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1 Introduction

The Ikeda map I we study is given by
I:2 R+ Chzexp(i(Cy — C3/(1+|2]%), z2€C, (1)

where C' is the complex plane of the variable z = x +4y and R, C1, C2, and C'3
are real constants (mapping parameters). The Ikeda map occurs in the modeling
of optical recording media (crystals) [1]. The numerical results obtained to date
(see [2], [3], [4], [5], [6]) show that under certain parameter values the Ikeda
map exhibits highly complicated dynamical behavior. In particular, the Ikeda
map can have infinitely many hyperbolic periodic orbits, which are located in
a bounded part of C, and a strange attractor (the Ikeda attractor). The aim
of the paper is to give an analysis of the topological structure of orbits by
symbolic dynamics methods (the package ASIDS) and by methods of curves
iteration (the package Line). We also present an analysis of orbit behavior near
fixed and periodic points and of bifurcations that lead to chaotic attractors as
parameters vary.
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2 Analytical results

In this section we give some simple analytical results on the Ikeda map we need
in the sequel. In the real notation the Ikeda map takes the form

I:(z,y) = (R+Ca(x cosT —y sinT),Co(z sinT +y cosT)), (2)
where 7 = C; — C3/(1 + 22 + y?). Some obvious properties of the Tkeda map

are listed below.

1. The map I can be viewed as a composition of the three diffeomorphisms
11, T, and T3 of the plane onto itself:

I:TgoTQOTl,

where T1(z,y) = (z cosT—y sin T, x sin T7+y cos 7) is a rotation through the
angle 7 = 7(r),r* = 22 + 42, Ty(u,v) = (Cyu, Cyv) is a linear homothetic,
and T3(s,t) = (R+ s,t) is a translation along the real axis.

2. If Cy > 0 then I is an orientation preserving diffeomorphism of the plane
onto itself.

3. If |C2| < 1 then the map I is dissipative, i.e. there exists an h > 0 such
that
lim sup [[I"(2,y)[| < h

for each point (z,y).

4. If |Cy| < 1 then every disk K, = {(z,y) : 22 + y* < r?} with the radius
r > |R|/(1 —|C2|) is mapped into itself, i.e. I(K,) C int K.

5. For every point (x,y) the Jacobian of I is of the form det DI(x,y) = Cy>.
Thus, if |Cs| < 1 then I contracts the area, i.e. for the Lebesque measure
of every bounded measurable set U we have

mes [(U) < mes U.

Let |C5| < 1. The properties listed above imply the following;:
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1. Every bounded invariant set U(I(U) = U) is contained in the disk K (r*)
with the radius * = |R|/(1 — |Cy|). Let A, be the maximal bounded
invariant set of I contained in K (r*):

Ay = [ I"(K ().
n=0

It is well known that the set A, is closed connected and asymptotically
stable in the large, i.e. A, is a global attractor. By 5, A, has measure
zero: mes A, = 0.

2. The behavior of orbits of I is entirely determined by the behavior of orbits
from A,. In particular, periodic, non-wandering, and chain- recurrent or-
bits of I are contained in A;. Results of numerical explorations mentioned
above indicate that under certain parameter values the diffeomorphism I
can have infinitely many hyperbolic periodic orbits with periods tending to
infinity. This leads to the existence of homoclinic orbits and indecompos-
able continua in A;. The last means that A, has a very intricate topological
structure.

3 Numerical results

Numerical simulations of the dynamical behavior of the map I have been carried
out with C7; = 0.4, Cy, = 0.9, C3 = 6.0. The parameter R takes the values within
the segment [0; 1.1] increasing by R = 0.01. For each value of R, phase portraits
are indexed by small letters a), b), 7 anew. Results of the numerical study are
the following.

As R increases from 0 to approximately 0.367, the global attractor A, is a
single asymptotically stable fixed point, i.e. I offers the convergence property.

3.1 R=03

The Ikeda map has the fixed point Ay(0.1766,0.2298). This fixed point attracts
all other orbits.

3.2 R=04

The Tkeda map has three fixed points: the fixed point Ay(0.2280,0.2568),
the hyperbolic saddle point Hy(3.0508, —1.6442), and the stable focus
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Figure 1: Ikeda map for R = 0.4.

S0(3.7763,0.8930) (see Fig. la where the global attractor of the map is shown).
The unstable manifold W*(Hy) of Hy consists of two separatrices; the limit set
of the left separatrix is the sink A" = Ag and the limit set of the right one is Sy,
However, while Sy is a regular focus, the sink Ag* has a sufficiently complicated
topological structure (see Fig. 1b). The stable manifold W#*(H,) of the saddle
Hj separates the basins of attraction W#(Ay*) and W#(Sp) of Ap* and Sp.

3.3 R=05

While R increases from R = 0.4 to R = 0.5 the sink Aj bifurcates to the
attractor A which when R = 0.5 contains the sink A((0.2784,0.2734), the period
2 sink S(0.0897,—0.7195), (0.6758,0.6141), and the period 2 hyperbolic saddle
H(1.0017,0.0376), (—0.2517, —0.4987) (see Fig. 2a).

The unstable scparatrices W*(H) of H ends at Ay and S. The closure
of the unstable manifold W*(H) (colored dark) coincides with the attractor
A =W*H)+ Ay + S. The stable manifold W?*(H) (colored light) separates
the basins of attraction of Ay and S. The basin boundary of A is formed
by the stable manifold W*(H,) of the hyperbolic fixed point H, at approxi-
mately (2.2330, —2.3346) (see Fig. 2b). The unstable manifold W*(H,) of Hy
consists of two separatrices, the left one ends at A and the right one ends
at the sink Sp(3.5231,2.1942). The closure of W*(Hy) is the global attractor
A, = W"(Hp)+A+S) of the map. This form of the global attractor is preserved
up to the parameter value R = 1, except that the structure of the attractor A
varies over a wide range.
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Figure 3: Ikeda map for R = 0.6.

34 R=06

The sink Ap(0.3397,0.2809), the period
2 hyperbolic orbit H(1.0094, —0.1100), (—0.2110, —0.4211), and the period 2
sink $(0.5997,0.6757), (0.2188, —0.7184) are contained in the attractor A. The
unstable manifold W*(H) of each point of the orbit H is formed by two sepa-
ratrices, one of these separatrices ends at the sink Ay, (see Fig. 3a), while the
other one intersects the stable manifold W*(H), giving rise to a sequence of
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homoclinic points. Some homoclinic points are listed in the following list:

x = 0.19290582
x = 0.19345644
x = —0.19643224
x = —0.19769240

y = —0.35802801
y = —0.35774567
y = —0.42426632
y = —0.42013205

r = —0.20891181
xr = —0.21068116
xr = —0.21070912
r = —0.21099045

y = —0.42162378
y = —0.42122255
y = —0.42121621
y = —0.42115241

r = —0.21104788
x = —0.20870386

y = —0.42113939
y = —0.42167093

r = —0.21099735
x = —0.21103470

y = —0.42115085
y = —0.42114238.

The Figure 3b, where the stable W#(H) and unstable W*(H) manifolds are
depicted, indicates the transverse character of intersections of these manifolds
near T
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e f

Figure 4: Ikeda map for R = 0.6.

Since at R = 0.5 the manifolds W*(H) and W*(H) are disjoint then there
exists a parameter value R*,0.5 < R* < 0.6, such that the manifold W*(H) is
tangent to the manifold W*(H). The stable manifold W*(H) of the orbit H
forms the boundary of the basins of attraction of the sink Ay and the period 2
attractor A,, which contains the period 2 sink 5. In Fig. 4c is shown the basin

of attraction of A, (colored white grey). Its component containing the point
(0.2188, —0.7184) of the sink S is shown in Fig. 4d.

The attractor As is a closure of the unstable manifold W*(P) of the pe-
riod 6 hyperbolic orbit P(0.1869, —0.5785), (0.3556,0.7053), (0.2818, —0.7800),
(0.6249,0.6969), (0.1343,—0.7635), (0.8751,0.4730). Each connected compo-
nent of W*(P) consists of two separatrices, the one ends at the sink S, while
the other one ends at the chaotic attractor Az (see Fig. 4e). As contains the
attractor A4, induced by the unstable manifold W*(Q) of the period 6 orbit
Q. In Fig. 4f are shown the point (0.2056, —0.4874) of the orbit @ (depicted
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Figure 5: Ikeda map for R = 0.7.

as a black dot) and its stable and unstable manifolds. The attractor A, is a
closure of the unstable manifold W*(Q), which ends at the period 12 sink G.
Fig. 4f presents also two points (0.2022, —0.4816) and (0.2095,0.4953) of the
orbit G. It is interesting to note that the stable and unstable manifolds are
tangent at () forming a sink. The global attractor A is a closure of the unstable
manifold of the orbit H : A = W"(H) + As + Ay. The stable manifold W?*(Hy)
of the hyperbolic point Hy(1.7660, —2.4891) is the common boundary of basins
of attraction of A and the sink Sy(3.3064,2.8382). The displacement of A, Hy
and Sy is similar to that in the cases R = 0.5 and R = 0.7.

3.5 R=0.7

The Ikeda map with R = 0.7 has the inverse saddle fix point Ay(0.3804,02817).
The unstable manifold W*(Ap) of Ay ends at the sink formed by a pair of the
period 2 points S(0.1548,0.2030), (0.6110, 0.2118) which is a minimal attractor.
The inverse saddle point Ay and the period 2 sink S arise from the sink Ay
while R varies from R = 0.6 up to R = 0.7. A closure of the unstable manifold
W4 (Ap) forms the attractor 41 = W*(Ap) + S. The Ikeda map reverse the
orientation of W*(Ap) and hence the orientation of W#(Ay) is also reversed since
the Ikeda map is orientation preserving. There exists the period 2 hyperbolic
orbit H;(0.5772,0.6788), (0.3102,—0.7009) with transverse intersection of the
stable W*(H;) and unstable W*(H;) manifolds forming the chaotic attractor
Ay = WH(Hy). The attractor As has two connected components derived from
components of the unstable manifold W*(H;) for points of the orbit Hy. The
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Figure 6: Ikeda map for R = 0.7.

attractor A can be viewed as a two-periodic attractor since the Ikeda map
takes one connected component of Ay onto the other one. The unstable manifold
W*(H) of the period 2 hyperbolic orbit H(—0.1364, —0.3495), (0.9931, —0.1676)
is formed by two scparatrices W*(H), and W*(H),, which ends at the attractors
Aq and As, respectively. Thus, the closure of W*(H) makes up the attractor
A=A+ WY H)+ Ay of the form A =S5+ W*(Ay) + W*(H) + W"(Hy).
The  stable  manifold W?*(H;) of the  hyperbolic fixed
point Hy(1.5062, —2.5002) separates the basins of attraction of the attractor
A and the sink S5;(3.1580,3.2738). The unstable manifold W*(Hy) of Hy is
formed by two scparatrices, the left one ends at the attractor A while the right

one ends at the sink Sy. The closure of W*(Hy) generates the global attractor
Ag = A+ WU(H()) -+ SQ.

3.6 R=038

The Tkeda map has the inverse saddle Ay at approximately (0.4311,0.2761).
Two unstable scparatrices W“(H)g of
the period 2 orbit H(0.9429,—0.1339), (—0.0296,—0.2155) end at the period
2 sink S(0.0387,—0.0345), (0.8467, —0.0013) while two other ones W*(H) in-
tersect the stable manifolds W*(Ag) and W*(H;) (colored light) of the saddle A
and the period 2 hyperbolic orbit H;(0.3844, —0.6761), (0.5798,0.6644). The
unstable manifolds W*(Ap) and W*(Hy) (colored dark) intersect in turn the
stable manifold W*(H), forming the heteroclinic cycle Ay — Hy — H — A
(see Fig. Ta). The closure of unstable manifolds of the cycle generates the
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Figure 7: Ikeda map for R = 0.8.

attractor A (see Fig. 7b).

The attractor A contains the sink S and, hence, is not a minimal attractor.
The basin of attraction W#(A) of A is bounded by the stable manifold W#(Hy)
of the saddle fixed point Hy(1.3219, —2.4527), the complement to the closure
of W#(A) is the basin of attraction of the focus Sy(3.0614,1.6110). As above,
the left unstable scparatrix W*(Hy), of Hy ends at the attractor A while the
right one W*(Hy), ends at the sink Sp. The global attractor A, is the closure
of the unstable manifold W*(Hy) of the saddle Hy : A, = W*“(Hp) + A + 5.
We notice that at R = 0.7 the unstable manifold W"%(Ag) ends at the sink S,
whereas at R = 0.8 the sink S is the limit of the unstable scparatrix W*(H)g,
l.e. a bifurcation occurs.

3.7 R=09

The Ikeda mapping with R = 0.9 has a chaotic minimal attractor named the
Ikeda attractor. As R increases from R = 0.8 to R = 0.9, the following bi-
furcation occurs: the period 2 sink S and the period 2 hyperbolic orbit H
disappear. The attractor A contains the inverse saddle A4y(0.4819,0.2645) and
the period 2 hyperbolic orbit H1(0.5964,0.6394), (0.4497, —0.6453). The stable
W*#(Ap) and W*(H;) and unstable W*%(Ag) and W*(H;) manifolds (separatri-
ces) of these saddles intersect and form the heteroclinic cycle Ay — Hy — Ay
(see. Fig. 8a), generating the chaotic attractor A which is the closure of the
unstable manifolds W*(Ag) or W*(H;). There exists a pair of the period 3 hy-
perbolic orbits P3(0.8091,0.7834), (0.9960,—1.0090), (—0.0280, —0.8758) and
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N B

Figure 8: Ikeda map for R = 0.9.

Figure 9: Ikeda map for R = 0.9.
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Figure 10: Ikeda map for R = 1.0.

()3(1.3512, —0.0707), (0.6568, —1.1932), (—0.2418, —0.4462), (see Fig. 8b). The
stable and unstable manifolds of orbits P; and ()3 intersect forming the hetero-
clinic cycle, which also generates the attractor A. The closure of the unstable
manifold of any one of the orbits Ay, Hy, P3 or Q3 is the attractor A (see Fig. 9¢).
Outside the attractor A there is the saddle Hy(1.1987, —2.3769) whose left sepa-
ratrix W*(Hy), ends at the attractor A. The right unstable separatrix W*(Hy),
ends at the sink 5y(3.0027,3.8945) (see Fig. 9d). The stable manifold W*(Hy)
of the saddle Hy separates the basin of attraction W*(A) of the attractor A
and the basin of attraction W#(Sy) of the sink Sy. The closure of the unstable
manifold W*(H,) generates the global attractor A, = A+ W"(Hy) + Sp. The
map has no other period 2 and period 3 orbits.

3.8 R=1.0

When R goes from 0.9 to R = 1.0 the period 1, period 2, and period
3 orbits survive, except that their coordinates vary: when R = 1.0 (see
Fig. 10a) the inverse saddle Ay is approximately (0.5228,0.2469), the period
2 hyperbolic orbit Hj is approximately (0.6216,0.6059), (0.5098, —0.6084), and
the period 3 hyperbolic orbits P; and )3 are approximately (0.7795,0.7672),
(1.0140, —0.9832), (0.0858, —0.8832) and (0.6583, —1.1541), (1.3297, —0.1427),
(—0.1353, —0.3756), respectively. The closure of unstable manifold of any orbit
Ay, Hy, P3 or Q3 is an attractor A (see Fig. 10b). The basin of attraction
of A is bounded by the stable manifold W*(Hy) of the hyperbolic fixed point
Hy(1.1142, —2.2857) which is nearly tangent to A (see Fig. 10b). The enlarged
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Figure 11: Ikeda map for R = 1.0.

Figure 12: Ikeda map for R = 1.0.

scale phase portraits (Figs. 11c and 11d) show that the distance between A and
W*(Hy) near points B and C' is yet positive.

The stable manifold W#(H,) is a common boundary of the basins of at-
traction of the attractor A and the sink S5y(2.9721,4.1459). The stable and
unstable manifolds of Hy are nearly tangent forming a sufficiently fine domain
of attraction near points of “nearly tangency”. The right scparatrix W*(Hj),
ends at the sink 5yp(2.9721,4.1459) and the left one W, (Hy), approaches the
chaotic attractor A.
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Hyg

a b

Figure 14: Tkeda map for R = 1.1.

39 R=11

The mapping I has the following orbits with periods 1, 2, and 3: the inverse sad-
dle Ay(0.5837,0.2232), the period 2 orbit H»(0.6525,0.5641), (0.5670, —0.5643),
and the period 3 orbits P3(0.1906, —0.8730), (1.0240, —0.9557), (0.7718,0.7342)
and Q3(0.6660,—1.0738), (—0.0110, —0.2430), (1.2810, —0.1232). The relative
positions of these orbits are similar to the case R = 1.0. The stable and un-
stable manifolds of the hyperbolic fixed point Hy(1.05926, —2.1850) intersect
transversally generating a homoclinic orbit (Fig. 13a).

Fig. 13b displays the manner in which the manifolds W*(Hy) and W*"*(Hy)
intersect near Hy. Furthermore, Fig. 13a shows that the stable and unstable
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manifolds of Ay and Hj intersect generating a heteroclinic cycle. Thus, the
attractor A fails when R goes from 1.0 to 1.1. The global attractor A, is the
closure of the unstable manifolds of Hy or Ag. The right unstable scparatrix
W*(Hp), ends at the focus 5¢(2.9630,4.3773). Moreover, all other unstable
manifolds stretching along W*(Hy), approach Sy as well. The set of chain
recurrent points except for Sy is the closure of points of intersection of W?*( Hy)
and WY(Hy), Fig. 14d displays a neighborhood of the chain recurrent set.

4 Ikeda type mappings

In this section we consider some possible modifications of the Ikeda mapping.
With this aim in view, let us rewrite the Ikeda mapping in the form

J:(x,y) = (R+alx cosT —y sint),b(x sinT + y cosT)), (3)

where 7 = 0.4 — 6/(1+ 2% +?). For the normal Tkeda mapping a = b = C5 and
Cy € (0,1), i.e. the mapping is an orientation preserving contraction. Now we
will not assume a = b, in particular, a and b may be of opposite signs.

4.1 Ikeda type mappings preserving orientation

4.1.1 Inverse attraction: R=3,a=b=-0.9

The mapping J has the hyperbolic fixed point H(1.6030, 0.8268) with nonempty
intersection of stable and unstable manifolds: W*(H)NW*(H). The stable and
unstable manifolds are nearly tangent at a homoclinic point (Fig. 15a ). Since
a =b <0, J revises the orientation of W*(H) and W*(H) and H is an inverse
saddle. There exists the period 2 sink S5(0.0320,0.3637), (3.3216, —0.0835),
which is contained in the limit set of W*(H). The closure of W*(H) forms the
global attractor A, (Fig. 15b). The global attractor involves the chain recurrent
set (), which contains the orbits H and S and the points of intersection of
W#(H) and W*(H) (homoclinic points). A neighborhood of @) obtained by the
symbolic dynamics methods is shown in Fig. 15¢. A neighborhood of S (colored
dark) is a lower bound for a basin of attraction of S. The manifolds W*(H)
and W"(H) and their intersection points are presented in Fig. 15d. The set of
homoclinic points W*(H) N W"(H) is a lower bound for the chain recurrent set

0.
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C d
Figure 15: Ikeda map for R=3, a =b= —0.9.

4.1.2 Hyperbolic mapping: R=1,a=09, b=1.2

There exists hyperbolic fixed point H(—0.1824, —2.3536) with nonempty inter-
section of the stable and unstable manifolds. The stable and unstable manifolds
of H and the point F(0.0851,0.9643) homoclinic to H are shown in Fig. 16a.

Table presents numerical results of successive computation of points H and F.

Step Fixed point Homoclinic point

30  x=-0.18235986,y=-2.35361944 x=-0.08509742,y=0.96427872
31 x=-0.18235987,y=-2.35361803 x=-0.08144479,y=0.96428413
32 x=-0.18235936,y=-2.35361106 x=-0.08519972,y=0.96428226

The mapping has the hyperbolic fixed point H;(0.5153,0.2835) and the
period 2 hyperbolic orbit P(0.3708,0.6824), (0.5505, —0.7136). The stable and
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a b

Figure 16: Ikeda map for R=1,a=0.9, b = 1.2.

unstable manifolds of H, H; and P intersect generating heteroclinic cycles (see
Fig. 16b). Fig. 17c shows how the stable and unstable manifolds of P are
situated. The set of points homoclinic to H (constructed as an intersection
of W*(H) and W*(H)) is a lower bound of the chain-recurrent set @ and is
depicted in Fig. 17d. A neighborhood of @ (an upper bound) obtained by
localization using symbolic dynamics methods is displayed in Fig. 17e. The
stable manifold W*(H) of H and stable manifolds of all other orbits from @
start from the source S(—2.9622,5.8918), see Fig. 17f.
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Figure 17: Ikeda map for R=1,a=0.9, b = 1.2.

4.1.3 Expansion: R=1,a=b=1.2

The mapping J increases an area by a? = 1.44 and has a global repeller R,.
This repeller contains the hyperbolic fixed point H(0.4368,0.3100) which stable
and unstable manifolds intersect generating a homoclinic contour. The fixed
point H is an inverse saddle, i.e. the map J reverses orientation on W*(H)
and W*(H). In addition, there exists the 2-periodic orbit H;(0.5132, —0.7463),
(0.1850,0.7191) whose stable W*(Hy) and unstable W*( H;) manifolds intersect
each other and stable W#(H) and unstable W*(H) manifolds of H generating
a heteroclinic contour (see Fig. 18a). The closure of W*(H) (or W*(H;)) forms
the repeller R. Fig. 18b presents the repeller R and the manifolds W#*(H) and

The set of points (colored dark) of intersection of stable and unstable man-
ifolds of H and H; (a lower bound for @) is depicted in Fig. 18b. Obtained
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a

Figure 18: Tkeda map for R=1,a=5b=1.2.

@ ¢

C

Figure 19: Ikeda map for R=1,a=5b=1.2.
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by symbolic dynamics methods, a neighborhood of the chain-recurrent set @)
(an upper bound) containing R is shown in Fig. 19c. It seems likely that
R = Q. Outside R there exists a hyperbolic fixed point Hy(—1.2588, —2.5318)
(see Fig. 19d), the left separatrix of which starts from R and the right one starts
from the source S(—3.7022,2.3228).

4.2 Tkeda type mappings reversing orientation

4.2.1 Contraction: R=1,a=0.9,b=-0.9

The map J decreases an area and has a global attractor A,. There exist two hy-
perbolic fixed points Hy(0.5726,0.6602) and H;(0.5606, —0.5692) whose stable
and unstable manifolds intersect forming a heteroclinic cycle. In addition, there
is a unique 2-periodic hyperbolic orbit P(0.9391, —0.2036), (0.1539,0.1791)
whose stable (unstable) manifold intersects W*(Hy) and W*(Hy) (W*(Hy) and
W*(Hy)) forming a heteroclinic cycle (Fig. 20a). Points of intersection of stable
and unstable manifolds of these orbits (colored dark in Fig. 20b) yield a lower
bound for the chain-recurrent set Q).

An upper bound for ) obtained by symbolic dynamics methods is depicted
in Fig. 20c. Near Hjy the manifold W#(H,) bounds @, with the left scparatrix
W*(Hyp), involved in () and the right one W*(Hy),. going to the right (Figs. 20a,b
and d). Near H; the manifold W*“(H;) bounds ), with the right separatrix
W*(Hy), involved in ) and the left one W*(Hj), going to infinity (Figs. 20a,b
and d). Stretching along the right separatrix W*(Hy),., unstable manifolds start
from @ and end at the sink S(9.7301, —1.5751). Stable manifolds start from
() and along the left separatrix W?*(Hy), reach infinity in the form of “rabbit
ears” (Fig. 20d and Fig. 21). The global attractor Ag is the closure of W*(Hy)
(Fig. 21).

4.2.2 Contraction: R =2, a=—-0.9, b =0.9.

The map J decreases an area and the global attractor A,. There exists the
unique hyperbolic fixed point H(1.3815, —2.4746) (Fig. 22a) whose stable and
unstable manifolds W*(H) and W*(H) intersect (Fig. 22a and b). In addition,
there is the unique periodic orbit P»(0.2378,—0.7031), (1.9995,0.6681) stable
and unstable manifolds of which intersect W*(H) and W*(H ) forming a hetero-
clinic cycle(Fig. 22a). The global attractor A, is a closure of W*(H) or W*(P)
(Fig. 22b). The set W*(H) N W*(H) is a lower bound for the chain-recurrent
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Figure 20: Ikeda map for R=1,a =0.9, b = —0.9.

Figure 21: Tkeda map for R=1,a=10.9, b= —0.9.
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Figure 22: Tkeda map for R =2, a = —0.9, b = 0.9.

set ). Fig. 22c presents a neighborhood of ) constructed by symbolic dynamics
methods. Since A, contains all -limits points, stable manifolds of orbits from
A, cover the plane R,.

Using symbolic dynamics methods we obtain the 6-period hyperbolic orbit
Ps (1.0847,—1.0732), (2.7889, —1.1242), (—0.2626,—1.4846), (3.3560,0.0508),
(—1.0124,—-0.2235), (1.3964,0.7116). Its Lyapunov exponents are calculated
by A = % - In|vy|, where by are the eigenvalues of the differential of Ikeda
mapping along the orbit F;. We obtain: v = —23.098, v = —0.012
and A\; = 0.523 and Ay = —0.734. The attractor has the 2-periodic or-
bit P (0.2385,—0.7024), (1.9989,0.6691). The eigenvalues of the differen-
tial along P, are \y = —0.134, 79 = —4.888, and the Lyapunov exponents
A =1-In|y| are Ay = —1.004, XAy = 0.793. There exists the 4-periodic orbit
P,(—0.6836, —0.6319), (0.7312,—-0.9389), (1.6003,0.72792), (3.0613,—0.1713)
with the Lyapunov exponents \; = —0.843, Ay = 0.633.
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Figure 23: Tkeda map for R=1,a = —-0.9, b = 1.2.

4.2.3 Hyperbolic mapping: R=1,a=-0.9,b=1.2

The map J has the hyperbolic fixed point H(—0.0950,2.1937) stable manifold
W?#(H) of which can be bijectively projected on the z-axis. The map J re-
verses orientation on W?*(H). The unstable manifold W*(H) can be bijectively
projected on the y-axis near H, however, the lower part of W*(H) offers a com-
plicated structure (Fig. 23a). Such a behavior of W*(H) results from the fact
that W*(H) intersects the stable manifold W?*(Qs) of the 2-periodic hyperbolic
orbit Qo(—1.5584, —1.9046), (3.0088, —1.2438), which in turn has a homoclinic
point of transverse intersection of stable and unstable manifolds W*(Q2) and
W#(Q2) (Fig. 23b). Fig. 24c shows the manner in which W*(Q2) and W*(Q2)
intersect near QQo(—1.5584, —1.9046). Besides )y there is another 2-periodic
hyperbolic orbit Py(—0.2554, —0.9207), (1.1152,1.1362) with homoclinic inter-
section of its stable and unstable manifolds W*(P,) and W*(P;). Fig. 24d shows
the manner in which W*(P;) and W?*(P,) intersect near P(—0.2554, —0.9207).
Stable and unstable manifolds of orbits ()2 and P, intersect forming a hetero-
clinic cycle. This leads to the chaotic chain-recurrent set (). Fig. 24e depicts a
neighborhood (an upper bound) of Q. The set W*(Q2) NW*(Q2) gives a lower
bound for Q). Fig. 24f shows the displacement of W*(Q3), W*(Q2), and their
points of intersection. The stable manifold W#(H) is in the closure of W*(Q)>).
The closure of W?*((Q)3) forms the set looking like a “Napoleon” hat (Fig. 24f).
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Figure 24: Tkeda map for R=1,a=—-0.9, b=1.2.
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