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of the zero solution of some non-autonomous delay differential equations of the

third order. Our result improves on Sadek’s [A.I. Sadek, On the stability of so-
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1. Introduction Consider the third-order nonautonomous delay differential

equations
...
x +a(t)ẍ+ b(t)ẋ+ c(t)f(x(t− r)) = 0 (1.1)
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or its equivalent system form

ẋ = y

ẏ = z

ż = −a(t)z − b(t)y − c(t)f(x) + c(t)

∫ t

t−r
f ′(x(s))y(s)ds,

(1.2)

where a(t), b(t) and c(t) are positive and continuously differentiable functions

on [0,∞); r is positive constant; f(x) is continuous function and f(0) = 0.

In recent years many books and papers dealt with the delay differential

equations and obtained many good results, for example, [1,2,3,6,4,9,5,8,7,10-20]

, etc. In many references, the authors dealt with the problems by considering

Lyapunov functions or functionals and obtained the criteria for the stability.

Recently, Sadek [18] discussed the asymptotic stability of the zero solution

of (1.1) and the following result was proved.

Theorem A (Sadek [18]).Suppose that a(t), b(t) and c(t) are continuously dif-

ferentiable on [0,∞) and the following conditions are satisfied:

(i) A ≥ a(t) ≥ a0 > 0, B ≥ b(t) ≥ b0 > 0, C ≥ c(t) ≥ c0 > 0 for t ∈ [0,∞);

(ii) f(0) = 0,
f(x)

x
≥ f0 > 0(x 6= 0), and f ′(x) ≤ f1 ≤ 1 for all x;

(iii) a0b0 − C > 0;

(iv) µa′(t) + b′(t)− 1
µc
′(t) < (a0b0 − C)/2, µ = (a0b0 + C)/2b0;

(v)

∫ ∞
0

|c′(t)|dt <∞, c′(t)→ 0 as t→∞.

Then the zero solution of (1.1) is uniformly asymptotically stable, provided that

r < min

{
2c0f0

f1C
,

a0b0 − C
(1 + a0)b0f1C

,
a0b0 − C + 4a0C(1− f1)

2f1C{1 + 2µ+ 2a2
0 + a0 + (a0b0 − C)C}

}
.

Obviously, this is a very interesting result but Theorem A has some hypotheses

which are not necessary for the stability of solutions of (1.1).
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Our aim in this paper is to further study the stability of the zero solution of

(1.1). In the next section, we establish a criterion for the asymptotic stability

of the zero solution of (1.1), which extends and improves Theorem A.

Our main result is the following theorem.

Theorem 1.1.Suppose that a(t), b(t) and c(t) are continuously differentiable on

[0,∞) and the following conditions are satisfied;

(1) 1 ≤ c(t) ≤ b(t),−L ≤ b′(t) ≤ c′(t) ≤ 0, 0 < a ≤ a(t) ≤ L, t ∈ [0,∞);

(2) f(0) = 0,
f(x)

x
≥ δ0 > 0 (x 6= 0), and f ′(x) ≤ c for all x;

(3)
1

2
a′(t) ≤ δ1 < 1− αc, t ∈ [0,∞);

(4)

∫ ∞
0

|c′(t)|dt <∞, c′(t)→ 0 as t→∞.

Then the zero solution of (1.1) is uniformly asymptotically stable provided that

r < min

{
2 ((1− αc)− δ1)

(2 + α)Lc
,
2(αa− 1)

αLc

}
.

From (first term of) (1), it follows that b(t) and c(t) are non-decreasing

functions on [0,∞) and the limit of each exists as t→∞. Since L in (1) is an

arbitrary selected bound, we can also assume that

1 ≤ c(t) ≤ b(t) ≤ L,

lim
t→∞

c(t) = c0, lim
t→∞

b(t) = b0

1 ≤ c0 ≤ b0 ≤ L.

(1.3)

Remark 1.1. If (1.1) is the constant coefficient delay differential equation
...
x +aẍ+ ẋ+ cx(t− r) = 0, then conditions (1)-(2) reduce to the Routh-Hurwitz

conditions a > 0, c > 0 and a > c. To show this we let a(t) = a, b(t) = 1 and
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c(t) = 1 and f(x(t− r)) = cx(t− r).
2. Preliminaries and Stability Results

We shall in this section give the stability results for (1.1), (hence for system

(1.2)). First, we will give the stability criteria for the general non-autonomous

delay differential system. We consider

ẋ = f(t, xt), xt = x(t+ θ), −r ≤ θ ≤ 0, (2.1)

where f : [0,∞)×CH → IRn is continuous and takes bounded sets into bounded

sets and f(t, 0) = 0. Here (C, ‖·‖) is the Banach space of continuous functions φ :

[−r, 0]→ IRn with the supremum norm, CH is the open H-ball in C. Standard

existence theory [4]shows that if φ ∈ CH and t ≥ 0, then there is at least one

continuous solution x(t, t0, φ) on [t0, t0 +α) satisfying (2.1) for t > t0, xt(t0, φ) =

φ and α some positive constant; if there is a closed subset B ⊂ CH such that

the solution remains in B, then α =∞. Also, (1.1) will denote the norm in IRn

with |x| = max
1≤i≤n

|xi|.

We are concerned here with stability in the context of Lyapunov’s direct

method. Thus, we are concerned with continuous, strictly increasing functions

Wi : [0,∞) → [0,∞) with Wi(0) = 0, called wedges, and with Lyapunov

functionals, V .

Definition 2.1 [8]. A continuous functional V : [0,∞) × CH → [0,∞) which

is locally Lipschitz in φ is called a Lyapunov functional for (2.1) if there is a

wedge W with

(i) W (|φ(0)|) ≤ V (t, φ), V (t, 0) = 0, and

(ii) V̇(1.2)(t, xt) = lim suph→0
1
h{V (t+ h, xt+h(t0, φ))− V (t, xt(t0, φ))} ≤ 0.

We have the following fundamental definitions:

Definition 2.2 [8]. (Stability definitions). Since f(t, 0) = 0, x(t) ≡ 0 is a

solution of (2.1) and its is said to be
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(a) stable if for each ε > 0 there is a δ > 0 such that [t ≥ 0, ‖φ‖ < δ, t ≥ t0]

implies that |x(t, t0, φ)| < ε;

(b) uniformly stable if for each ε > 0, t ≥ 0 there is a δ > 0 such that [‖φ‖ <
δ, t ≥ t0] implies that |x(t, t0, φ)| < ε;

(c) asymptotically stable if it is stable and if for each t ≥ 0 thee is a γ > 0

such that ‖φ‖ < γ implies that |x(t, t0, φ)| → 0 as t∞;

(d) uniformly asymptotically stable if it is uniformly stable and if there is a

γ > 0 and for each µ > 0 there is a T > 0 such that [t ≥ 0, ‖φ‖ < γ, t ≥
t0 + T ] implies that |x(t, t0, φ)| < µ.

The following is the classical theorem on uniform stability for the solution

of (2.1). It goes back to Krasovskii [14].

Theorem 2.1 [7].If there is a Lyapunov functional for (2.1) and wedges satis-

fying:

(i) W1(|φ(0)|) ≤ V (t, φ) ≤ W2(‖φ‖) and

(ii) V̇(2.1)(t, xt) ≤ 0.

Then x = 0 is uniformly stable.

The basic conjecture for (2.1) on uniform asymptotic stability also goes back

to Krasovskii [14] and may be stated as follows.

Theorem 2.2 [7].If there is a Lyapunov functional for (2.1) and wedges such

that:

(i) W1(|φ(0)|) ≤ V (t, φ) ≤ W2(‖φ‖) and

(ii) V̇(2.1)(t, xt) ≤ −W3(|x(t)|).

Then the zero solution of (2.1) is uniformly asymptotically stable.

3. Proof of Theorem 1.1.
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We consider, in place of (1.1) the equivalent system form

ẋ = y

ẏ = z

ż = −a(t)z − b(t)y − c(t)f(x) + c(t)

∫ t

t−r
f ′(x(s))y(s)ds, (3.1)

and denote γ(t) =

∫ t

0

|c′(s)|ds. It may be assumed that

∫ ∞
0

|c′(t)|dt ≤ N <∞.

We define the Lyapunov functional V (t, xt, yt, zt) as:

V (t, xt, yt, zt) = e
−γ(t)

U(t, xt, yt, zt), (3.2)

where

U(t, xt, yt, zt) = c(t)

∫ x

0

f(ξ)dξ +
1

2
α{b(t)y2 + z2}+ αc(t)f(x)y

+
1

2
a(t)y2 + yz + λ

∫ 0

−r

∫ t

t+s

y2(θ)dθds, (3.3)

α > 0 is any number chosen such that

1

c
> α >

1

a
(3.4)

where λ is a positive constant which will be determined later. So that, from

(3.3) and (3.1),

d

dt
U(t, xt, yy, zt) = c′(t)

∫ x

0

f(ξ)dξ +
1

2
αb′(t)y2 + αc′(t)f(x)y +

1

2
a′(t)y2

−
{
b(t)y2 − αc(t)f ′(x)y2 − λry2

}
− {αa(t)− 1} z2

+c(t)y

∫ t

t−r
f ′(x(s))y(s)ds+ αc(t)z

∫ t

t−r
f ′(x(s))y(s)ds

+λ

∫ t

t−r
y2(θ)dθ.

By (2) and using 2uv ≤ u2 + v2, we obtain

c(t)y

∫ t

t−r
f ′(x(s))y(s)ds ≤ 1

2
Lcry2 +

1

2
Lc

∫ t

t−r
y2(s)ds
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and

αc(t)z

∫ t

t−r
f ′(x(s))y(s)ds ≤ 1

2
αLcrz2 +

1

2
αLc

∫ t

t−r
y2(s)ds.

Therefore

d

dt
U(t, xt, yt, zt) ≤ c′(t)

∫ x

0

f(ξ)dξ +
1

2
αb′(t)y2 + αc′(t)f(x)y +

1

2
a′(t)y2

−
{
b(t)− αc(t)f ′(x)− 1

2
(Lc+ 2λ)r

}
y2

−
{
αa(t)− 1− 1

2αLcr
}
z2

+

{
1

2
Lc(1 + α)− λ

}∫ t

t−r
y2(θ)dθ.

If we take λ =
Lc(1 + α)

2
> 0, we obtain

d

dt
U(t, xt, yt, zt) ≤ c′(t)

∫ x

0

f(ξ)dξ +
1

2
αb′(t)y2 + αc′(t)f(x)y +

1

2
a′(t)y2

−
{
b(t)− αc(t)f ′(x)− 1

2
Lc(2 + α)r

}
y2

−
{
αa(t)− 1− 1

2
αLcr

}
z2.

By (1)-(3), we obtain
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d

dt
U(t, xt, yt, zt) ≤ c′(t)

∫ x

0

f(ξ)dξ +
1

2
αb′(t)y2 + αc′(t)f(x)y

−
{
c(t)

[
b(t)

c(t)
− αf ′(x)

]
− 1

2
a′(t)− 1

2
(2 + α)Lcr

}
y2

−
{
αa(t)− 1− 1

2
αLcr

}
z2

≤ c′(t)

∫ x

0

f(ξ)dξ +
1

2
αb′(t)y2 + αc′(t)f(x)y

−
{

(1− αc)− δ1 −
1

2
(2 + α)Lcr

}
y2

−
{
αa− 1− 1

2
αLcr

}
z2.

If we choose

r < min

{
2[(1− αc)− δ1]

(2 + α)Lc
,
2(αa− 1)

αLc

}
,

we have that there exists δ2 > 0 such that

d

dt
U(t, xt, yt, zt) ≤ c′(t)

∫ x

0

f(ξ)dξ +
1

2
αb′(t)y2 + αc′(t)f(x)y − δ2(y

2 + z2).

Next, we show that

c′(t)

∫ x

0

f(ξ)dξ +
1

2
αb′(t)y2 + αc′(t)f(x)y ≤ 0

for all x, y and t ≥ 0. From (1), −L ≤ b′(t) ≤ c′(t) ≤ 0 for t ≥ 0, if c′(t) = 0,

then

c′(t)

∫ x

0

f(ξ)dξ +
1

2
αb′(t)y2 + αc′(t)f(x)y =

1

2
αb′(t)y2 ≤ 0

since b′(t) ≤ 0. For those t’s such that c′(t) < 0, we have

c′(t)

∫ x

0

f(ξ)dξ +
1

2
αb′(t)y2 + αc′(t)f(x)y

=
1

2
αc′(t)

{
2α−1

∫ x

0

f(ξ)dξ +
b′(t)

c′(t)
y2 + 2f(x)y

}
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≤ 1

2
αc′(t)

{
2α−1

∫ x

0

f(ξ)dξ + y2 + 2f(x)y

}

=
1

2
αc′(t)

{
(y + f(x))2 + 2α−1

∫ x

0

{1− αf ′(ξ)}f(ξ)dξ

}
.

By hypotheses (2) and (3), 1 − αf ′(x) ≥ 1 − αc > 0, in view of (3.4); and so

using hypothesis (2), we find that

2α−1

∫ x

0

{1− αf ′(ξ)}f(ξ)dξ ≥ α−1(1− αc)δ0x
2.

Hence

c′(t)

∫ x

0

f(ξ)dξ +
1

2
αb′(t)y2 + αc′(t)f(x)y ≤ 0.

Therefore
d

dt
U(t, xt, yt, zt) ≤ −δ2(y

2 + z2). (3.5)

Since

c(t)

∫ x

0

f(ξ)dξ +
1

2
α{b(t)y2 + z2}+ αc(t)f(x)y +

1

2
a(t)y2 + yz

=
1

2
c(t)

{
2

∫ x

0

f(ξ)dξ + α
b(t)

c(t)
y2 + 2αf(x)y

}
+

1

2

{
a(t)y2 + 2yz + αz2

}
.

≥ 1

2
c(t)

{
2

∫ x

0

f(ξ)dξ + αy2 + 2αf(x)y

}
+

1

2

{
a(t)y2 + 2yz + αz2

}
=

1

2
c(t)

{
α(y + f(x))2 +

∫ x

0

{1− αf ′(ξ)} f(ξ)dξ

}

+
1

2

{
a(t)

(
y +

1

a(t)
z

)2

+
1

a(t)
(αa(t)− 1)z2

}

By (1)-(3), hence there exists some δ3 > 0 (small enough) such that

c(t)

∫ x

0

f(ξ)dξ+
1

2
α{b(t)y2 +z2}+αc(t)f(x)y+

1

2
a(t)y2 +yz ≥ δ3(x

2 +y2 +z2).

Thus,

U(t, xt, yt, zt) ≥ δ3(x
2 + y2 + z2) (3.6)
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Therefore we can find a continuous function W1(|φ(0)|) with

W1(|φ(0)|) ≥ 0 and W1(|φ(0)|) ≤ V (t, φ).

The existence of a continuous function W2(‖φ‖) which satisfies the inequality

V (t, φ) ≤ W2(‖φ‖), is easily verified.

From (3.2), we find

d

dt
V (t, xt, yt, zt) = e

−γ(t)
(
d

dt
U(t, xt, yt, zt)− |c′(t)|U(t, xt, yt, zt)

)
.

Using the inequalities (3.5) and (3.6), and the fact that |c′(t)| ≥ 0, we have

d

dt
U(t, xt, yt, zt)− |c′(t)|U(t, xt, yt, zt) ≤ −δ2(y

2 + z2)− δ4(x
2 + y2 + z2),

therefore, if

r < min

{
2((1− αc)− δ1)

(2 + α)Lc
′ 2(αa− 1)

αLc

}
,

we have

d

dt
V (t, xt, yt, zt) ≤ −δe

γ(t)

(x2, x2
y + z2) ≤ −W3(|x(t)|) for some δ > 0 (3.7)

As a result of (3.7) and the existence of the functions W1(|φ(0)|) and W2(‖φ‖)
we note that the zero of (3.1) is uniformly asymptotically stable.
Remark 3.1. Clearly, our theorem is an improvement and extension of Theo-
rem A. In particular, from our theorem we see that (iv) assumed in Theorem
A is not necessary, and (i) (ii) and (iii) can be replaced by (1),(2) and (3) of
Theorem 1.1 respectively, for the uniform asymptotic stability of the zero solu-
tion of (1.1).
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