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1 Introduction and Preliminaries

Let L1(I) be the space of Lebesgue integrable functions defined on the interval
I = [0, 1]. Let E be a reflexive Banach space with the norm ||.|| and dual
E∗ and denote by C[I, E] the Banach space of strongly continuous functions
x : I → E with sup-norm ||.||0. The existence of weak solutions of the integral
equation

x(t) = x0 +
∫ t

0
f(s, x(s)) ds, t ∈ I

was proved by O’Regan [9] where f : I × E → E, x0 ∈ E. .
The existence of weak solutions to the Hammerstein integral equation

x(t) = h(t) +
∫ 1

0
k(t, s) f(s, x(s)) ds, t ∈ [0, 1]
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was proved by O’Regan ( see[8]) where x takes values in reflexive Banach
spaces and f is weakly-weakly continuous.
In this paper, we shall study the existence of a weak solution to the Hammerstein
integral equation

x(t) = g(t) +
∫ 1

0
k(t, s) f(s, x(s)) ds, t ∈ [0, 1] (1)

and Urysohn integral equation

x(t) = g(t) +
∫ 1

0
u(t, s, x(s)) ds, t ∈ [0, 1] (2)

Where x takes values in reflexive Banach spaces and f : I×E → E is weakly
measurable in t and weakly sequentially continuous in x .
The function u : I × I × E → E is weakly measurable in s and weakly
sequentially continuous in x. Also, the existence of the weak maximal and
minimal solutions will be proved.

Now, we shall present some auxiliary results that will be need in this work.
Let E be a Banach space (need not be reflexive) and let x : I → E, then

(1) x(.) is said to be weakly continuous (measurable) at t0 ∈ I if for every
φ ∈ E∗, φ(x(.)) is continuous (measurable) at t0.

(2) A function h : E → E is said to be sequentially continuous if h maps
weakly convergent sequences in E to weakly convergent sequences in E.

If x is weakly continuous on I, then x is strongly measurable and hence
weakly measurable (see[3] and [2]). Note that in reflexive Banach space weakly
measurable functions are Pettis integrable if and only if φ(x(.)) is Lebesgue
integrable on I for every φ ∈ E∗ (see[3] pp. 78). Now we state a fixed point
theorem and some propositions which will be used in the sequel (see[9]).

Theorem 1.1. Let E be a Banach space and let Q be a nonempty, bounded,
closed and convex subset of the space E and let T : Q → Q be a weakly
sequentially continuous and assume that TQ(t) is relatively weakly compact
in E for each t ∈ [0, 1] . Then, T has a fixed point in the set Q.

proposition 1.1. A subset of a reflexive Banach space is weakly compact if
and only if it is closed in the weak topology and bounded in the norm topology.
proposition 1.2. Let E be a normed space with y 6= 0. Then there exist a
φ ∈ E∗ with ||φ|| = 1 and ||y|| = φ(y).
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2 Hammerstein integral equation

Let E be a reflexive Banach space and D ⊂ E. Consider the following assump-
tions

(1) g ∈ C[I, E] ;

(2) f : I ×D → E satisfies the following

(i) For each t ∈ I, ft = f(t, .) is weakly sequentially continuous;

(ii) For each x ∈ D, f(., x(.)) is weakly measurable on I ;

(iii) The weak closure of the range of f(I ×D) is weakly compact in E

(or equivalently: there exists an M such that ||f(t, x)|| ≤ M

(t, x) ∈ I ×D; )

(3) k : I × I → R+ is integrable in s and continuous in t , the operator

Ky(t) =
∫ 1

0
k(t, s) y(s) ds

maps L1(I) into L1(I) and
∫ 1
0 k(t, s) ds < M1, t ∈ I.

Definition 2.1. By a weak solution of (1) we mean a function x ∈ C[I, E]
such that

φ(x(t)) = φ(g(t)) +
∫ 1

0
k(t, s) φ(f(s, x(s))) ds, t ∈ [0, 1]

for all φ ∈ E∗.
Theorem 2.1. Let the assumptions (1)-(3) be satisfied. Then equation (1) has
at least one weak solution x ∈ C[I, E].
Proof: Define the operator T by

Tx(t) = g(t) +
∫ 1

0
k(t, s) f(s, x(s)) ds, t ∈ I.

For any x ∈ C[I, E] and since f(., x(.)) is weakly measurable on I

and ||f(t, x)|| ≤ M, then φ(f(., x(.))) is Lebesgue integrable on
I ∀φ ∈ E∗ and since k(t, .) is Lebesgue integrable on I, then we have
φ(k(t, .) f(., x(.))) = k(t, .) φ(f(., x(.))) is Lebesgue integrable on I ∀φ ∈ E∗,
then k(t, .) f(., x(.)) is Pettis integrable on I. Thus T is well defined.
We shall prove that T : C[I, E] → C[I, E].
Let t1, t2 ∈ I and t1 < t2 ( without loss of generality assume that
Tx(t2)− Tx(t1) 6= 0)

Tx(t2)−Tx(t1) = g(t2)− g(t1) +
∫ 1

0
k(t2, s) f(s, x(s)) ds−

∫ 1

0
k(t1, s) f(s, x(s)) ds
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= g(t2) − g(t1) +
∫ 1

0
[k(t2, s) − k(t1, s) ]f(s, x(s)) ds

Therefore as a consequence of proposition 1.2, we obtain

||Tx(t2)− Tx(t1)|| = φ(Tx(t2)− Tx(t1))

= φ(g(t2) − g(t1)) +
∫ 1

0
[k(t2, s) − k(t1, s) ]φ(f(s, x(s))) ds

= ||g(t2) − g(t1)|| +
∫ 1

0
[k(t2, s) − k(t1, s) ] ||f(s, x(s))|| ds

≤ ||g(t2) − g(t1)|| + M
∫ 1

0
|k(t2, s) − k(t1, s) | ds.

let the set Q be defined as

Q = { x ∈ C[I, E] : ||x|| ≤ M2 }, M2 = ||g|| + M.M1.

Let x ∈ Q, then we have

||Tx(t)|| = φ(Tx(t)) = φ(g(t)) +
∫ 1

0
k(t, s) φ(f(s, x(s))) ds

||g|| +
∫ 1

0
k(t, s) ||f(s, x(s))|| ds ≤ ||g|| + M

∫ 1

0
k(t, s) ds ≤ ||g|| + M M1

and hence Tx ∈ Q implies TQ ⊂ Q (i.e. T : Q → Q )
Then Q is nonempty, uniformly bounded and strongly equi-continuous subset
of C[I, E]. also it can be shown that Q is convex and closed.
As a consequence of Proposition 1.1, then TQ is relatively weakly compact.
It remains to prove that T is weakly sequentially continuous.
Let {xn} be a sequence in Q converges weakly to x ∀t ∈ I and since
f(t, x(t)) is weakly sequentially continuous in x, then f(t, xn(t)) converges
weakly to f(t, x(t)) thus φ(f(t, xn(t))) converges strongly to φ(f(t, x(t)))
( see assumption (iii)). Applying Lebesgue Dominated Convergence Theorem
for Pettis integral, we get

φ(
∫ 1

0
k(t, s) f(s, xn(s)) ds) =

∫ 1

0
k(t, s) φ(f(s, xn(s))) ds

→
∫ 1

0
k(t, s) φ(f(s, x(s))) ds ∀φ ∈ E∗, t ∈ I.

Then T is weakly sequentially continuous. ( i.e. Txn(t) → Tx(t) weakly
∀t ∈ I ) Since all conditions of Theorem 1.1 are satisfied, then the operator
T has at least one fixed point x ∈ Q which competes the proof.

Electronic Journal. http://www.neva.ru/journal, http://www.math.spbu.ru/diffjournal/ 54



Differential Equations and Control Processes, N 4, 2008

3 Urysohn integral equation

Let E be a reflexive Banach space and D ⊂ E. Consider the following assump-
tions:

(1) g ∈ C[I, E] ;

(2) u : I × I ×D → E satisfies the following

(i) For each t, s ∈ I × I, u(t, s, .) is weakly sequentially continuous;

(ii) For each x ∈ D and t ∈ I u(t, ., x(.)) is weakly measurable on I ;

(iii) For each x ∈ D and s ∈ I u(., s, x(s)) is continuous on I ;

(3) ||u(t, s, x(s))|| ≤ k(t, s), k : I × I → R+ is integrable in s and
continuous in t , the operator

Ky(t) =
∫ 1

0
k(t, s) y(s) ds

maps L1(I) into L1(I) and
∫ 1
0 k(t, s)ds < M1, t ∈ I.

Definition 3.1. By a weak solution of (2) we mean a function x ∈ C[I, E]
such that

φ(x(t)) = φ(g(t)) +
∫ 1

0
φ(u(t, s, x(s))) ds, t ∈ [0, 1]

for all φ ∈ E∗.
Theorem 3.1. Let the assumptions (1)-(3) be satisfied. Then equation (2) has
at least one weak solution x ∈ C[I, E].
Proof: Define the operator T by

Tx(t) = g(t) +
∫ 1

0
u(t, s, x(s)) ds, t ∈ I.

For any x ∈ C[I, E] since u(t, ., x(.)) is weakly measurable on I,

then φ(u(t, ., x(.))) is strongly measurable on I ∀φ ∈ E∗ and since
||u(t, s, x)|| ≤ k(t, s), then φ(u(t, ., x(.))) is Lebesgue integrable on
I ∀φ ∈ E∗ and hence u(t, ., x(.)) Pettis integrable on I. Thus T is well
defined.
We shall prove that T : C[I, E] → C[I, E].
Let t1, t2 ∈ I, t1 < t2 ( without loss of generality assume that
Tx(t2)− Tx(t1) 6= 0)and x ∈ C[I, E]

Tx(t2)−Tx(t1) = g(t2) − g(t1) +
∫ 1

0
u(t2, s, x(s)) ds −

∫ 1

0
u(t1, s, x(s)) ds
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= g(t2) − g(t1) +
∫ 1

0
[u(t2, s, x(s)) − u(t1, s, x(s)) ] ds

Therefore as a consequence of proposition 1.2, we obtain

||Tx(t2)− Tx(t1)|| = φ(Tx(t2)− Tx(t1))

= φ(g(t2) − g(t1)) +
∫ 1

0
φ[u(t2, s, x(s)) − u(t1, s, x(s)) ] ds

≤ ||g(t2) − g(t1)|| +
∫ 1

0
||u(t2, s, x(s)) − u(t1, s, x(s))|| ds (3)

let the set Q be defined as

Q = { x ∈ C[I, E] : ||x|| ≤ M2 }, M2 = ||g|| + M.

Let x ∈ Q, then we have

||Tx(t)|| = φ(Tx(t)) = φ(g(t)) +
∫ 1

0
φ(u(t, s, x(s))) ds

= φ(g(t)) +
∫ 1

0
||u(t, s, x(s))|| ds ≤ ||g|| +

∫ 1

0
k(t, s) ds ≤ ||g|| + M

and hence Tx ∈ Q implies TQ ⊂ Q (i.e. T : Q → Q ).
Then Q is nonempty, uniformly bounded and strongly equi-continuous subset
of C[I, E]. also it can be shown that Q is convex and closed.
As a consequence of Proposition 1.1, then TQ is relatively weakly compact.
It remains to prove that T is weakly sequentially continuous.
Let {xn} be a sequence in Q converges weakly to x ∀t ∈ I and since
u(t, s, x(s)) is weakly sequentially continuous in x, then u(t, s, xn(s)) con-
verges weakly to u(t, s, x(s)) thus φ(u(t, s, xn(s))) converges strongly to
φ(u(t, s, x(s))). using assumption (3) and applying Lebesgue Dominated Con-
vergence Theorem for Pettis integral, we get

φ(
∫ 1

0
u(t, s, xn(s)) ds) =

∫ 1

0
φ(u(t, s, xn(s))) ds

→
∫ 1

0
φ(u(t, s, x(s))) ds ∀φ ∈ E∗, t ∈ I.

Then T is weakly sequentially continuous. ( i.e. Txn(t) → Tx(t) weakly
∀t ∈ I ) Since all conditions of Theorem 1.1 are satisfied, then the operator
T has at least one fixed point x ∈ Q which competes the proof.
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4 The weak maximal and weak minimal solutions

Now we give the following definition
Definition 4.1 Let q(t) be a weak solution of (1) Then q(t) is said to be a
weak maximal solution of (1) if every weak solution x(t) of (1) satisfies the
inequality
φ(x(t)) < φ(q(t)), ∀φ ∈ E∗. A weak minimal solution s(t) can be defined
by similar way by reversing the above inequality i.e. φ(x(t)) > φ(s(t)), ∀φ ∈
E∗.
In this section f assumed to satisfy the following assumption:

(4) for any x, y ∈ E satisfying φ(x(t)) < φ(y(t)), ∀φ ∈ E∗ implies that
φ(f(s, x(s))) < φ(f(s, y(s)))

Lemma 4.1 Let f(t, x), k(t, s) satisfy assumptions of Theorem 2.1
and let x(t), y(t) ∈ C[I, E] on I satisfying

φ(x(t)) ≤ φ(g(t)) +
∫ 1

0
k(t, s) φ(f(s, x(s))) ds

φ(y(t)) ≥ φ(g(t)) +
∫ 1

0
k(t, s) φ(f(s, y(s))) ds, ∀φ ∈ E∗

where one of them is strict.
If (f(t, x)) satisfies assumption (4). Then

φ(x(t)) < φ(y(t)). (4)

proof: Let the conclusion (4) be false, then there exists t1 such that

φ(x(t1)) = φ(y(t1)) t1 > 0

and
φ(x(t)) < φ(y(t)) 0 < t < t1.

Since (f(t, x)) satisfies assumption (4), we get

φ(x(t1)) ≤ φ(g(t1)) +
∫ 1

0
k(t1, s) φ(f(s, x(s))) ds

< φ(g(t1)) +
∫ 1

0
k(t1, s) φ(f(s, y(s))) ds

< φ(y(t1)).

Which contradicts the fact that φ(x(t1)) = φ(y(t1)), then

φ(x(t)) < φ(y(t)).
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Theorem 4.1 Let the assumptions of Theorem 2.1 be satisfied. If f(t, x)
satisfies assumption (4), then there exist a weak maximal and weak minimal
solutions of (1).
Proof Firstly we shall prove the existence of the weak maximal solution of
(1). Let ε > 0 be given. Now consider the integral equation

xε(t) = g(t) +
∫ 1

0
k(t, s) fε(s, xε(s))ds, (5)

where
fε(t, xε(t)) = f(t, xε(t)) + ε.

Clearly the function fε(t, xε) satisfies the conditions (1)-(3) of Theorem 2.1
and

|| fε(t, xε) || ≤ M + ε = M
′
.

Therefore equation (5) has a weak solution xε ∈ C[I, E] according to Theorem
2.1. Let ε1 and ε2 be such that 0 < ε2 < ε1 < ε. Then

xε1(t) = g(t) +
∫ 1

0
k(t, s) fε1(s, xε1(s)) ds,

xε1(t) = g(t) +
∫ 1

0
k(t, s) ( f(s, xε1(s)) + ε1) ds,

implies that

φ(xε1(t)) > φ(g(t)) +
∫ 1

0
k(t, s) ( φ(f(s, xε1(s))) + ε2) ds, (6)

φ(xε2(t)) = φ(g(t)) +
∫ 1

0
k(t, s) ( φ(f(s, xε2(s))) + ε2) ds (7)

Using Lemma 4.1, then (6) and (7) implies

φ(xε2(t)) < φ(xε1(t)) for t ∈ [0, 1].

As shown before in the proof of Theorem 2.1 the family of functions xε(t)
defined by (5) is uniformly bounded and of strongly equi-continuous functions.
Hence by Arzela-Ascoli Theorem , there exists a decreasing sequence εn such
that ε → 0 as n → ∞, and limn→∞ xεn

(t) exists uniformly in [0, 1]
and denote this limit by q(t). from the weakly sequentially continuity of
the function fεn

in the second argument and applying Lebesgue Dominated
Convergence Theorem for Pettis integral, we get

q(t) = lim
n → ∞xεn

(t) = g(t) +
∫ 1

0
k(t, s) f(s, q(s)) ds
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which proves that q(t) as a solution of (1).
Finally, we shall show that q(t) is the weak maximal solution of (1). To do
this, let x(t) be any weak solution of (1). Then

φ(xε(t)) = φ(g(t)) +
∫ 1

0
k(t, s) (φ(f(s, xε(s))) + ε) ds

> φ(g(t)) +
∫ 1

0
k(t, s) φ(f(s, xε(s))) ds

and
φ(x(t)) = φ(g(t)) +

∫ 1

0
k(t, s) φ(f(s, x(s))) ds

applying Lemma 4.1, we get

φ(xε(t)) > φ(x(t)) for t ∈ [0, 1].

from the uniqueness of the maximal solution (see [2]), it is clear that xε(t) tends
to q(t) uniformly in t ∈ [0, 1] as ε → 0.
By similar way as done above we can prove that s(t) is the weak minimal
solution of (1).
The weak maximal and minimal solutions of (2) can be defined in the same
fashion as done above.
Now, the function u assumed to satisfy the following assumption:

(4∗) for any x, y ∈ E satisfying φ(x(t)) < φ(y(t)), ∀φ ∈ E∗ implies that
φ(u(t, s, x(s))) < φ(u(t, s, y(s)))

Now the following lemma can be proved.
Lemma 4.2 Let u(t, s, x) satisfies assumptions of Theorem 3.1
and let x(t), y(t) ∈ C[I, E] on I satisfying

φ(x(t)) ≤ φ(g(t)) +
∫ 1

0
φ(u(t, s, x(s))) ds

φ(y(t)) ≥ φ(g(t)) +
∫ 1

0
φ(u(t, s, y(s))) ds, ∀φ ∈ E∗

where one of them is strict.
If (u(t, s, x)) satisfies assumption (4∗). Then

φ(x(t)) < φ(y(t)).

Theorem 4.2 Let the assumptions of Theorem 3.1 be satisfied. If u(t, s, x)
satisfies assumption (4∗), then there exists a weak maximal and weak minimal
solutions of (2).
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Proof Firstly we shall prove the existence of the weak maximal solution of
(2). Let ε > 0 be given. Now consider the integral equation

xε(t) = g(t) +
∫ 1

0
uε(t, s, xε(s))ds, (8)

where
uε(t, s, xε(t)) = u(t, s, xε(t)) + ε.

Clearly the function uε(t, s, xε) satisfies the conditions (1)-(3) of Theorem
3.1 and

|| uε(t, s, xε) || ≤ k(t, s) + ε = k1(t, s) ∈ L1.

Therefore equation (8) has a weak solution xε ∈ C[I, E] according to Theorem
3.1. Let ε1 and ε2 be such that 0 < ε2 < ε1 < ε. Then

xε1(t) = g(t) +
∫ 1

0
uε1(t, s, xε1(s)) ds,

xε1(t) = g(t) +
∫ 1

0
(u(t, s, xε1(s)) + ε1) ds,

implies that

φ(xε1(t)) > φ(g(t)) +
∫ 1

0
(φ(u(t, s, xε1(s))) + ε2) ds, (9)

φ(xε2(t)) = φ(g(t)) +
∫ 1

0
(φ(u(t, s, xε2(s))) + ε2) ds (10)

Using Lemma 4.2, then (9) and (10) implies

φ(xε2(t)) < φ(xε1(t)) for t ∈ [0, 1].

As shown before in the proof of Theorem 3.1 the family of functions xε(t)
defined by (8) is uniformly bounded and of strongly equi-continuous functions.
Hence by Arzela-Ascoli Theorem , there exists a decreasing sequence εn such
that ε → 0 as n → ∞, and limn→∞ xεn

(t) exists uniformly in [0, 1]
and denote this limit by q(t). from the weakly sequentially continuity of the
function uεn

in x and applying Lebesgue Dominated Convergence Theorem
for Pettis integral, we get

q(t) = lim
n → ∞xεn

(t) = g(t) +
∫ 1

0
u(t, s, q(s)) ds

which proves that q(t) as a solution of (2).
Finally, we shall show that q(t) is the weak maximal solution of (2). To do
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this, let x(t) be any weak solution of (2). Then

φ(xε(t)) = φ(g(t)) +
∫ 1

0
(φ(u(t, s, xε(s))) + ε) ds

> φ(g(t)) +
∫ 1

0
φ(u(t, s, xε(s))) ds

and
φ(x(t)) = φ(g(t)) +

∫ 1

0
φ(u(t, s, x(s))) ds

applying Lemma 4.2, we get

φ(xε(t)) > φ(x(t)) for t ∈ [0, 1].

from the uniqueness of the maximal solution (see [2]), it is clear that xε(t) tends
to q(t) uniformly in t ∈ [0, 1] as ε → 0.
By similar way as done above we can prove that s(t) is the weak minimal
solution of (2).
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