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Abstract

We investigate in this paper, the asymptotic stability of the zero solution
and boundedness of all solutions of a certain third order nonlinear ordinary vec-
tor differential equation. Our results revise and improve those results obtained
by Tunc and Ates [Tunc C., Ates, M., Stability and boundedness results for so-
lutions of certain third order nonlinear vector differential equations,Nonlinear
Dynamics 45 (2006); 273-281].
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Recently, Tunc and Ates [11] considered the differential equation

...

X +F (X, Ẋ, Ẍ)Ẍ +B(t)Ẋ +H(X) = P (t,X, Ẋ, Ẍ), (1.1)

or the equivalent system form

Ẋ = Y

Ẏ = Z

Ż = −F (X, Y, Z)Z −B(t)Y −H(X) + P (t,X, Y, Z)

(1.2)

where F and B are n × n-symmetric continuous matrix functions, H and P

are continuous vector functions, t ∈ [0,∞) and X ∈ IRn, IRn denotes the real

n-dimensional Euclidean space IR× IR× · · ·× IR (n factors). It is also assumed

that the Jacobian matrix Jh(X) and the matrix Ḃ(t) exist, and are symmetric

and continuous. Hence the following theorems were proved.

In the case P ≡ 0, the following result was established.

Theorem A (Tunc and Ates[11]). In addition to the fundamental assump-

tions on F,B and H suppose that:

(i) there exists an n×n-real continuous operator A(X, Y ) for any vectors X, Y

in IRn such that

H(X) = H(Y ) + A(X, Y )(X − Y ), (H(0) = 0),

whose eigenvalues λi(A(X, Y )), (i = 1, 2, · · · , n), satisfy

0 < δh ≤ λi(A(X, Y )) ≤ ∆h

for fixed constants δh and ∆h;

(ii) there exists a real n×n-constant symmetric matrix A such that the matri-

ces A,B(t), Ḃ(t), (F (X, Y, Z) − A) have positive eigenvalues and pairwise

commute with themselves as well as with operator A(X, Y ) for any X, Y

in IRn, and that
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δa = min
1≤i≤n

{λi(A), λi(F (X, Y, Z))},∆a = max
1≤i≤n

{λi(A), λi(F (X, Y, Z))},

δb = min
1≤i≤n,t∈[0,ω]

(λi(B(t))), ∆a = max
1≤i≤n,t∈[0,ω]

(λi(B(t)))

∆h ≤ kδaδb (where k is a positive constant),

0 ≤ λi(F (X, Y, Z)− A) ≤
√
ε

2 and ε = max |λi(Ḃ(t))|, (i = 1, 2, · · · , n),

where ε ≤ 1

2
min

{(
δbδh

4∆b + 4

)2

,

(
δaδb

6∆a + 7

)2

,
δ2
a

4
, 1

}
.

Then, the zero solution of system (1.2) is asymptotically stable.

In the case P 6= 0, the following result was established.

Theorem B (Tunc and Ates[11]). Let all the conditions of Theorem A be

satisfied, and in addition we assume that there exist a finite constant K > 0

and a non-negative and continuous function θ = θ(t) such that the vector P

satisfies

‖P (t,X, Y, Z)‖ ≤ θ(t) + θ(t)(‖X‖+ ‖Y ‖+ ‖Z‖),

where

∫ t

0
θ(s)ds ≤ K < ∞ for all t ≥ 0. Then the exists a constant D > 0

such that any solution (X(t), Y (t), Z(t)) of (1.2) determined by

X(0) = X0, Y (0) = Y0, Z(0) = Z0

satisfies

‖X‖ ≤ D, ‖Y ‖ ≤ D, ‖Z‖ ≤ D

for all t ≥ 0.

These are very interesting results obtained by the authors [11]. However,

these results contain certain conditions which are not necessary for the stability

and boundedness of (1.2). Our aim in this paper is to further study the stability

(when P ≡ 0) and boundedness (when P 6= 0) of solutions of Eq. (1.1). In the
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next section, we establish criteria for the stability of the zero solution of Eq.

(1.1) when P ≡ 0, and the boundedness of solutions of Eq. (1.1) when P 6= 0,

which extend and improve Theorems A and B,respectively. An effective method

for studying the stability and boundedness of nonlinear differential equations is

the second method of Lyapunov (See [1-11]).

2. Statement of the results

LetH(0) = 0 and Jh = Jh(X) denote the Jacobian matrix (∂hi/∂xj) derived

from the vector H(X) in (1.1). Our first theorem is given for the case in which

P ≡ 0.

Theorem 1. Assume that F (X, Y, Z), B(t), Ḃ(t) and Jh(X) are symmetric for

all X, Y, Z in IRn and t ∈ [0,∞), and let δa, δb, δh,∆a,∆b,∆h and ε be positive

constants.

(i) The matrices F (X, Y, Z), B(t), Ḃ(t) and Jh(X) are associative and com-

mute pairwise. The eigenvalues λi(F (X, Y, Z)), λi(B(t)), λi(Ḃ(t)), and

λi(Jh(X)) (i = 1, 2, · · · , n) of F (X, Y, Z), B(t), Ḃ(t) and Jh(X) satisfy

0 < δa < λi(F (X, Y, Z)) < ∆a (2.1)

0 < δb ≤ λi(B(t)) ≤ ∆b (2.2)

0 < δh ≤ λi(Jh(X)) ≤ ∆h (2.3)

ε = max |λi(Ḃ(t))| (2.4)

with δaδb −∆h > ε.

Then, the zero solution of system (1.2) is asymptotically stable.

In the case P 6= 0 we have the following result.

Theorem 2. Let all the conditions of Theorem 1 be satisfied, and in addition

we assume that there exists a finite constant K > 0 and a non-negative and

continuous function θ = θ(t) such that the vector P satisfies

‖P (t,X, Y, Z)‖ ≤ θ(t) + θ(t)(‖X‖+ ‖Y ‖+ ‖Z‖), (2.5)
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where

∫ t

0
θ(s)ds ≤ K < ∞ for all t ≥ 0. Then there exists a constant D > 0

such that any solution (X(t), Y (t), Z(t)) of (1.2) determined by

X(0) = X0, Y (0) = Y0, Z(0) = Z0

satisfies

‖X(t)‖ ≤ D, ‖Y (t)‖ ≤ D, ‖Z(t)‖ ≤ D

for all t ≥ 0.

3. Some Preliminaries

The following results will be basic to the proofs of Theorems 1 and 2. We

do not give the proofs since they are found in [1-7,9,10,11].

Lemma 1. Let D be a real symmetric n × n matrix, then for any X in IRn,

we have

∆d‖X‖2 ≥ 〈DX,X〉 ≥ δd‖X‖2,

where δd,∆d are the least and greatest eigenvalues of D, respectively.

Lemma 2. Let Q,D be any two real n × n commuting symmetric matrices.

Then

(i) The eigenvalues λi(QD)(i = 1, 2, · · · , n) of the product matrix QD are real

and satisfy

max
1≤j,k≤n

λj(Q)λk(D) ≥ λi(QD) ≥ min
1≤j,k≤n

λj(Q)λk(D).

(ii) The eigenvalues λi(Q+D) (i = 1, 2, · · · , n) of the sum of matrices Q and

D are real and satisfy{
max
1≤j≤n

λj(Q) + max
1≤k≤n

λk(D)

}
≥ λi(Q+D) ≥

{
min

1≤j≤n
λj(Q) + min

1≤k≤n
λk(D)

}
,

where λj(Q) and λk(D) are, respectively, the eigenvalues of Q and D.

4. The Function V
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Our main tool in the proof of our result is the Lyapunov function V =

V (t,X, Y, Z) defined by

2V = 2δa

∫ 1

0
〈H(σX), X〉dσ + δa

∫ 1

0
〈σF (X, σY, Z)Y, Y 〉dσ

+αβδb〈X,X〉+ 〈Z,Z〉+ 〈B(t)Y, Y 〉+ 2αβδa〈X, Y 〉

+2αβ〈X,Z〉+ 2δa〈Y, Z〉+ 2〈Y,H(X)〉 − αβ〈Y, Y 〉

(4.1)

where β = δaδb and α satisfies

α < min

{
1

δa
,

δh
β(∆a − δa)

,
β − δh − ε

β[δa + δ−1
h (∆b − δb)2]

}
(4.2)

The function V above can be written thus,

2V = ‖Z + δaY + αβX‖2 + δa

∫ 1

0
〈σF (X, σY, Z)Y, Y 〉dσ − δ2

a〈Y, Y 〉

+〈B(t)Y, Y 〉 − βδ−1
a 〈Y, Y 〉+ αβ(δb − αβ)〈X,X〉

+2δa

∫ 1

0
〈H(σX), X〉dσ − β−1δa‖H(X)‖2

+β‖δ−
1
2

a Y + β−1δ
1
2
aH(X)‖2

(4.3)

The following result is immediate from (4.3).

Lemma 3. Assume that all the hypotheses on matrices F (X, Y, Z), B(t) and

vector H(X) in Theorems 1 and 2 are satisfied. Then there exists a positive

constant δ1 such that

V (t,X, Y, Z) ≥ δ1(‖X‖2 + ‖Y ‖2 + ‖Z‖2), (4.4)

for arbitrary X, Y, Z in IRn.

Proof of Lemma 3. We shall make use of the result:

H(X) =

∫ 1

0
Jh(σ1X)Xdσ1 (4.5)
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for arbitrary X in IRn, which follows from integrating the equality

d

dσ1
H(σ1X) = Jh(σ1X)X

with respect to σ1 and then using the fact that H(0) = 0.

By (4.5), we can rewrite (4.3) thus,

2V = ‖Z + δaY + αβX‖2 + δa

∫ 1

0
σ〈{F (X, σY, Z)− δaI}Y, Y 〉dσ

+〈{B(t)− βδ−1
a I}Y, Y 〉+ αβ(δb − αβ)〈X,X〉

+2δa

∫ 1

0

∫ 1

0
σ1〈{I − Jh(σ1X)β−1}Jh(σ1σ2X)X,X〉dσ1dσ2

+β‖δ−
1
2

a Y + β−1δ
1
2
aH(X)‖2.

By (2.1), (2.2) and (2.3) of Theorem 1, and Lemma 1, we have that

2V ≥ ‖Z + δaY + αβX‖2 + αβ(δb − αβ)‖X‖2 + 2δa(1−∆hβ
−1)δh‖X‖2.

By (2.5) and (4.2), we have that there is a constant δ2 > 0 such that

2V ≥ ‖Z + δaY + αβX‖2 + δ2‖X‖2.

Hence we can find a positive number δ1 small enough such that (4.4) holds.

This completes the proof of Lemma 3.

The following lemma is instrumental in the proof of the next result.

Lemma 4. Subject to earlier conditions on F and H the following are true.

(i)
d

dt

∫ 1

0
〈σF (X, σY, Z)Y, Y 〉dσ = 〈F (X, Y, Z)Y, Z〉,

(ii)
d

dt

∫ 1

0
〈H(σX), X〉dσ = 〈H(X), Y 〉.

Proof. See [4,5,9].
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Lemma 5. Assume that all the conditions of Theorem 1 are satisfied.

Then

v̇(t) ≤ 0 for all t ≥ 0 (4.6)

and especially

v̇(t) =
d

dt
V (t,X, Y, Z) ≤ 0 provided ‖X‖2 + ‖Y ‖2 + ‖Z‖2 > 0 (4.7)

Proof of Lemma 5. A straightforward calculation from (4.1), (1.2) and

Lemma 4 give

v̇ =
d

dt
V (t,X(t), Y (t), Z(t)) = −V1 − V2 − V3

where

V1 = −1

2
αβ

∫ 1

0
〈X, Jh(σX)X〉dσ

−〈Y, {δaB(t)− Ḃ(t)− {[Jh(X) + αβδa]}Y }

−〈Z, {F (X, Y, Z)− δaI}Z〉

V2 = −1

4
αβ

∫ 1

0
{〈Jh(σX)X,X〉+ 4〈X, [B(t)− δbI]Y 〉}dσ

V3 = −1

4
αβ

∫ 1

0
{〈Jh(σX)X,X〉+ 4〈X, {F (X, Y, Z)− δaI]}Z〉}dσ.

Since Jh(X) is symmetric and positive definite, we have that

〈Jh(σX)X,X〉+ 4〈X, [B(t)− δbI]Y 〉
= ‖J

1
2

hX + 2J−
1
2 [B(t)− δbI]Y ‖2 − ‖2[B(t)− δbI]J

− 1
2

h Y ‖2

and

〈Jh(σX)X,X〉+ 4〈X, {F (X, Y, Z)− δaI}Z〉
= ‖J

1
2

hX + 2J
− 1

2

h [F (X, Y, Z)− δaI]Z‖2 − ‖2[F (X, Y, Z)− δaI]J
− 1

2

h Z‖2.

Using the fact that∫ 1

0
‖2[B(t)− δbI]J

− 1
2

h Y ‖2dσ = 4

∫ 1

0
〈J−1

h [B(t)− δbI]Y, [B(t)− δbI]Y 〉dσ
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and∫ 1

0
‖2[F (X, Y, Z)− δaI]J

− 1
2

h Z‖2dσ

= 4

∫ 1

0
〈J−1

h [F (X, Y, Z)− δaI]Z, [F (X, Y, Z)− δaI]Z〉dσ,
we have,

v̇(t) ≤ −1

2
αβ

∫ 1

0
〈X, Jh(σX)X〉dσ

−
∫ 1

0
〈Y, {δaB(t)− Jh(X)− [Ḃ(t) + αβδaI]− αβJ−1

h [B(t)− δbI]2}Y 〉dσ

−
∫ 1

0
〈Z, [F (X, Y, Z)− δaI]{I − αβJ−1

h [F (X, Y, Z)− δaI]}Z〉dσ

≤ −1

2
αβδh‖X‖2

−{δaδb − δh − ε− αβδa − αβδ−1
h (∆b − δb)2}‖Y ‖2

−γ{1− αβδ−1
h (∆a − δa)}‖Z‖2

≤ −δ3‖X‖2 − δ4‖Y ‖2 − δ5‖Z‖2

where δ3 =
1

2
αβδh, δ4 = δaδb − δh − ε− αβ[δa + δ−1

h (∆b − δb)2] and

δ5 = 1− αβδ−1
h (∆a − δa).

By (4.2),δ3, δ4 and δ5 are positive. This completes the proof.

Proof of Theorem 2. Consider the function V defined by (4.1). Then, under

the assumptions of Theorem 2 the conclusion of Lemma 3 can be obtained, that

is,

V ≥ δ1(‖X‖2 + ‖Y ‖2 + ‖Z‖2) (4.8)

and since P (t,X, Y, Z) 6= 0, then the conclusion of Lemma 5 can be revised as

follows

v̇ =
d

dt
V ≤ 〈αβX + δaY + Z, P (t,X, Y, Z)〉.
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Next, by noting the assumption of Theorem 2 on P (t,X, Y, Z) and using

Schwarz’s inequality, we obtain

v̇ ≤ (αβ‖X‖+ δa‖Y ‖+ ‖Z‖)× ‖P (t,X, Y, Z)‖

≤ (αβ‖X‖+ δa‖Y ‖+ ‖Z‖)× (θ(t) + θ(t)(‖X‖+ ||Y ‖+ ‖Z‖))

≤ δ6(‖X‖+ ‖Y ‖+ ‖Z‖)× (θ(t) + θ(t)(‖X‖+ ||Y ‖+ ‖Z‖))

where δ6 = max{αβ, δa, 1}.
Hence, by using the inequalities

‖X‖ ≤ 1 + ‖X‖2, ‖Y ‖ ≤ 1 + ‖Y ‖2, ‖Z‖ ≤ 1 + ‖Z‖2

and (4.8), we obtain

v̇ ≤ δ7θ(t) + δ8θ(t)v, (4.9)

where δ7 = 3δ6 and δ8 = 4δ6δ
−1
1 .

Integrating both sides of (4.9) from 0 to t(t ≥ 0), leads to the inequality

v(t)− v(0) ≤ δ7

∫ t

0
θ(s)ds+ δ8

∫ t

0
v(s)θ(s)ds.

On putting δ9 = v(0) + δ7K, it follows that

v(t) ≤ δ9 + δ8

∫ t

0
v(s)θ(s)ds.

Gronwall-Bellman inequality yields

v(t) ≤ δ9 exp

(
δ8

∫ t

0
θ(s)ds

)
.

The proof of the theorem is now complete.

5. Remarks

(i). Clearly, Theorems 1 and 2 are improvement and extension of Theorems

A and B respectively. Particularly, from Theorems 1 and 2, we see that

hypothesis (i) of Theorems A and B is not necessary since H(X) is assumed

differentiable.
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(ii). Also, from Theorems 1 and 2, it is clear that we do not need any symmetric

matrix A (as assumed in Theorems A and B), thus the condition 0 ≤

λi(F (X, Y, Z)− A) ≤
√
ε

2
, (i = 1, 2, . . . , n), is not necessary.
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