say that a point x ∈ M ε-shadows the pseudotrajectory ξ if

dist(fk(x), xk) < ε, k ∈ Z.

We say that a point x ∈ M weakly ε-shadows ξ if

ξ ⊂ U(ε, O(x, f)).

Now we give definitions of the main properties which we study.

We say that a diffeomorphism f has the (usual) shadowing property if, given
ε > 0, there exists d > 0 such that any d-pseudotrajectory is ε-shadowed by
some point of M .

We say that f has the weak shadowing property if, given ε > 0, there exists
d > 0 such that any d-pseudotrajectory is weakly ε-shadowed by some point of
M .

Remark 2.1. Let us note that the property defined above was called the first
weak shadowing property in [3], where the second weak shadowing property,
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“symmetric” to the first one, was introduced: we say that f has the second
weak shadowing property if, given ε > 0, there exists d > 0 such that for any
d-pseudotrajectory ξ of f , there is a point x such that

O(x, f) ⊂ U(ε, ξ).

It was shown in [3] that any dynamical system with compact phase space has
the second weak shadowing property, hence the study of this property in the
context of our paper is senseless. For this reason, we use below the term “weak
shadowing property” introduced in [1].

Of course, if a diffeomorphism has the shadowing property, it has the weak
shadowing property as well. An example of irrational rotation on the circle
shows that the inverse statement does not hold.

The following example constructed by Plamenevskaya [2] gives us useful
information concerning weak shadowing in Ω-stable systems.

Example. Represent T2 as the square [−2, 2]× [−2, 2] with identified opposite
sides. Let g : T2 → T2 be a diffeomorphism with the following properties:

(1) the nonwandering set Ω(g) of g is the union of 4 hyperbolic fixed points;
that is, Ω(g) = {p1, p2, p3, p4}, where p1 is a source, p4 is a sink, and p2, p3

are saddles;

(2) with respect to coordinates (v, w) ∈ [−2, 2] × [−2, 2], the following condi-
tions hold:

(2.1) p1 = (1, 2), p2 = (1, 0), p3 = (−1, 0), p4 = (−1, 2),

(2.2) W u(p2) ∪ {p3} = W s(p3) ∪ {p2} = [−2, 2]× {0},

W s(p2) = {1} × (−2, 2), W u(p3) = {−1} × (−2, 2),

where W s(pi) and W u(pi) are the stable and unstable manifolds, respectively,
defined as usual;

(2.3) there exist neighborhoods U2, U3 of p2, p3 such that

g(x) = pi + Dpi
g(x− pi) if x ∈ Ui,

(2.4) there exists a neighborhood U of the point z = (0, 0) such that g(U) ⊂
U3, g−1(U) ⊂ U2 and g−1 is affine on g(U),
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(2.5) the eigenvalues of Dp3
g are −µ, ν with µ > 1, 0 < ν < 1, and the

eigenvalues of Dp2
g are −λ, κ with 0 < λ < 1, κ > 1.

It was proved in [2] that g has the weak shadowing property if and only if
the number log λ/ log µ is irrational. Note that g satisfies Axiom A and the no-
cycle condition (i.e., it is Ω-stable) but does not have the shadowing property.

Let f be an Axiom A diffeomorphism of M . By the Smale Spectral Decom-
position Theorem, the nonwandering set Ω(f) can be represented as a finite
union of basic sets Ωi. Denote by W s(Ωi) and W u(Ωi) the stable and unstable
“manifolds” of Ωi. For two different basic sets Ωi and Ωj, we write Ωi → Ωj if

W u(Ωi) ∩W s(Ωj) 6= ∅.

Let us say that the phase diagram of the diffeomorphism f contains a chain of
length m if there exist m different basic sets Ωi1, . . . , Ωim such that

Ωi1 → · · · → Ωim.

Theorem 2.1. Assume that a diffeomorphism f satisfies Axiom A and
the no-cycle condition. If its phase diagram does not contain chains of length
m > 3, then f has the weak shadowing property.

Note that the restriction on the lengths of chains in Theorem 2.1 is sharp:
the Ω-stable diffeomorphism in the Plamenevskaya example has a chain p1 →
p2 → p3 → p4 of length 4 in its phase diagram (and may fail to have the weak
shadowing property).

3 Proof of Theorem 2.1

Let us first introduce some notation.

Denote by O+(x, f) and O−(x, f) the positive and negative semitrajectories
of x, respectively. Let ξ = {xk : k ∈ Z} be a pseudotrajectory and let l,m be
indices with l ≤ m. We denote

ξl,m = {xk : l ≤ k ≤ m}, ξl
+ = {xk : l ≤ k}, ξl

− = {xk : k ≤ l},

ξ+ = ξ0
+, and ξ− = ξ0

−.

The following three propositions are well known (Proposition 3.1 is the
classical Birkhoff theorem, for proofs of statements similar to Propositions 3.2
and 3.3, see [4], for example).
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Proposition 3.1. Let f be a homeomorphism of a compact topological
space X and U be a neighborhood of its nonwandering set. Then there exists a
positive number N such that

card{k : fk(x) /∈ U} ≤ N

for any x ∈ X, where card A is the cardinality of a set A.

In Propositions 3.2, 3.3, 3.2p and 3.3p, we assume that f is an Ω-stable
diffeomorphism of a closed smooth manifold (below we apply these propositions
both to f and f−1).

Proposition 3.2. If Ωi is a basic set, then for any neighborhood U of Ωi

we can find its neighborhood V with the following property: if for some x ∈ V

and m > 0, fm(x) /∈ U , then fm+k(x) /∈ V for k ≥ 0.

Proposition 3.2. There exist neighborhoods Ui of the basic sets Ωi such
that if fm(Ui) ∩ Uj 6= ∅ for some m > 0, then there exist basic sets Ωl1, . . . , Ωlk

such that
Ωi → Ωl1 → · · · → Ωlk → Ωj.

Obviously, these propositions have the following analogs for pseudotrajec-
tories.

Proposition 3.1p. Let f be a homeomorphism of a compact metric space
X and U be a neighborhood of its nonwandering set. Then there exist positive
numbers d,N such that if ξ = {xk} ⊂ X is a d-pseudotrajectory and ξl,m∩U = ∅
for some l,m with l ≤ m, then m− l ≤ N .

Proposition 3.2p. If Ωi is a basic set, then for any neighborhood U of Ωi we
can find its neighborhood V and a number d > 0 with the following property: if
ξ = {xk} is a d-pseudotrajectory of f , x0 ∈ V , and xm /∈ U for some m > 0,
then ξm

+ ∩ V = ∅.

Proposition 3.3p. There exist neighborhoods Ui of the basic sets Ωi and a
number d > 0 with the following property: if ξ = {xk} is a d-pseudotrajectory
of f such that x0 ∈ Ui and xm ∈ Uj for some m > 0, then there exist basic sets
Ωl1, . . . , Ωlk such that

Ωi → Ωl1 → · · · → Ωlk → Ωj.
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In what follows, we assume that f is an Ω-stable diffeomorphism. We
need the following auxiliary statement. Let us say that f has the usual shad-
owing property on a set A if, given ε > 0, there exists d > 0 such that if
ξ = {xk} is a d-pseudotrajectory of f with ξl,m ⊂ A, then there exists x such
that dist(xk, f

k(x)) < ε for l ≤ k ≤ m. Since any basic set Ωi is hyperbolic, we
may assume that f has the usual shadowing property on all neighborhoods of
Ωi considered below.

Lemma. Let Ωi be a basic set and let Ui be a neighborhood of Ωi such that
U i ∩ Ωj = ∅ for i 6= j. For any positive α, there exists d > 0 with the following
property: if ξ = {xk} is a d-pseudotrajectory of f with ξ+ ⊂ Ui, then there
exists a point z and an open set D containing z such that

(1) dist(x0, z) < α;

(2) ξ+ ⊂ U(α, O+(z′, f)) for any z′ ∈ D.

Proof. Fix arbitrary α > 0. Reducing α, if necessary, we may assume that

U(α, Ui) ∩ Ωj = ∅

for j 6= i. Applying the usual shadowing property on Ui, let us find d > 0 such
that if ξ = {xk} is a d-pseudotrajectory of f with ξ+ ⊂ Ui, then there exists
y such that dist(xk, f

k(y)) < α/4 for k ≥ 0. By the choice of α, O+(y, f) ⊂
U(α, Ui), hence y ∈ W s(Ωi). Thus, there exists p ∈ Ωi such that y ∈ W s(p).
In any neighborhood of p, there is a point q such that its trajectory is dense
in Ωi. Stable manifolds of points of a hyperbolic set depend continuously on
the point, hence any neighborhood of y contains a point z such that O+(z, f)
is dense in Ωi.

There exists a number K > 0 such that fk(y) ∈ U(α/4, Ωi) for k ≥ K.
Find a point z such that

(1) dist(fk(y), fk(z)) < α/2 for 0 ≤ k ≤ K;

(2) O+(z, f) is dense in Ωi.

There exists a number L > 0 such that for any point p ∈ Ωi there is a point
r ∈ {fk(z) : 0 ≤ k ≤ L} with dist(p, r) < α/4. By the continuity of f , there is
an open set D containing z such that Ωi ⊂ U(α/2, O+(z′, f)) for any z′ ∈ D.

To complete the proof, it remains to take D so small that
dist(fk(y), fk(z′)) < α/2 for 0 ≤ k ≤ K and z′ ∈ D.
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Remark 3.1. Let Ωi be an attractor. Fix ε > 0 and find a neighborhood Ui of
Ωi such that

Ui ⊂ U(ε/2, Ωi) (1)

and f(U i) ⊂ Ui. There exist numbers d, a > 0 (depending only on Ui) such
that if ξ = {xk} is a d-pseudotrajectory of f with x0 ∈ Ui, then ξ+ ⊂ Ui, there
is a point y ∈ W s(Ωi) such that dist(fk(y), xk) < ε/4, and W = U(a, x1) ⊂ Ui.
Since points z for which O+(z, f) is dense in Ωi are dense in W , the same
reasoning as in the proof of the lemma above shows that the set

W ′ = {x ∈ W : ξ1
+ ⊂ U(ε, O+(x, f))}

is open and dense in W .

Of course, a similar statement holds for a repeller Ωi.

In the proof of Theorem 2.1, we have to consider d-pseudotrajectories with
decreasing values of d. We use the same notation of points of these pseudotra-
jectories, of their neighborhoods, etc; this will lead to no confusion.

Let m be the maximal length of chains in the phase diagram of the con-
sidered Ω-stable diffeomorphism f . If there are no chains of length 2, then the
statement of our theorem is trivial – in this case, f is an Anosov diffeomorphism.

Let us consider the case where m = 2. In this case, any basic set is either
a repeller or an attractor. Consider a repeller Ω1 and an attractor Ω2. Fix an
arbitrary ε > 0. Standard reasons show that there exist neighborhoods Ui of the
sets Ωi, i = 1, 2, such that inclusions (1) hold, f−1(U 1) ⊂ U1, and f(U 2) ⊂ U2.

The set U ′
2 = f(U 2) \ f 2(U2) is a compact subset of U2 disjoint from Ω2.

Hence, there exists a number a2 ∈ (0, ε) and a neighborhood V2 of Ω2 such that

U(a2, x) ⊂ U2 \ V2

for any x ∈ U ′
2.

Similarly, there exists a number a1 ∈ (0, ε) and a neighborhood V1 of Ω1

such that
U(a1, x) ⊂ U1 \ V1

for any x ∈ U ′
1 = f−1(U 1) \ f−2(U1).

We may assume that these numbers and neighborhoods have also the fol-
lowing properties. There exists a number d1 > 0 such that if ξ = {xk} is
a d1-pseudotrajectory of f and xm ∈ U2, then ξm

+ ⊂ U2 and, in addition, if
xm−1 /∈ U2, then

U(a2, xm) ⊂ U2 \ V2
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(and similar statements hold for U1 etc).

It follows from Propositions 3.1p-3.3p that there exist numbers d2 ∈ (0, d1)
and N such that if ξ = {xk} is a d2-pseudotrajectory of f , then only one of the
following possibilities holds:

(I) there exists a basic set Ωi such that ξ ⊂ Ui;

(II) there exists a repeller Ω1 and an attractor Ω2 such that, for the neighbor-
hoods described above, there exist integers l,m with 0 ≤ m− l ≤ N such
that

U(a1, xl) ⊂ U1 \ V1 and U(a2, xm) ⊂ U2 \ V2.

Case (I) is trivial since a basic set contains a dense trajectory (and, by
condition (3.1), ξ belongs to the ε-neighborhood of such a trajectory).

To consider case (II), find positive numbers a3 < a1 and d3 < d2 such that
for any points x, y with dist(x, y) < a3 and for any d3-pseudotrajectory {yk}
with y0 = y, the inequalities

dist(fk(x), yk) < a2

hold for 0 ≤ k ≤ N .

Let ξ = {xk} be a d3-pseudotrajectory such that

U(a1, xl) ⊂ U1 \ V1 and U(a2, xm) ⊂ U2 \ V2

for some l,m with 0 ≤ m− l ≤ N . Denote W1 = U(a3, xl) and W2 = U(a2, xm).

The remark after the lemma implies that a3, a2, d3 can be chosen in such a
way that the sets

W ′
1 = {x ∈ W1 : ξl

− ⊂ U(ε, O−(x, f))}

and
W ′

2 = {x ∈ W2 : ξm
+ ⊂ U(ε, O+(x, f))}

are open and dense subsets of W1 and W2, respectively.

By our choice of d3, fm−l(W1) ⊂ W2. Since fm−l(W ′
1) is an open and dense

subset of fm−l(W1), there is a point x′ ∈ fm−l(W ′
1) ∩W ′

2.

Take x = f l−m(x′). It is easy to see that

ξl
− ⊂ N(ε/2, O−(x, f)), ξm

+ ⊂ N(ε/2, O+(x, f)),
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and dist(fk−l(x), xk) < ε for l ≤ k ≤ m, hence ξ ⊂ U(ε, O(x, f)). This com-
pletes the consideration of the case m = 2.

Finally, we consider the case m = 3. Fix ε > 0. It follows from Propositions
3.1p – 3.3p that there exist numbers d0, N > 0 and neighborhoods Ui of the
basic sets Ωi such that inclusions (1) hold and, for any d0-pseudotrajectory
ξ = {xk} of f , only one of the following possibilities is realized:

(P1) there exists an index i such that ξ ⊂ Ui;

(P2) there exist a repeller Ωi, an attractor Ωj, and indices l,m with l < m such
that m− l ≤ N , ξl

− ⊂ Ui, and ξm
+ ⊂ Uj;

(P3.1) there exist a repeller Ωi, a saddle basic set (i.e., a basic set that is not an
attractor or repeller) Ωj, and indices l,m with l < m such that m− l ≤ N ,
ξl
− ⊂ Ui, and ξm

+ ⊂ Uj;

(P3.2) there exist a saddle basic set Ωi, an attractor Ωj, and indices l,m with
l < m such that m− l ≤ N , ξl

− ⊂ Ui, and ξm
+ ⊂ Uj;

(P4) there exist a repeller Ωi, a saddle basic set Ωj, an attractor Ωs, and indices
l,m, n, t with l < m < n < t such that m − l ≤ N , t − n ≤ N , ξl

− ⊂ Ui,
ξm,n ⊂ Uj, and ξt

+ ⊂ Us.

For possibilities (P1) and (P2), the proof is just the same as in the case
m = 2.

Let us consider possibility (P3.1) (the same reasoning is applicable for
(P3.2)). Similarly to the proof for the case m = 2, we can find ai, d1 > 0
such that, for any d1-pseudotrajectory ξ with xl ∈ Ui, Wi = U(ai, xl−1) ⊂ Ui.
After that, we find aj ∈ (0, ε) and d2 < d1 such that for any d2-pseudotrajectory
ξ with xl ∈ Ui, xm ∈ Uj, and 0 ≤ m− l ≤ N , the inclusion

Wj = U(aj, xm) ⊂ fm−l+1(Wi)

and the inequalities dist(fk−m(y), xk) < ε hold for any y ∈ Wj and l ≤ k ≤ m.

Applying the lemma (with α = aj), we can find d3 < d2 with the following
property: for any d3-pseudotrajectory ξ there exists an open subset D of Wj

such that ξm
+ ⊂ U(ε, O+(z, f)) for any z ∈ D.

Applying the remark after the lemma, we may assume that, for any d3-
pseudotrajectory ξ, the set

W ′
i = {x ∈ Wi : ξl−1

− ⊂ U(ε, O−(x, f))}
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is open and dense in Wi. Its image, fm−l+1(W ′
i ), contains Wj (and hence, there

is a point x belonging to the intersection of this image with the open subset D

of Wj).

It follows from our constructions that ξ ⊂ U(ε, O(x, f)). This completes
the consideration of possibility (P3.1).

Finally, we have to consider possibility (P4). Fix a repeller Ωi, a saddle
basic set Ωj, and an attractor Ωs for which there exists a d0-pseudotrajectory
ξ and indices l,m, n, t with l < m < n < t such that m − l ≤ N , t − n ≤ N ,
ξl
− ⊂ Ui, ξm,n ⊂ Uj, and ξt

+ ⊂ Us.

We may assume that the neighborhoods Ui, Uj, Us satisfy inclusions (1).
In addition, we assume that for d2-pseudotrajectories with d2 < d1 and for
numbers ai, as ∈ (0, ε), all of the statements similar to statements in the proof
for the case m = 2 (II) are valid (with natural replacement of U1, U2, etc by
Ui, Us, etc).

To be exact, we assume that if ξ is a d2-pseudotrajectory with ξl
− ⊂ Ui,

ξm,n ⊂ Uj, and ξt
+ ⊂ Us, then the sets Wi = U(ai, xl) and Ws = U(as, xt) are

subsets of Ui and Us, respectively, and that the sets

W ′
i = {x ∈ Wi : ξl

− ⊂ U(ε, O−(x, f))}

and
W ′

s = {x ∈ Ws : ξt
+ ⊂ U(ε, O+(x, f))}

are their open and dense subsets.

Now let us find numbers d3 < d2 and aj > 0 such that, for any point xr

of a d3-pseudotrajectory ξ and for any point y such that dist(y, xr) < aj, the
inequalities

dist(fk(y), xr+k) < min(ai, as)

hold if |k| ≤ N .

In addition, since f has the usual shadowing property on Uj and ξm,n ⊂ Uj,
we may assume that there exists a point y such that dist(fk(y), xm+k) < aj for
0 ≤ k ≤ n−m (note that the value n−m may be arbitrarily large, in contrast
to the values m− l and t− n not exceeding N).

Denote Wj,1 = U(aj, xm) and Wj,2 = U(aj, xn). By the choice of aj, Vi =
f l−m(Wj,1) ⊂ Wi and Vs = f t−n(Wj,2) ⊂ Ws. Hence, the intersection V ′

i =
Vi ∩W ′

i is open and dense in Vi, and the intersection V ′
s = Vs ∩W ′

s is open and
dense in Vs. It follows that the image V ′ = fm−l(V ′

i ) is open and dense in Wj,1,
and the image V ′′ = fn−t(V ′

s ) is open and dense in Wj,2.
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It remains to note that the point y has a small neighborhood D ⊂ Wj,1 such
that fn−m(D) ⊂ Wj,2 and dist(fk(x), xm+k) < ε for x ∈ D and 0 ≤ k ≤ n−m.
It follows from our considerations that there exists a point x ∈ D ∩ V ′ such
that fn−m(x) ⊂ V ′′. By construction, ξ ⊂ U(ε, O(f, x)).

The theorem is proved.

Remark 3.2. Analyzing the proof of Theorem 2.1, it is easy to see that a
similar statement holds for an Ω-stable diffeomorphism f under the following
condition: if

Ωi → Ωl1 → · · · → Ωlk → Ωj

is a chain in the phase diagram of f such that Ωi is a repeller and Ωj is an attrac-
tor, then stable and unstable manifolds of points of the basic sets Ωl1, . . . , Ωlk

are transverse.
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