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1. INTRODUCTION 

Let X be a Banach space and let  XP  denote the class of all subsets of X, called the power set of X. 

Denote 

 p XP  |  is non-empty and has the property .A X A p   

Here, p may be p = closed (in short cl) or p = convex (in short cv) or p = bounded (in short bd) or p = 

compact (in short cp). Thus  cl XP ,  cv XP ,  bd XP and  cp XP denote, respectively, the 

classes of all closed, convex, bounded and compact subsets of X.  

Let  , , A  be a complete  -finite measure space and let R  be the real line. Given a closed and 

bounded interval   ,J a b in R , consider the functional multi-valued random boundary value 

problem ( in short RBVP) of ordinary second order random differential inclusion 
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for all  , where  : pF J R R P and the functions : J J   is continuous. 

 By random solution of the multi-valued RBVP (1.1) on J  , I mean a measurable function

 1
: ,x AC J R  satisfying for each  ,    " , ,x t v t   for some measurable

 1
: ,v L J R satisfying     , , ( ), ,v t F t x t    a.e. t J and    , 0 ' ,x a x b    

where  1
,AC J R  is the space of continuous real-valued functions whose first derivative exists and is 

absolutely continuous on J.   

The special case when     , , , , ,F t x f t x   the multi-valued RBVP (1.1) reduce to the 

boundary value problems of functional random differential equation 
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                                   (1.2) 

for all   where :f J R R  . The single-valued RBVP (1.2) have been discussed in 

Dhage and Kang [2] for various aspects of the solution. The multi-valued RBVP (1.1), this type of 

existence results are also proved in D. S. Palimkar papers and monograph see references [9-14]. In this 

paper, I discuss the multi-valued RBVP (1.1) for the existence of random solution for non-convex case 

under some monotonicity conditions.  

                                               2.  AUXILIARY RESULTS 

Let  , XM  and  ,C J R  be the space of measurable X-valued functions on   and continuous 

real-valued functions on J respectively. Let : J R    p RP be a multi-valued mapping. 

Then for any measurable function :x J R , let 

                      
         , ( , ) , , ( , ),   . .    (2.1)S x v M J R v t t x t a e t J         M  

And                         1 1
, ( , ) , , ( , ),   . .  .  (2.2)S x v L J R v t t x t a e t J         M  

This is set of selection functions for   on J R  . When there is no confusion, I denote 

     1 1
,S x S y    where  ,y t   ( ),x t   for some continuous function : J J  . 

The integral of the random multi-valued function   is defined as  

    1
, ( , ), , : ( )( )

b b

a a
s x s ds v s ds v S x       . 

Furthermore, if the integral  , ( , ),
b

a
s x s ds    exists for every measurable function 

:x J R , then I say the multi-valued mapping   is Lebesgue integrable on J R  . 
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Lemma 2.1(Hu and Papageorgiou [4]) Let E be a Banach space. If  : cpJ E E  P  is strong 

Carathe’odory, then the multi-valued map    , , ( )t x t x t  is jointly measurable for every 

measurable function : .x J E  

                                                       3. EXISTENCE RESULTS 

 It is more convenient to deal with the integrals than derivatives, I shall rewrite the FRBVPs into the 

random integral inclusion; the kernels of the random integral equations are the appropriate Green’s 

function associated with the random boundary conditions. This transformation may be done in several 

ways. One-way of doing it is via Green’s function. 

 Now, the multi-valued RBVP (1.1) is equivalent to the functional random integral inclusion 

(FRII) 

                                   
 ( , ) ( , ) , ( ( ), ), ,     if    

b

a
x t H t s F s x t ds t J     ,                   (3.1) 

where  ,H t s  is a Green’s function associated with the homogeneous linear FRBVP 

                                                  

''( , ) 0,     . .    
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x t a e t J
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                                             (3.2) 

for a fixed   and is given by   

 
,     if 

,
,     if .

t a a t s b
H t s

s a a s t b

   
 

   

  (3.3) 

It is known that the Green’s function  ,H t s  is continuous and non-negative real-valued function on 

J J  satisfying 

                                                          
0 ( , )H t s b a                                                  (3.4) 

And                                              

2
( )

( , ) .
2

b

a

a b
H t s ds


                  (3.5) 

 The key result in formulating random fixed point theorems concerning the existence of measurable 

selector for a multi-valued mapping is the following: 

Theorem3.1 (Kuratowskii and Ryll-Nardzewski [6]) If the multi-valued operator 

 : pQ X X P  is measurable with closed values, then Q has a measurable selector. 

Remark 3.1 Note that if  : clQ X X P  is a multi-valued random operator, then the set 

( )( )QS x  is non-empty for each x X . 
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A random fixed point theorem for the right monotone increasing multi-valued random operators on 

separable ordered Banach spaces is  

Theorem 3.2 (Dhage [1]) Let  , A  be a measurable space and let  ,   be a random interval in 

a separable Banach space X. If   : ,Q     ,cl   P  is a compact, upper semi-continuous 

right monotone increasing multi-valued random operator and the cone K in X is normal, then ( )Q   

has a random fixed point in  ,a b . 

I also need the following definitions in the sequel. 

Definition 3.1 A multi-valued random operator  : clQ X X P  is called right monotone 

increasing if for each   we have that ( )( ) ( )( )
i

Q QS x S y   for all ,x y X  for which 

.x y  

Definition 3.2 A multi-valued random operator  : pQ X X P  is called strict monotone  

increasing if for each ,   ( ) ( )Q x Q y     for all ,x y X  for which .x y  Similarly, the 

multi-valued random operator ( )Q   is called monotone decreasing if for each 

, ( ) ( )Q x Q y     for all ,x y X  for which x y . Finally, ( )Q   is called monotone if it 

is a either monotone increasing or monotone decreasing multi-valued random operator on X. 

Definition 3.3 A multi-valued mapping  : cpF J R R P  is called Carathe’odory, if for each 

  

(i)    , , ,t F t x   is jointly measurable for each x R , and  

(ii)  , ,x F t x   is an upper semi-continuous almost everywhere for .t J  

Again, a Carathe’odory multi-valued function F is called 
1

L -Carathe’odory if 

(iii) for each real number r> 0 there exists a measurable function  1
: ,rh L J R  such 

that for each   

  ( , , ) sup : , , ( , )   . .   rF t x u u F t x h t a e t J     
P

 

for all x R  with x r . 

Furthermore, a Carathe’odory multi-valued function F is called 1

RL -Carathe’odory if  

(iv) there exists a measurable function  1
: ,h L J R  such that  

 , , ( , )    a.e.   F t x h t t J  
P

 

for all x R , and the function h is called a growth function of F on  
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J R  . 

Definition 3.4 A measurable function  : ,C J R   is called a strict lower random solution for 

the multi-valued RBVP (1.1) if for all 1
( )( )Fv S   , we have  

''( , ) ( , )t v t    ,  ( , ) 0 '( , )a b      

for all t J  and  . Similarly, a strict upper random solution   for the multi-valued RBVP 

(1.1) on J   is defined. 

A random fixed-point theorem for strict monotone increasing multi-valued random operators on 

separable ordered Banach spaces is 

Theorem 3.3 (Dhage [1]) Let  , A  be a measurable space and let  ,   be a random order 

interval in a separable Banach space X. If     : , ,clQ     P  is a strict monotone 

increasing completely continuous multi-valued random operator and the cone K in X is normal, then 

( )Q   has the least random fixed point ( )x   and the greatest random fixed point ( )y   in 

 ,  . Moreover, the sequences ( )nx  and ( )ny  defined by 

0 1( ) ( ), ( ) ( ) , 0,1,2,...,n nx x Q x n           

and 

0 1 ,( ) ( ), ( ) ( ) 0,1,2,...,n ny y Q y n           

converge to ( )x   and ( )y   respectively. 

I use the Theorems 3.2 and 3.3 for proving the main existence results of this paper. 

Then, I have also quoted the following lemmas which are used for proving main result.   

Lemma 3.1 (Lasota and Opial [7])Let E be a Banach space. If dim  E  and

 : cpJ E E  P  is strong 
1

L -Carathe’odory, then 1
( )( ) 0S x     for each x E . 

Lemma 3.2(Lasota and Opial [7]) Let E be a Banach space, F a Carathe’odory multi-valued operator 

with 
1

( ) 0S     and Let    1
: , ,L J E C J EL  be a continuous linear mapping. Then the 

composite operator 

   1

,: , ( , )bd clS C J E C J E L P  

has closed graph on    ( , ) ( , )C J E C J E . 

Consider the following set of assumptions  
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 0H  F  , ,t x   is closed and bounded subset of R  for each  , ,t x  J R   . 

 1H  The multi-valued map  ,t   , ( ),F t x t   is jointly measurable for each 

measurable function :x J R . 

 2H  F is 
1

L -Carathe’odory.  

 3H  The multi-valued map x
1

( )( )FS x  is right monotone increasing in  ,x C J R  

almost everywhere for t J . 

 4H  The multi-valued RBVP (1.1) has a strict lower random solution   and a strict upper 

random solution   with    on .J   

Hypotheses    0 2H H  are common in the literature. Some nice sufficient conditions for 

guarantying 1
( ) 0FS     appear in Lasota and Opial [7]. A mild hypothesis of  4H  has been used in 

Hu and Papageorgiou [4]. Hypothesis  3H  relatively new to the literature, but the special forms have 

been appeared in the works of several authors. 

                                           4. MAIN EXISTENCE RESULT 

Theorem 4.1Assume that the hypotheses    0 4H H  hold. Then the multi-valued RBVP (1.1) has a 

random solution in  ,   defined on J  . 

Proof  Let  ,X C J R . Define a random order interval  ,   in X which is well defined in view 

of hypothesis  4H . Now the multi-valued RBVP (1.1) is equivalent to the random integral inclusion 

                                      

  ( , ) ( , ) , ( ), , ,   .
b

a

x t H t s F s x t ds t J                              (4.1) 

for all   . Define a multi-valued operator    : , clQ X  P  by 

                            
 

1

1

( ) ( , ) | ( , ) ( , ) ( , ) ,  ( )( )   (4.2)

( ) ( )

b

F

a

F

Q x u X u t H t s v s ds v S x

S x

   



  
     
  



M

K

 

where      1
: , , , ,L J R C J R  K:M M  is a continuous operator defined by      

    (   )  ∫  (   ) (   )  
 

 
                                                             (4.3) 

Clearly, the operator ( )Q   is well defined in view of hypothesis  2H . I shall show that ( )Q   

satisfies all the conditions of Theorem 3.2. 
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StepI: First, I show that Q is closed valued multi-valued random operator on  ,  . Observe that 

the operator ( )Q   is equivalent to the composition 
1

( )FS K  of two operators on  1
,L J R , where 

    1
: , , ,L J R X  K M M is the continuous operators defined by 4.3. To show ( )Q   has 

closed values, it suffices to prove that the composition operator 
1

( )FS K  has closed values on 

 ,  . Let  ,x    be arbitrary and let  nv  be a sequence in 
1

( )( )FS x  converging to v in 

measure. Then, by the definition of   1
( ), ( , ) , ( ), ,F nS v t F t x t     a.e. for t J . Since 

  , ( ), ,F t x t    is closed,     , , ( ), ,v t F t x t    a.e. for t J . Hence, 

1
( )( )Fv S x . As a result, 1

( )( )FS x  is closed set in  1
,L J R  for each  . From the 

continuity of ,K  it follows that  1
( ) ( )FS xK  is a closed set in X. Therefore, ( )Q   is a closed-

valued multi-valued operator on  ,   for each  . 

 Next, I show that ( )Q   is a multi-valued random operator on  ,  . First, I show that the 

multi-valued map 
1

( , ) ( )( )Fx S x   is measurable. Let   1
, ,f L J R M be arbitrary. Then 

   

   

    

1
1

( ), ( )( ) inf ( ) ( ) : ( )

inf ( , ) : , ( ), ,

( , ) , , ( ), , .

F FL

b

a

b

a

d f S x f h h S x

f t z z F t x t dt

d f t F t x t dt

  

   

   

  

  







 

But by hypothesis 1( )H ,   , ( ), ,F t x t    is jointly measurable and it is known that the multi-

valued map   , , ,z d z F t x   is continuous. Hence the multi-valued mapping  ( , ) ,d f t 

  , ( ), ,F t x t    is jointly measurable from 1
( , )J X L J R   in to R


. Now the integral 

is the limit of the finite sum of measurable functions, and so,  1
, ( )( )Fd f S x  is measurable. As a 

result, the multi-map     1
, FS      is jointly measurable. 

 Define the multi-valued map   on J X   by 

    1
( , , ) ( ) ( )( ) ( , ) , ( ), , .

b

F

a

t x S x t H t s F s x s ds       K  

I shall show that ( , , )t x   is continuous in t in the Hausdorff metric on R . Let nt be a sequence in 

J converging to .t J Then 
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P

 

Thus the multi-valued map ( , , )t t x  is continuous and hence, by Lemma 2.1, the map

  ( , , ) ( , ) , ( ), ,
b

a

t x H t s F s x s ds     is jointly measurable. Consequently, ( )Q   is a 

random operator on  ,  . 

StepII: Secondly, I show that ( )Q   is right monotone increasing and multi-valued random operator 

on  ,   into itself for each  . Let  , ,x y    be such that  .x y  Since  2H  holds, I 

have that 1 1
( )( ) ( )( ).

i

F FS x S y   Hence ( )( ) ( )( ).
i

Q x Q y   From  3H  it follows that 

( )Q    and ( )Q     for all  . Now ( )Q   is right monotone increasing on X, so we 

have for each   

( ) ( ) ( )
i i

Q Q x Q           

for all  ,x   . Hence Q defines a right monotone increasing multi-valued random operator 

    : , , .clQ     P  

Step III: Next, I show that ( )Q   is completely continuous for each  . First, I show that 

  ( ) ,Q     is compact for each  . Let  ( )ny   be a sequence in   ( ) ,Q     for 

some  . I will show that  ( )ny   has a cluster point. This is achieved by showing that 

 ( )ny   is uniformly bounded and equi-continuous sequence in X.  

CaseI: First, I show that  ( )ny   is uniformly bounded sequence. By the definition of  ( )ny  , I 

have a 
1

( ) ( )( )n F nv S x   for some  ,nx    such that  

( , ) ( , ) ( , ) ,   .
b

n n

a

y t H t s v s ds t J    
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Therefore,                            

  

( , ) ( , ) ( , )

( , ) , ( ), ,

b

n n

a

b

n

a

y t H t s v s ds

H t s F s x s ds

 

  







 P

 

                                                1

( ) ( , )

( ) ( )

b

r

a

r L

b a h s ds

b a h





 

 

  

for all t J , where ( ) ( ) .r       Taking the supremum over t in the above inequality 

yields 

1( ) ( ) ( )n r L
y b a h   , 

which shows that  ( )ny   is a uniformly bounded sequence in   ( ) ,Q    .  

 Next, I show that  ( )ny   is an equi-continuous sequence in    ( ) ,Q    . Let , .t J 

Then  

( , ) ( , ) ( , ) ( , ) ( , ) ( , )
b b

n n n n

a a

y t y H t s v s ds H s v s ds        
 

 ( , ) ( , ) ( , )

( , ) ( , ) ( , ) .

b

n

a

b

r

a

H t s H s v s ds

H t s H s h s ds

 

 

 

 





 

From the above inequality, it follows that 

( , ) ( , ) 0n ny t y    as t  . 

This shows that  ( )ny   is an equi-continuous sequence in   ( ) , .Q     Now  ( )ny   is 

uniformly bounded and equi-continuous for each  , so it has a cluster point in view of Arzela-

Ascoli theorem. As a result, ( )Q   is a compact multi-valued random operator on  ,  . 

CaseII: Next, I show that ( )Q   is an upper semi-continuous multi-valued random operator on  , 

. Let  ( )nx   be a sequence in X such that ( ) ( )nx x  . Let  ( )ny   be a sequence such that 

( ) ( ) ,n ny Q x   and *( ) ( ).ny y    I shall show that * *( ) ( ) .y Q x   since 

( ) ( ) ,n ny Q x   there exists a 
1

( )( ) ( )n F nv S x   such that  
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( , ) ( , ) ( , ) ,     .
b

n n

a

y t H t s v s ds t J    

I must prove that there is a 
1

( ) ( )( )Fv S x    such that  

* *( , ) ( , ) ( , ) ,     .
b

a

y t H t s v s ds t J    

Consider the continuous linear operator   1
: , ,L J RL M   , ,C J R M  defined by  

( , ) ( , ) ( , ) ,    .
b

a

v t H t s v s ds t J  L  

Now   ( ) ( ) 0ny y   as n . 

From Lemma 3.2, it follows that 1

( )FS L  is a closed graph operator. Also from the definition of L  I 

have 

  1

( )( , ) .n F ny t S x  L  

Since *( ) ( )ny y  , there is a point  1

* ( ) *( ) Fv S x   such that 

* *( , ) ( , ) ( , ) ,    
b

a

y t H t s v s ds t J  
 

This show that ( )Q   is a upper semi-continuous multi-valued random operator on  ,  . Thus, 

( )Q   is an upper semi-continuous and compact and hence completely continuous multi-valued 

random operator on  ,  . Now an application of Theorem 3.2 yields that ( )Q   has a random fixed 

point, which further implies that the multi-valued RBVP (1.1) has a random solution on J  . This 

completes the proof. 

                                            5. EXAMPLE 

One of the most important examples of differential inclusions comes from control theory. 

Consider the control system     (   )       where u is a control parameter.  

It appears that the control system and differential inclusion ' ( , ) ( , )
u U

x f x u f x u


    have the 

some trajectories of the sets control depending on   i.e.    ( )  Then we obtain the differential 

inclusion ' ( , ( ))x f x u x . 

The equivalence between the control system and the corresponding differential inclusion is the 

central idea used to prove the existence theorem in optional control theory.  
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Since the dynamics of economical, social and biological macro systems is multi-valued, 

differential inclusions serve as natural models in macro system dynamics. Differential inclusions are 

also used to describe some systems with hysteresis.  
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