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Abstract

We establish the existence of solution of Stochastic impulsive differential inclusion in
infinite dimensional space. We employed fixed point theorem for multivalued map to
obtain the solution.
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1 Introduction

Impulsive differential equations model problem with impulsive effects which are
due to instantaneous perturbations at certain moments. The vast applications
of the theory of impulsive differential equations and inclusions have attracted
many authors both to deterministic and stochastic cases. The theory of impul-
sive differential equations and inclusions were extensively studied in [3] , [8] and
the references cited there. Existence of solution for integrodifferential inclusion
in infinite dimensional space without impulse effects was established in [4]. This
work is concerned with stochastic systems in infinite dimensional space. In [13],
concise study of stochastic differential equation in infinite dimensional space was
done and this will form a bedrock of this work. By Banach fixed point theo-
rem and semigroup approach, the existence of solution of nonlinear stochastic
differential inclusions was established in [1]. Stochastic systems with impulses
effects were studied in [12] with non local condition while neutral stochastic
evolution inclusions were studied in [11] both for convex and non convex cases.
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The existence of weak solution of stochastic differential inclusions has applica-
tions in stochastic control and partial differential inclusions as established in
[7]and references cited in it. The mild solution of Stochastic evolution inclu-
sions with impulsive effects considered in this work has applications to transition
semigroup and hence the Feller property of such semigroup.
The result in this work has applications in the study of control problem for a
stochastic dynamical system. The solution sets will be employed in the space
of admissible controls for the system and the impulsive effects due to the effects
of abrupt interruption of the system over certain period of time. The work also
have practical applications in the study of models of interacting species in a
random medium in which the impulsive effects are due to some environmental
factors over a period of time.
In the sequel, preliminaries necessary for the result shall be stated in section 2
and the main result will be proved in section 3.

2 Preliminaries

Let H be a real separable Hilbert space with inner product 〈., .〉 and norm
‖ . ‖ and let K be another real separable Hilbert space with inner product
〈., .〉K and norm ‖ . ‖K . L(K,H) denotes the space of bounded operators from
K to H. Let (Ω,F,Ft, P ) be a complete probability space with a filtration
{Ft} satisfying the usual condition (i.e. the filtration contains all P -null sets
and is right continuous). w(t) denotes a given K-valued Brownian motion
with a finite trace nuclear covariance operator Q ≥ 0. For σ1, σ2 ∈ L(K,H),
define 〈〈σ1, σ2〉〉= trace〈σ1Qσ

∗
2〉, where σ∗2 is the adjoint of the operator σ2.

L(K,H) with the inner product 〈〈., .〉〉 is a pre-Hilbert space, its completion
with respect to the topology induced by the Q-Hilbert-Schmidt norm ‖ . ‖Q(
‖ σ ‖2

Q= 〈〈σ, σ〉〉 <∞
)

is a Hilbert space.
We shall state some definitions and properties of multivalued maps which will
be employed in the sequel.
For a nonempty set X, let (X, d) be a metric space and P (X) denote the
nonempty family of subsets of X, we shall denote by Pcl(X) (resp. Pb,cp,cv(X))
the nonempty family of closed (resp.bounded, compact and convex)subsets of
X.
A multivalued map F : X → P (X) is closed (resp. convex)-valued if F (x)
is closed (resp. convex) for all x ∈ X. F is said to be bounded if for every
bounded set V ∈ P (X), F (V ) is bounded in X.
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F is said to be upper semicontinuous (u.s.c) at a point point x ∈ X if x ∈ X,
F (x) is a nonempty closed subset of X and for each open set V of X containing
F (x) there exists an open neighbourhood N of x such that F (N) ⊂ V . F is
said to be u.s.c on a nonempty subset Y of X if F is u.s.c at every point y ∈ Y .
If for every bounded subset V of X, F (V ) is relatively compact then F is said
to be completely continuous. If F is continuous with nonempty compact values,
then F is u.s.c if and only if F has closed graph (i.e. xn → x, yn → y implies
y ∈ F (x)).
Let J ⊂ R be nonempty, a multivalued map F : J → Pbd,cl,cv(X) is said to be
measurable if for each x ∈ X the distance function Y : J → R defined by

Y (t) = d∗(x, F (t)) = inf{d(x, z) : z ∈ F (t)}

is measurable. All these properties of multivalued maps can be found in [2], [5]
and other standard books on set-valued analysis or differential inclusions.
We shall be concerned with the existence of mild solution of the stochastic
differential inclusions with impulsive effects:

dx(t) ∈ [Ax(t) + f(t, x(t))]dt+G(t, x(t))dw(t) a.e. t ∈ [0, T ], t 6= tk, k = 1, ...,m

4x(tk) = Ik(x(tk)), k = 1, ...,m

x(0) = ξ

(2.1)

where ξ ∈ H and A is the infinitesimal generator of an analytic semigroup of
bounded linear operators S(t), t ≥ 0,

x(t+k ) = lim
h→0+

x(tk + h) and x(tk) = lim
h→0−

x(tk + h).

The tk ≥ 0 are impulsive moments satisfying tk < tk+1 and limk→∞ tk = +∞.
The 4x(tk) = x(t+k )− x(tk) represents the jump in the state at tk.
We assume that there exists a constant M such that ‖ S(t) ‖B(H)≤M for t ∈ J
and 0 ∈ ρ(A), where B(H) denotes the space of bounded linear operators on
H and ρ(A) is the resolvent set of A.

Definition 2.1 A multivalued map F : J × X → P (X) is said to be L2-
Caratheodory if
(i) t→ F (t, u) is measurable for each u ∈ D,
(ii) u→ F (t, u) is u.s.c for almost all t ∈ J,
(iii) F is integrably bounded i.e. for each q > 0,there exists hq ∈ L1(J,R+) such
that

‖ F (t, u) ‖2= sup{‖ v ‖2: v ∈ F (t, u)} ≤ h(t) for all ‖ u ‖≤ q, a.e. t ∈ J.
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Let J = [0, b] we define PC ≡ PC
(
J, L2(Ω, H)

)
as

PC =
{
ϕ : [0, b]→ H such that ϕ is a continuous H − valued stochastic

process except for points tk, k = 1, ...,m; at which ϕ(t−k ), ϕ(t+k ) exist and

ϕ(t−k ) = ϕ(tk) a.s. sup
0≤t≤b

E | ϕ(t) |2<∞
}

PC is a Banach space with norm ‖ x ‖PC= sup0≤t≤b(E | x(t) |2) 1
2

For a multivalued map G, we define the set of selections of G; QG,x as

QG,x =
{
v(.) ∈ L2(J, LQ(K,H)) : v(t) ∈ G(t, x(t)) a.e t ∈ J

}
L2(J, LQ(K,H)) denotes the LQ(K,H)-valued functions ξ(t) satisfying∫
J | ξ(t) |

2
Q dt <∞.

Definition 2.2 By a mild solution of problem (2.1), we mean a process x ∈ PC
such that there exists a selection v(.) ∈ QG,x a.e. on J and

x(t) = S(t)ξ+

∫ t

0

S(t−s)f(s, x(s))ds+

∫ t

0

S(t−s)v(s)dw(s)+
∑

0<tk<t

S(t−tk)Ik(x(t−k )).

3 Main Results

The following hypotheses shall be employed in the main result.

Hypothesis 1 (H1): f : J × H → H is a continuous function; there exists
Lf > 0 such that

‖ f(t, x) ‖≤ Lf ‖ x ‖, x ∈ H
(H2): there exists constants ck, ck, k = 1, ...,m, such that

‖ Ik(x)− Ik(y) ‖≤ ck ‖ x− y ‖, for any x, y ∈ H and ‖ Ik(x) ‖≤ ck ‖ x ‖ .

(H3): A : D(A) ⊂ H → H is the infinitesimal generator of a strongly con-
tinuous semigroup S(t), t ≥ 0, which is compact for t > 0, and there exists a
constant M such that ‖ S(t) ‖B(H)≤M, for each t ≥ 0.
(H4): the multivalued map G : J×H → P (LQ(K,H)) is L2-Caratheodory, com-
pact and convex. There exists a continuous nondecreasing function ϕ : [0,∞)→
(0,∞), p ∈ L1(J,R+) such that

‖ G(t, x) ‖2
Q≤ p(t)ϕ(‖ x ‖2), for a.e.t ∈ J and x ∈ H
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with ∫ b

0

m(s)ds <

∫ ∞
c

du

u+ ϕ(u)
,

where

m(t) = max{M 2L2
f ,M

2p(t)}, c = M 2

[
‖ ξ ‖2 +

m∑
k=1

c2
k

]
Our main result is based on the following Bohnenblust-Karlin (Corollary 9.8,
[15] ) Theorem.

Lemma 3.1 Let X be a Banach space and K be a closed and convex subset of
X. Suppose the multivalued map Ψ : K → Pcl,cv(X) is upper semicontinuous
and the set Ψ(K) is relatively compact in X. Then Ψ has a fixed point in K.

We shall employ the following Lasota-Opial result [9].

Lemma 3.2 Let I be a compact interval and X be a Hilbert space. Let G be a
L2-Caratheodory multivalued map with QG,x 6= ∅ and ζ be a linear continuous
mapping from L2(I,X) to C(I,X). Then the operator

ζ ◦QG : C(I,X)→ Pb,cl,cv(C(I,X)), x→ (ζ ◦QG)(x) = ζ(QG)(x)

is a closed graph operator in C(I,X)× C(I,X).

We now state and the prove the existence result.

Theorem 3.1 Assume that conditions H1, H2, H3 and H4 hold, then problem
(2.1) has at least one mild solution.

Proof 1 The problem will be transformed to a fixed point problem.
Define the map Φ : PC

(
J, L2(Ω, H)

)
→ P(PC(J, L2(Ω, H))) by

Ψ(x) =

{
h ∈ PC(J, L2(Ω, H)) : h(t) = S(t)ξ +

∫ t

0

S(t− s)f(s, x(s))ds

+

∫ t

0

S(t− s)v(s)dw(s)

+
∑

0<tk<t

S(t− tk)Ik(x(t−k )); v(.) ∈ QG,x

}
(3.1)
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Let

K =

{
x ∈ PC(J, L2(Ω, H)) :‖ x ‖2

PC≤ r(t), t ∈ J
}

where

I(z) =

∫ z

c

du

u+ ϕ(u)
, I(r(t)) =

∫ t

0

m(s)ds

K is a closed and bounded convex subset of PC(J, L2(Ω, H)). Let
k∗ = sup{‖ x ‖2

PC : x ∈ K}. We have to show that Ψ(K) ⊂ K, Ψ is relatively
compact and upper semicontinuous. The proof is divided to steps.
Step 1: Ψ(K) ⊂ K.
For a fixed t ∈ J , let x ∈ K be arbitrarily chosen, we show that Ψ(x) ∈ K. For
each t ∈ K, there exists v(.) ∈ QG,x

h(t) = S(t)ξ +

∫ t

0

S(t− s)f(s, x(s))ds+

∫ t

0

S(t− s)v(s)dw(s)

+
∑

0<tk<t

S(t− tk)Ik(x(t−k ));

Then

‖ h(t) ‖2 = sup
t∈J

E | h(t) |2

≤ sup
t∈J

(
E | S(t)ξ |2 +

∫ t

0

E | S(t− s)f(s, x(s)) |2 ds

+

∫ t

0

E | S(t− s)v(s) |2 dw(s) +
∑

0<tk<t

E | S(t− tk)Ik(x(t−k )) |2
)

≤M 2 ‖ ξ ‖2 +M 2
m∑
k=1

c2
k +

∫ t

0

M 2L2
f ‖ x(s) ‖2 +M 2p(s)ϕ(‖ x(s) ‖2)ds

≤M 2 ‖ ξ ‖2 +M 2
m∑
k=1

c2
k +

∫ t

0

m(s)(‖ x(s) ‖2 +ϕ(‖ x(s) ‖2))ds

≤ c+

∫ t

0

m(s)(r(s) + ϕ(r(s)))ds

= c+

∫ t

0

r′(s)ds

= r(t),

(
since

∫ r(s)

c

du

u+ ϕ(u)
=

∫ s

0

m(τ)dτ

)
Hence Ψ(x) ∈ K. Since it is true for any x ∈ K, Ψ(K) ⊂ K. Therefore
Ψ : K → K. Step 2.: Ψ(K) is relatively compact.
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Let τ1, τ2 ∈ J , τ1 < τ2, and ε > 0 with 0 < ε ≤ τ1 < τ2. Let x ∈ K and h ∈ Ψ(x).
Then there exists v ∈ QG,x such that for each t ∈ J we have

‖ h(τ2)− h(τ1) ‖2 = E sup
t∈J
| h(τ2)− h(τ1) |2

≤ sup
t∈J

(
E | S(τ2)ξ − S(τ1)ξ |2

+

∫ τ1−ε

0

E | (S(τ2 − s)− S(τ1 − s))f(s, x(s)) |2 ds

+

∫ τ1−ε

τ1

E | (S(τ2 − s)− S(τ1 − s))f(s, x(s)) |2 ds

+

∫ τ2

τ1

E | S(τ2 − s)f(s, x(s)) |2 ds

+

∫ τ1−ε

0

E | (S(τ2 − s)− S(τ1 − s))v(s) |2 dw(s)

+

∫ τ1−ε

τ1

E | (S(τ2 − s)− S(τ1 − s))v(s) |2 dw(s)

+

∫ τ2

τ1

E | S(τ2 − s)v(s) |2 dw(s)

+M 2c2
k(τ2 − τ1) +

∑
0<tk<τ1

(
E | (S(τ2 − tk)− S(τ1 − tk))Ik(xt−k ) |2

))
≤‖ S(τ2)ξ − S(τ1)ξ ‖2

+

∫ τ1−ε

0

‖ (S(τ2 − s)− S(τ1 − s))f(s, x(s)) ‖2 ds

+

∫ τ1−ε

τ1

‖ (S(τ2 − s)− S(τ1 − s))f(s, x(s)) ‖2 ds

+

∫ τ2

τ1

‖ S(τ2 − s)f(s, x(s)) ‖2 ds

+

∫ τ1−ε

0

‖ (S(τ2 − s)− S(τ1 − s)) ‖2‖ v(s) ‖2 ds

+

∫ τ1−ε

τ1

‖ (S(τ2 − s)− S(τ1 − s)) ‖2‖ v(s) ‖2 ds

+

∫ τ2

τ1

‖ S(τ2 − s) ‖2‖ v(s) ‖2 ds

+M 2c2
k(τ2 − τ1) +

∑
0<tk<τ1

c2
k ‖ S(τ2 − tk)− S(τ1 − tk) ‖2
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The right hand side tends to zero as τ2 → τ1 and for ε sufficiently small, since
S(t) is a strongly continuous operator and compactness of S(t), for t > 0, im-
plies the continuity in the uniform operator topology. This proves the equicon-
tinuity for the case t 6= ti, i = 1, ...,m. To prove the equicontinuity at t = ti,
by Arzela-Ascoli theorem, it suffices to show that Ψ maps K into a precompact
set in L2(Ω, H). Let 0 < t ≤ b be fixed and let ε be a real number satisfying
0 < ε < t. For x ∈ K, we define

hε(t) = S(t)ξ + S(ε)

∫ t−ε

0

S(t− s− ε)f(s, x(s))ds

+ S(ε)

∫ t−ε

0

S(t− s− ε)v(s)ds

+ S(ε)
∑

0<tk<t−ε
S(t− tk − ε)Ik(x(t−k ))

where v ∈ QG,x. Since S(t) is a compact operator, the set Hε(t) = {hε(t) : hε ∈
Ψ(x)} is precompact in L2(Ω, H) for every ε, 0 < ε < t. Moreover, for every
h ∈ Ψ(x), we have

‖ hε(t)− h(t) ‖2 ≤ L2
fk
∗
∫ t

t−ε
‖ S(t− s) ‖2 ds

+

∫ t

t−ε
‖ S(t− s) ‖2| r(s) | ds

+
∑

t−ε≤tk<t
c2
k ‖ S(t− tk) ‖2

Therefore there are precompact sets arbitrarily close to the set {h(t) : h ∈ Ψ(x)}.
Hence the set {h(t) : h ∈ Ψ(x)} is precompact in L2(Ω, H).
Step 3: To show that Ψ is upper semicontinuous, it suffices to show that it has
a closed graph.
Let xn → x∗, hn ∈ Ψ(xn) and hn → h∗. We will prove that h∗ ∈ Ψ(x∗).
hn ∈ Ψ(xn) means that there exists vn ∈ QG(xn) such that, for each t ∈ J,

hn(t) = S(t)ξ +

∫ t

0

S(t− s)f(s, xn(s))ds+

∫ t

0

S(t− s)vn(s)ds

+
∑

0<tk<t

S(t− tk)Ik(xn(t−k )).
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We must prove that there exists v∗ ∈ QG(x∗) such that, for each t ∈ J

h∗(t) = S(t)ξ +

∫ t

0

S(t− s)f(s, x∗(s))ds+

∫ t

0

S(t− s)v∗(s)ds

+
∑

0<tk<t

S(t− tk)Ik(x∗(t−k )).

Consider the linear and continuous operator ρ : L2(J, LQ(K,H)) →
PC(J, L2(Ω, H)), defined by

(ρv)(t) =

∫ t

0

S(t− s)v(s)dw(s).

We have

E |
(
hn(t)− S(t)ξ −

∫ t

0

S(t− s)f(s, xn(s))ds

−
∑

0<tk<t

S(t− tk)Ik(xn(t−k ))
)
−
(
h∗(t)− S(t)ξ

−
∫ t

0

S(t− s)f(s, x∗(s))ds−
∑

0<tk<t

S(t− tk)Ik(x∗(t−k ))
)
|2

= E | hn(t)− h∗(t) +

∫ t

0

S(t− s)
(
f(s, xn(s))− f(s, x∗(s))

)
ds |2

≤ 2E | hn − h∗ |2 +2L2
f

∫ t

0

‖ xn − x∗ ‖2→ 0 as n→∞.

Now, we have

hn(t)− S(t)ξ −
∫ t

0

S(t− s)f(s, xn(s))ds ∈ ρ ◦QG(xn)

from Lemma 3.2, so ρ ◦QG is a closed graph operator.
Since xn → x∗, hn → h∗, there exist v∗ ∈ QG,x∗ such that

h∗ − S(t)ξ −
∫ t

0

S(t− s)f(s, x∗(s))ds =

∫ t

0

S(t− s)v∗(s)dw(s)

Then Ψ is upper semicontinuous and by Lemma 3.1, there exists a fixed point
which is a mild solution of problem (2.1)

Example
Consider for problem (2.1), G(t,X) which is lower semicontinuous and has
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continuous selection g(X(t)) and let f(t,X) ≡ f(X(t)). We have

dX(t) = [AX(t) + f(X(t))]dt+ g(X(t))dw(t) a.e. t ∈ [0, T ], t 6= tk, k = 1, ...,m

4X(tk) = Ik(X(tk)), k = 1, ...,m

X(0) = ξ ∈ H
(3.2)

The mild solution of the problem (3.2) is a process X(t) such that

X(t) = S(t)ξ+

∫ t

0

S(t−s)f(X(s))ds+

∫ t

0

S(t−s)g(s)dw(s)+
∑

0<tk<t

S(t−tk)Ik(X(t−k )).

We define the transition semigroup corresponding to this mild solution as fol-
lows:
Let Bb(H) = {ψ : H → R;ψ is bounded and Borel measurable}. For any
ϕ ∈ Bb, we define

Ptϕ(ξ) = E(ϕ(X(ξ)(t))), t ∈ [0, T ], ξ ∈ H, t 6= tk

Then Pt, t ∈ [0, T ], t 6= tk has a semigroup property, i.e. for all ξ ∈ H, and
s, t ∈ [0, T ], s, t 6= tk with s+ t ∈ [0, T ], (s+ t) 6= tk.
Under appropriate assumptions, the function Ptϕ is globally Lipschitz in H,
which means that the semigroup is strong Feller [6] .
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