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Abstract 
In this paper we are concerned with  the oscillatory behavior of solutions of  two general classes of 

second order nonlinear neutral differential equations. The obtained results improve and extend some 

known criteria in the literature.  Two illustrative examples are given to justify our results.  

1. Introduction 

The aim of this paper is to study the oscillatory behavior of solutions of the nonlinear differential 

equations of the type: 
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Here 
1( ), ( ,(0, ))r t C I   , 1( ), ( ) ( , )jp t q t C I R and 2( , )jf C R R . 
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Throughout the paper we assume that 
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such that  1( ( )) .C u t C    
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Following Philos [13], we shall define a class of functions X. So we first define 

}<t<:),{( 0  ststD  and }<t:),{( 00  ststD . 

We say that a continuous function ),0[: DH  belongs to the class X denoted by XH   if 

(i) 0>),(,0),( stHttH    for 0),( Dst  . 

(ii) ),( stH has a continuous partial derivative with respect to s defined by 

),(),(
),(

stHsth
s

stH





    for some ),( 0 RDCh . 

By a solution of Eq.(1.1), or Eq.(1.2), we mean a continuously differentiable function )(tx  which 

has the property 0

1 ),),,([]))(()()())[(()( tTRTCtxtptxtxtr   , and satisfies Eq.(1.1),or 

eq.(1.2),  for all Tt  . 

We restrict our attention to those solutions )(tx  which exist on some half-line ),[ T , 0tT   and 

satisfy the condition 0}:)({sup 


Tttx
Tt

.  A solution )(tx  is called oscillatory if it has arbitrarily 

large zeros, otherwise, it is called nonoscillatory. Eq.(1.1),or eq.(1.2)  is called oscillatory if all of its 

solutions are oscillatory. 

Recently a notable interest in obtaining sufficient conditions for oscillation of different forms of 

neutral differential equations increased due to the importance of this class in many applications in 

science and technology. Many contributions appeared in the literature to discuss the oscillation of 

second order equations which are special cases of  Eq.(1.1) and Eq. (1.2) (see [1 ] ,[2],[3],[5],[7],and 

[10]),and references therein. 

For some related works, Travis [14] and Waltman [15] discussed the oscillstion problem of neutral 

delay differential equation of the type 
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0)()())()()((   txtqtxtptx                                                                                            (1.3)     

 Many other contributions  were recently offered about the oscillatory behavior of such problems of 

second order differential equations  (see [1]-[15] ). In [4], Grammatikopoulos and Ladas extended 

the results of [14,15].  They  proved that,  if    

,))(1)(( 


dsspsq     then (1.3) is oscillatory. 

Recently, Rogovchenko and Tuncay  [9], studied  the oscillatory behavior of solutions of second 

order nonlinear differential equation with a damping term of the form 

.0))(()()()())()((  txftqtxtptxtr  

Very recently, Hassanbulli and Rogovchenko [7] studied the oscillation of  nonlinear neutral 

differential equations of the type 

0)))((),(()(]))()()()(([  txtxftqtxtptxtr                                                                        (1.4) 

Džurina et al.[2] and  Sun et al.[10] discussed the oscillation criteria for the differential equation: 
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                                                                           (1.5) 

Lui et al. [8] and Xu et al. [11,12] extended the results of ( [2] and [10]) to Eq.(1.5). 

In this paper, we give some new sufficient conditions  for Eq. (1.1) and Eq. (1.2) to be oscillatory 

.We illustrate our results by two examples. The key idea in the proofs makes use of the idea used in 

[7] and [1]. 

2. Oscillation criteria for Eq. (1.1) 
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Theorem 2.1. Let the conditions )( 1H - )( 6H hold . Suppose that there exists a function 
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and    
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then Eq. (1.1) is oscillatory. 

Proof. Suppose the contrary that )(tx be a nonoscillatory solution of  Eq. (1.1). Then there exists 

01 tt    such that 10)( tttx  .  Assume that  0)( tx , and 0))(( tx    for all  01 ttt  . 
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Thus substituting from (2.8) in (2.9) we get 
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Multiplying (2.10) by ),( stH and integrating with respect to s  from 2t  to t , we get for all 1m  
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This contradicts (2.3). Hence Eq. (1.1) is oscillatory. 
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Remark 2.1. Theorem 2.1 extends Theorem 2 of [7]. 

Theorem 2.2. Let  (2.1) holds . Assume that there exist functions XH  , ),(1 RICg  and 
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Thus by the  integration by parts we obtain  
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Since  from Eq. (2.1), it is clear that there exists some 0>  such that 
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This contradicts (2.16). 
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THis contradicts (2.14). So Eq. (1.1) is oscillatory.  

Remark 2.1. Theorem 2.2 extends Theorem 5 in [7]. 

Example 2.1. Consider the neutral differential equation 
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Choosing µ1= µ2=1, then  it is clear that  
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Let 2)(),( ststH  ,  then  2),( sth . Thus, from (2.3) 

]
54

922

27

128

6

14
16

54

138

6

9
[

1

)],(
)(4

))(()(
)(),([

),(

1

4/32/2

2

1

111
1

0
0










ttt

t

t

eeett
t

dssth
s

srsvCm
sstH

ttH 




 

and 

 

]
12

848
6416

12

800

6

100

6

1

3

1
[

1

)],(
)(4

))(()(
)(),([

),(

1

4/4/2/23

2

2

221
2

0
0










ttt

t

t

eetettt
t

dssth
s

srsvCm
sstH

ttH 




 

Hence  

2,1,)],(
)(4

))(()(
)(),([

),(

1
suplim 21

0
0







jdssth
s

srsvCm
sstH

ttH

t

t

j

jj

j
t 


 . 

Therefore, Eq. (2.12) is oscillatory by Theorem 2.1. 

3. Oscillation criteria of Eq. (1.2) in the case 1)(0  tpi . 

In this section we are concerned with oscillatory behavior of solutions of Eq. (1.2) Assume that 

 ( 1I ) )),,([)( 0 RtCtpi  ,and   ,1)(  tpi  for )1,0(   and  .,...,2,1 ni   

(I2) 


)(lim0, )(,)(),),,([)( 0 ttttRtCt j
t

jjj    for  .,...,2,1 mj   

(I3) ),,),([),( 0 RRtCxtf j  such that  

We assume further that there exist  )),0(),,([)( 0  tCtq j  such that  

  


 


t

m

j

n

i

jij dsspsqtQ
1 1

]))((1)[()(   ,   and    





m

j j

j

tr

t
tR

1
/1 ))((

)(
)(






 

Theorem 3.1. Suppose that Eq. (1.2) is nonoscillatory, then there exists a positive function  )(tu  

on ),[ 1 t  such that 
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,)()(,)(

1

 




dssusRtQ
t





 

dssusRtQtu
t




 )()()()(

1





,                                                                                                     (3.1) 

and   1)()(suplim
)(

/1

0

















t

t
t

j

dssrtu                                                                                         (3.2) 

Proof. Let )(tx > 0 be a nonoscillatory solution of Eq. (1.2), ))(( tx i > 0  and  ))(( tx j > 0  for 

01 ttt  . Then )(tz > 0. 

Since from Eq. (1.1) we have  

.0))(()()))((,())()()((
1 1

1

 
 




m

i

m

i

jjjj txtqtxtftztztr  
                                              (3.3) 

Thus )()()(
1

tztztr 


  is nonincreasing function. We have two cases for )(tz  

(i) )(tz < 0       or  (ii)  )(tz > 0   

(i) Suppose that  )(tz < 0, then there exists  012 ttt   such that )( 2tz < 0. But since 

)()()(
1

tztztr 


  is nonincreasing, then  

)()()()()()( 2

1

22

1
tztztrtztztr 

 
     for 2tt   

Thus 

dssrtztrtztz
t

t


2

)()()()()( /1

22

/1

2

  

Hence, 


)(lim tz
t

 which contradicts the fact that )(tz > 0. 

(ii) If that  )(tz > 0   for  012 tttt  , then since ttj )( , it follows that  

  ))](())[(())()(( tztrtztr jj
  

Thus 






/1]

))((

)(
[

)(

))((

tr

tr

tz

tz

j

j





                                                                                                                 (3.4) 

Now since from (3.3), we have  





m

i

jj txtqtztr
1

0))(()(]))(()([ 
                                                                                            (3.5)                                      

Then  by ( 3I ), we get  

]))((1))[(())((
1





n

i

jijj tptztx                                                                                                (3.6) 

Thus by  (3.5) and (3.6), it follows that 
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 
 


m

i

n

i

jijj tptztqtztr
1 1

0]))((1))[(()(]))(()([    

Thus 

 
 


 m

j

n

i

jij

j

tptq
tz

tztr

1 1

]))((1[)(
))((

]))(()([ 








                                                                                   (3.7) 

Now define 




]

))((

)(
)[()(

tz

tz
trtu

j


     for  2tt  , 

Then )(tu > 0. By differentiation  using (3.4) and (3.7), we get 















 /1

1
1 1

]
))((

)(
))[((

))((

)())()((
]))((1[)()(

tr

tr
tz

tz

ttztr
tptqtu

j

j

j

j
m

j

n

i

jij








 

   

i.e. 

0)()(]))((1[)()(

1

1 1




 

  tutRtptqtu
m

j

n

i

jij




  

Integrating the above inequality, it follows that  

0)()(]))((1[)()()(
33

1

1 1

3    


 

t

t

t

t

m

j

n

i

jij dssusRdsspsqtutu 



                                        (3.8) 

But since ,)( tQ then 

 )()()( 3 tQtutu   as  t  

This contradicts the fact that )(tu > 0. 

Similarly we can show that 






dssusR
t

)()(

1





   for  2tt  . 

Letting  3t  in  (3.8), we get (3.1). 

Now to prove (3.2), we note that 

 i.e. 2

2

( )
1/ 1/

2

( )
1/

( ( ))1 1
[ ]

( ) ( ) ( )

( ) ( ) ( ) ( )
1 1

( ) ( ) ( )

1
[ ( ) ]

( )

j

j

j

t

t

t

t

z t

u t r t z t

z t r s r s z s ds

u t r t z t

r s ds
u t






 


 










 
 

  


 
 







 

Hence 
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1])()[(
)(

/1

2


 




t

t

j

dssrtu  

This implies Eq. (3.2). 

Remark 3.1. Theorem 3.1 extends Theorem 2.1 of Dong [1]. 

Let  
0

)(
nn ty  be a sequence of continuous functions on  ),[ T  defined as  

)()(0 tQty    for  
0tt   

and  

)(])()[()(
1

1 tQdssysRty
t

nn 










   for  ,...2,1n  and 
0tt  .                                                  (3.9) 

Lemma 3.1. If Eq. (1.2) is nonoscillatory, then )()( tutyn   where )(tu be as defined in Theorem 

3.1 and there exists a positive function )(ty  on  ),[ T  such that )()(lim tytyn
t




 for  0tTt  . In 

addition,  

)(])()[()(
1

tQdssysRty
t











 for  Tt                                                                                   (3.10) 

Proof. The proof is similar to the proof of Lemma 2.4 in [1]. 

Corollary 3.1. Let )(tyn  be defined as in Eq. (3.9). If there exists some )(tyn  such that  

 ])()[(suplim
)(

/1

2










t

t
n

t

j

dssrty 1    for ,...2,1,0n     and   mj ,...,2,1 ,                                (3.11) 

then Eq. (1.2) is oscillatory. 

Proof. Suppose that Eq. (1.2) is nonoscillatory, then Eq. (3.2) holds by Theorem 3.1. Moreover by 

Lemma 3.1 it follows that )()( tutyn  . Thus from Eq. (3.2) we get  

1])()[(suplim
)(

/1

2










t

t
n

t

j

dssrty  which contradicts Eq. (3.11). Hence Eq. (1.2) is oscillatory. 

Putting 1n  in Corollary 3.1, we have the following corollary 

Corollary 3.2. Assume that 

1 )(])()([])()[(suplim
1

2

)(
/1 








tQdssQsRdssrty
t

t

t
n

t

j








, 

then Eq. (1.2) is oscillatory. 

Remark 3.2. Corollaries 3.1 and 3.2 extend and improve Corollaries 2.5 and 2.6 of [1]. 

Theorem 3.2. Let )(tyn  be defined as in Eq. (3.9). If  there exists some )(tyn  such that  we have 

  
 

 
t t

n

m

j

n

i

jij dtdssysRtptq ])()(exp[]))((1)[( /1

1 1

                                                        

(3.12) 

or 
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 
 

t t
nn dtdssysRtQtytR ])()(exp[)()()( /1/1                                                                         (3.13) 

then Eq. (1.2) is oscillatory. 

Proof. Suppose that Eq. (1.2) is nonoscillatory, then from Eq. (3.10), we have 

 
 


 m

j

n

i

jij tptqtytRty
1 1

]))((1)[()()()(
1





   for Tt  . 

But since )()( tytyn  , then  

 
 


m

j

n

i

jijn tptqtytytRty
1 1

/1 ]))((1)[()()()()(    

i.e. 














   

 

t

T

m

j

t

T
n

n

i

jij

t

T
n dsduuyuRspsqTydssysRty

1

/1

1

/1 ]])()(exp[]))((1)[([)(])()(exp[)(  

Then  

dsduuyuRspsqTy
s

T
nj

n

i

i

t

T

m

j

j ])()(exp[))]((1)[()(
1

11
 



 
 , 

which contradicts Eq. (3.12) 

Now, define 

dssysRtv
t

)()()(

1






 



 for Tt  . 

Thus  

)]()()[()()()()()()()(

111

' tQtvtRtytytytRtytRtv nnn 







 

Therefore 

])()()()([)()(exp[)(
00

11

dttQtytRtvdssysRtv
t

n

t

t
n 



   

Hence 

dtdssysRtQtytRtv
t

t
n

t
n ])()(exp[)()()()(

00

11




   

This contradicts Eq. (3.13) and therefore Eq. (1.2) is oscillatory. 

Remark 3.3. Theorem 3.2 extends Corollary 2.7 of  [2]. 

Note that if 0n   in Theorem 3.2, we get the following result which improves corollary 2.8 of [1]. 

Corollary 3.3. Let )(tyn  be defined in Eq. (3.9) and either 

  






dtdssQsRtptq
t

t
j

n

i

i
t

m

j

j ])()(exp[))]((1)[(
00

1

11

  

or 
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




dtdssQsRtQtR
t

tt
])()(exp[)()(

11

00





. 

Then Eq. (1.2) is oscillatory. 

Example  3.1. Consider the D.E. 

0    t,0)))((,(])()([(
2

1

1
 





i

jj txtftztzt 
 .                                                                      (3.14) 

Here, .
4
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)(,

4

1
)(,

3
)(,

2
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2
)(,

1
)(,)( 21212221   tptp

t
t

t
t

t
tq

t
tqttr   

And we will let 1 . 
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t
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
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
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
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


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Thus 


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
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12
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00
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Hence, by Corollary 3.3 Eq. (2.14) is oscillatory. 

4. Oscillation criteria of Eq. (1.2) for  0)(  tpi  
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Define  dssqtQ
t

m

j

j )()(
1

 




 . We give The following theorem which partially generalizes Theorem 

3.1 of [1]. 

Theorem 4.1. Assume that every solution of Eq. (1.2) is neither oscillatory nor tends to zero, then 

there exists a positive function )(tu  on ),[ T such that  

,)()(,)(

1

 




dssusRtQ
t





 

dssusRtQtu
t




 )()()()(

1





for 0tt  ,                                                                                       (4.1) 

and   1)()(suplim
)(

/1

0

















t

t
t

j

dssrtu                                                                                         (4.2) 

Proof. Let )(tx  be a solution of Eq. (1.2) which is neither oscillatory nor tends to zero. Such that 

)(tx > 0, ))(( tx i > 0  and  ))(( tx j > 0  for 01 ttt  . Then )(tz > 0. 

Now from Eq. (1.2), we have  

.0))(()()))((,())()()((
1 1

1

 
 




m

i

m

i

jjjj txtqtxtftztztr  
 

Thus )()()(
1

tztztr 


  is nonincreasing function. Then )(tz and )(tz are eventually of one signe. 

Now we have one of the two possible cases  

(i) )(tz > 0        (ii)  )(tz < 0   

(i) Assume that )(tz > 0, then the proof will be as the proof of Theorem 3.1 until we reach Eq. (3.5) 

in the form 





m

i

jj tztqtztr
1

0))(()(]))(()([ 
                                                                                            (4.3) 

This completes the proof as in Theorem 3.1. 

(ii) Assume that )(tz < 0  eventually for 012 tttt  , then we have two cases,  

(a) )(tx  is unbounded               (b) )(tx  is bounded 

(a) Suppose that )(tx  is unbounded, then  





n

i

i

n

i

ii

n

i

ii txtxtptxtptztx
111

))(())(()())(()()()(                                                         (4.4) 

Further, since  )(tx  is unbounded, then we can choose a sequence  
1nnT   satisfying 


n

n
Tlim , 

from which 


)(lim n
n

Tx  and )()(max
1

n
TtT

Txtx
n


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By choosing N  so large such that 
1)( TTNi    for  

2tTN  . Thus )()(max
)(

N
TtT

Txtx
NNi




 which 

contradicts Eq. (4.4). 

(b) Suppose that )(tx  is bounded, then it follows that 0)( tx  as t . 

Since 0)(suplim 


tz
t

, then 

0)(suplim)1(

0))(()(inflim)(suplim

0]))(()()([suplim

1

1

















tx

txtptx

txtptx

t

n

i

ii
tt

n

i

ii
t







 

This shows that 0)( tx  as t , and so the proof is completed. 

Let  
0

)(
nn ty  be a sequence of continuous functions on  ),[ T  defined as follows 

)()(0 tQty    for  0tt   

and 

)(])()[()(
1

1 tQdssysRty
t

nn 










,   for  ,...2,1n  and 0tt  .                                

Corollary 4.1. Let )(tyn  be defined as before. If there exists some )(tyn  such that   

 ])()[(suplim
)(

/1

0










t

t
n

t

j

dssrty 1  ,  for ,...2,1,0n     and   mj ,...,2,1 , 

then every solution of Eq. (1.2) is either oscillatory or tends to zero.   

Proof. The proof is similar to the proof of Corollary 3.1. 

 Corollary 4.2. Assume that   

1 )]()()([])([suplim
1

0

)(
/1 








tQdssQsRdssr
t

t

t
t

j








    for ,...2,1,0n     and   mj ,...,2,1 , then 

every solution of Eq. (1.2) is either oscillatory or tends to zero.  

Remark 4.1. Corollaries 4.1 and 4.2 extend and improve Corollaries 3.4 and 3.5 of [2]. 

Corollary 4.3. Let )(tyn  be defined as before. If there exists some )(tyn  such that either  

 


0 0

])()(exp[)( /1

1
t

t

t
n

m

j

j dtdssysRtq 
                                      

or 

 


0 0

])()(exp[)()()( /1/1

t

t

t
nn dtdssysRtQtytR  , 

Proof.The proof is similar to that of corollary 3.3 

Remark 4.2.Corollary 4.3 improves and extends corollary 3.6 of [1] 
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