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Abstract.

R. V. Bekryaev derived a system for a horizontally baroclinic atmosphere con-
sisting of six ordinary differential equations. We prove dissipativity and find

estimates for the location of the global attractor. The evolution of a compli-
cated attractor is analysed with a Poincaré map showing difficult bifurcation

behaviour. Investigations in bifurcation diagrams show a rich dynamical be-
haviour including a lot of known complicated bifurcations, of which a fold-Hopf

bifurcation is examined in detail. Finally, we give some theory about the Lya-
punov spectra and present a method for determining the exponents.
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1 Introduction

The equations for atmospheric flow are one of the most studied dynamical

systems of the last century. Both their practical importance and their mathe-
matical richness have attracted much attention. R. V. Bekryaev at the Arctic

and Antarctic Research Institute of Saint Petersburg derived a model for a
horizontally baroclinic atmosphere. In the derivation of the system a mean

approximation of the atmosphere was used, this means that the atmosphere
was treated as a thin layer at some height above the surface of the Earth. The
Navier-Stokes equation, the equation for heat conduction, the continuity equa-

tion and a Galerkin procedure were then used to obtain the continuous system
consisting of six ordinary quadratic differential equations given by

∂X

∂τ
= −BUT − PrX − BeG + 2.2GH + (UU − H)

Y

50
+

(

A + B +
G

50

)

Z

∂G

∂τ
= BeX − PrG − 2.2XH + (H − UU)

F

50
+

(

C − X

50

)

Z

∂H

∂τ
= −PPrH −

(

A + B

P
− G

160

)

F +

(

X

160
− C

P

)

Y (1)

∂F

∂τ
= QF − UTG − F + (UU − H)Y + GZ

∂Y

∂τ
= QY + UTX + (H − UU)F − Y − XZ

∂Z

∂τ
= −GF + XY − PZ

Here τ is a dimensionless time, A, B, Be, C, P, Pr, QF , QY , UT and UU are pa-
rameters of which P > 0 and Pr > 0. We will refer to Bekryaev [1] for a

derivation of the system and explanations to physical relations to the param-
eters and variables. More theory about dynamic meteorology can be found in

[2]. Note that, in the three-dimensional modification of the Bekryaev model,
G = F = H = 0, a linear change of variables, X̄ = X, Ȳ = UUY

50Pr
and Z̄ = UUZ

50Pr
,

allows us to reduce the system to the famous Lorenz equations
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∂X̄

∂τ
= PrȲ − PrX̄

∂Ȳ

∂τ
= −X̄Z̄ +

Pe2

2000Pr
X̄ − Ȳ

∂Z̄

∂τ
= X̄Z̄ − 16

5
Z̄

where Pe is the Pecle number. This system was found by Edward N. Lorenz in

1963, see [3]. In 1984 Lorenz published a modification of his system, referred
to as the Lorenz-84 model, see [4]. This system has been of great interest for
mathematicians and yields

∂X

∂τ
= −aX − Y 2 − Z2 + aF

∂Y

∂τ
= −Y + XY − bXZ + G

∂Z

∂τ
= −Z + bXY + XZ

where a and b are parameters. In a later paper [5], Lorenz pointed out that F
and G should be allowed to vary periodically, and in 2002, H. Broer, C. Simó
and R. Vitolo published an article [6] where they examined this system for

F → F (1 + ǫ cos(ωt))

G → G(1 + ǫ cos(ωt))

Except for the Bekryaev system, there is another six-dimensional system exam-
ined by L. Van Veen [7] in 2003, with quite analogous behaviour as the Bekryaev

system. For example, both systems give rise to fold-Hopf bifurcations and the
dynamics seems to take place on three-dimensional invariant manifolds in both

systems. Also, L. Van Veen found a reduction of his six-dimensional system to
the Lorenz-84 model. It is interesting that all of these systems have so much in

common, even if they represent different models.

In Section 2 we will prove the existence of a global attractor by showing that
the Bekryaev system (1) is dissipative by finding a suitable Lyapunov function.
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After this proof, seven of the parameters are given values found in [1], and

are from now on fixed when the system is investigated by changing the three
parameters A, B and QF . The values are

Be = −8.5242, C = 0, P = 16/5, Pr = 1 (2)

QY = 0, UT = 620.15, UU = 42.467

Estimates for the bounds of the global attractor are found for various values of
the parameter QF for the case when A = 2 and B = 0.

In Section 3 one attains knowledge about some non-wandering sets that

occur when changing QF for A = 2 and B = 0. The system is simulated using
a Runge-Kutta method programmed in C-code. A complicated attractor that

arises close to a fold bifurcation is discussed and analysed using a Poincaré
map, showing difficult bifurcation behaviour. The Lyapunov spectrum is also
determined for this attractor at different values of QF and compared to the

results from the Poincaré map.

Bifurcations in the plane of the parameters A and B will be analysed in
Section 4 using the software package AUTO 97, which can be found on the in-

ternet at [8]. The fold and Hopf bifurcation curves found in the AB-plane and
different regions and their corresponding set of equilibria are discussed. Two

bifurcations of codimension two are discovered, the Bogdanov-Takens and the
fold-Hopf bifurcation. The fold-Hopf bifurcation will be studied in more detail.

An approximation of the locally defined three-dimensional center manifold will
be found and the system is transformed into a normal form for fold-Hopf bi-
furcations derived in [10], from which the behaviour near the bifurcation can

be analysed. Some of the results are then verified by further simulations with
AUTO. In the end of the section some attractors are shown, one of which shows

an invariant torus.

The definition of the Lyapunov spectrum and some facts about the expo-
nents can be found in Section 5, and a method for computing the spectrum

is presented in which one augment the dynamical system with an orthonormal
frame and a Lyapunov vector. The implementation is also described and some

results are shown.
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2 Dissipativity

In this section dissipativity will be proved for the Bekryaev system (1). Before

giving the definition of dissipativity, we introduce the evolution operator which
determines the state xt of a system at time t, provided the initial state x0 is

known. Assume that for each t > 0 a single-valued map ϕt is defined in the
phase space X,

ϕt : X → X

which transforms an initial state x0 ∈ X into some state xt ∈ X at time t > 0
given by

xt = ϕtx0

We are now ready to give the following definition

Definition 2.1 An n-dimensional dynamical system is said to be dissipative if
there exists a bounded region S ∈ Rn such that ∀x0 ∈ Rn ∃ t0 > 0 such that

∀ t > t0, ϕtx0 ∈ S.

In words, the above definition means that, in a dissipative dynamical system
there exists a region such that all trajectories enter this region after sufficiently

long time, and nothing can escape from this region. This means that if we can
prove dissipativity, we have proved the existence of a global attractor. It is
therefore of great interest knowing if a dynamical system is dissipative or not.

2.1 Proof of dissipativity

The dissipativity of the Bekryaev system is given by the following.

Theorem 2.1 The Bekryaev system (1) is dissipative.
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Proof

The idea of the proof is to find a proper Lyapunov function V , and then prove

that it is possible to take a constant Γ such that all regions where V is in-
creasing in time are totally contained in the ellipsoid formed by V = Γ. This

means that outside the ellipsoid V = Γ the Lyapunov function V is decreasing,
and therefore, trajectories outside V = Γ tend inward this ellipsoid. Due to
symmetries in the Bekryaev system (1), we get rid of some improper terms in

the time derivative by considering as Lyapunov function

V =
1

2

(

X2 + G2 +
16

5
(H − UU)2 + F 2 + Y 2 + (Z − UT )2

)

(3)

The level surface to (3) given by V = Γ forms an ellipsoid centered at the
point X = G = F = Y = 0, H = UU , Z = UT . By taking the derivative with

respect to time τ of the Lyapunov function (3), and substituting the derivatives
from (1), we obtain

V ′ = V ′
linear + V ′

quad + V ′
cross (4)

where V ′
linear, V ′

quad and V ′
cross are given by

V ′
linear = −BUTX +

16

5
PPrUUH +

(

(A + B)
16UU

5P
+ QF

)

F

+

(

16CUU

5P
+ QY

)

Y + PUTZ

V ′
quad = −PrX2 − PrG2 − 16

5
PPrH2 − F 2 − Y 2 − PZ2

V ′
cross = −(A + B)

16

5P
HF − 16C

5P
HY + CGZ + (A + B)XZ (5)

Since P > 0 and Pr > 0, the part V ′
quad is always negative and dominates

V ′
linear far from the origin. The problem is the cross terms in V ′

cross, which can
be positive even far away from the origin. To get rid of these terms, we consider
another function VFY Z in the FY Z-subspace given by

VFY Z =
1

2

(

F 2 + Y 2 + (Z − UT )2
)

(6)
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Taking the derivative of (6) with respect to τ gives

V ′
FY Z = FQF − F 2 + Y QY − Y 2 − PZ2 + UtPZ (7)

Clearly, expression (7) is a quadratic form only in the variables F , Y and Z.
Further, outside of the sphere V ′

FY Z = 0, we have V ′
FY Z < 0 due to the negative

signs of the second order terms. This means that we can take a constant Γ1

such that outside the sphere VFY Z = Γ1 the function VFY Z is decreasing in time.

This means that we have shown dissipativity in the FY Z-subspace.

Observe that all terms in (5) involve one of the variables F , Y or Z. There-
fore, due to the dissipativity in the FY Z-subspace, bounds for the cross terms

can be found by replacing F , Y and Z by sufficiently large constants, say
Fmax, Ymax and Zmax such that

| F | ≤ Fmax | Y | ≤ Ymax | Z | ≤ Zmax

From this and the triangle inequality we can find a bound for expression (5) by

writing

V ′
cross ≤ 16

5P
| (A + B)HF | +

16

5P
| CHY | + | CGZ | + | (A + B)XZ | ≤

16

5P
| (A + B)H | Fmax +

16

5P
| CH | Ymax+ | CG | Zmax+ | (A + B)X | Zmax

Thus, V ′
cross is less than a function including only linear terms, and it follows

that the derivative V ′ given by (4) becomes negative far away from the origin.

Therefore, it is possible to take a constant Γ such that all regions where the
Lyapunov function given by (3) is increasing in time are totally contained in

the ellipsoid given by the level surface V = Γ, and we have proved the theorem.

2.2 Locating the attractor for a special case

In this section, estimates for the location of the global attractor will be found at
different QF values for the case when A = 2, B = 0. The rest of the parameters
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are fixed to the values given in (2). This case was studied by Bekryaev in [1]

and will be analysed further in Section 3. By giving QF a value, we will be able
to determine the smallest possible value of the constant Γ defined in Section

2.1, say Γs, giving the smallest boundary of the global attractor. To do so,
consider the derivative with respect to time τ of the Lyapunov function given

by (3). In this case it takes the simpler form

V ′ = −X2 − G2 − F 2 − Y 2 + 2(ZX − HF + UuF )

−256

25
(H2 + HUu) − 16

5
(Z2 + ZUt) + FQF (8)

Expression (8) is negative outside the ellipsoid V ′ = 0. In order to find Γs,
we will determine a point on both surfaces, that is, the ellipsoids V ′ = 0 and

V = Γs, of which the corresponding normals n̂V and n̂V ′ are parallel. From
this we have the equations

n̂V = α n̂V ′ α > 0

V = Γs (9)

V ′ = 0

where the normals to the level surfaces can be calculated from

n̂V = ±∇V and n̂V ′ = ±∇V ′

The first equation in (9) is six-dimensional, and since we have eight unknown,

this is enough for finding solutions with the software package MAPLE. In this
case however, we obtained three real solutions, which is natural because the

ellipsoids may touch several times with parallel normals when Γs is increased
from zero. But, choosing the solution that gives the largest Γs ensures that the

ellipsoid V ′ = 0 is totally contained in the ellipsoid V = Γs. To illustrate the
result, we look for the maximum value each of the variables X , G, H, F , Y , Z
can attain on the global attractor. From the Lyapunov function (3) we find

by setting all except one variable equal to zero the following bounds for the
variables

−
√

2Γs < X , G, F , Y <
√

2Γs
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UU −
√

10Γs

4
< H < UU +

√
10Γs

4

UT −
√

2Γs < Z < UT +
√

2Γs

The value of Γs is determined for fixed parameter values. Thus, to illustrate how
the above intervalls change varying QF , we repeat the calculations for the 401

different parameter values, QF = −3000,−2990, . . . , 1000. The result is shown
in figure 1, the curves plotted are the functions f1(QF ) = UT +

√

2Γs(QF ) and

f2(QF ) = −
√

2Γs(QF ). Thus, on the global attractor, all variables are bounded
between these curves.
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Figure 1: The functions f1(QF ) and f2(QF ) which constitute the bounds for all variables on the
global attractor for −3000 ≤ QF ≤ 1000.

3 Analysis in the parameter QF

In this section, different non-wandering sets that occur in the Bekryaev system

(1) when changing the parameter QF will be studied. The parameter values are
A = 2 and B = 0, the rest of the parameter values are given in (2). In Section

2 it was proved that the Bekryaev system has a global attractor, and estimates
for the bounds of this attractor were found especially for this case, see Section

2.2. With these parameter values, the Bekryaev system yields
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X ′ = −X − BeG + 2, 2GH + (UU − H)
Y

50
+

(

2 +
G

50

)

Z

G′ = BeX − G − 2, 2XH + (H − UU)
F

50
− 1

50
XZ

H ′ = −16

5
H −

(

5

8
+

G

160

)

F +
1

160
XY (10)

F ′ = QF − UTG − F + (UU − H)Y + GZ

Y ′ = UTX + (H − UU)F − Y − X

Z ′ = −GF + XY − 16

5
Z

Here we have used the simpler notation X ′ = ∂X
∂τ

and so on.

3.1 Finding equilibria

In this section we will find equilibria to system (10) by solving the equations

obtained by requiring the derivatives to be zero. The software package MAPLE
was used in order to accomplish the following calculations. Unfortunately, the

package was not able to solve the system of equations immediately, therefore
symmetries in the system were used to make simplifications. By taking the
following linear combinations

V ′ = 160H ′ − Z ′

W ′ = 50X ′ − F ′

S ′ = 50G′ − Y ′

of the equations in (10) we obtain three new equations which contain less

quadratic terms than the previous ones. These expressions yield, after sub-
stituting the derivatives from (10),
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V ′ = −512H − 100F +
16

5
Z

W ′ = −50(X + BeG) + 110GH + 100Z − QF + UTG + F

S ′ = 50(BeX − G) − 110XH − UTX + Y

Solving V ′ = 0 for H and substituting H into the above expressions W ′, S′,
and into F ′, Y ′ and Z ′ from (10) gives the five differential equations

W ′ = −50(X + BeG) − 110G

(

25F

128
− Z

160

)

+ 100Z − QF + UTG + F

S′ = 50(BeX − G) + 110X

(

25F

128
− Z

160

)

− UTX + Y

F ′ = QF − UTG − F + Y UU + Y

(

25F

128
− Z

160

)

+ GZ

Y ′ = UTX + F

(

25F

128
− Z

160

)

− FUU − Y − XZ

Z ′ = −GF + XY − 16

5
Z

After solving Y ′ = 0 for Y , and S′ = 0 for G, we still have three expressions,
W ′, F ′, Z ′, each involving the variables X ,Z and F . In W ′ = 0 and F ′ = 0,

X is found from first order equations, therefore one easily obtain two expres-
sions for X as functions of F and Z, say X1 and X2. In the following step,

substitute one of these expressions into Z ′. By plotting the curves X2 = X1

and Z ′ = 0 for QF = 0 in the same plot, one can graphically determine intervals
small enough for MAPLE to find the intersections of the curves.

For QF = 0, we have found apart from the unstable equilibrium at the
origin (F0), two equilibria, one of which is unstable (F1), and one stable (F2).
Unfortunately, we cannot with this method show that these three equilibria are

the only existing ones.

Electronic Journal. http://www.neva.ru/journal 11



Differential Equations and Control Processes, N 1, 2005

3.2 Analysing equilibria varying QF

The software package AUTO was used in order to examine the behaviour of

the three equilibria F0, F1 and F2 when changing QF . In figure 2, the distance
from the origin to all three equilibria and the maximum distance from the ori-

gin to a limit cycle marked P are plotted versus QF . F0 moves slowly when
QF changes, this unstable equilibrium has four contracting directions and no
bifurcation occurs. The two other equilibria, F1 and F2 are created in a fold

bifurcation at QF = 200. For large QF values we have the stable limit cycle P
as an attracting set, the cycle is shown for QF = 300 in figure 5; Section 3.3.

This cycle loses stability in a Neimark-Sacker bifurcation at QF = 185, and
disappears in a subcritical Hopf bifurcation for QF = 172 at equilibrium F1.

Figure 3 illustrates the behaviour of F1 in each coordinate. The fold bifurca-

tions are marked by dotted lines and the Hopf bifurcations by broken lines. The
first branch of equilibrium F1 (F1a) exists in the interval −61.0 < QF < 200,

the number of contracting directions changes from five to three in the sub-
critical Hopf bifurcation at QF = 172. Moreover, at QF = −10.3 we have a
fold bifurcation where two more equilibria, one stable (F1b) and one unstable

(F1c) are created. Thus, from F1, there are three equilibria in the interval
−61.0 < QF < −10.3. In this interval the stable equilibrium F1b loses two

contracting directions in a subcritical Hopf bifurcation at QF = −28.6, where
also an unstable cycle is created. Further, the branches F1b and F1a meet and

disappear in another fold bifurcation at QF = −61.0. Thus, for QF < −61.0
only F1c remains and changes slowly.

F2 consists of one stable equilibrium (F2a) when −14.4 < QF < 200. Simi-

lar to F1 , two more equilibria, one unstable branch (F2b) and one stable branch
(F2c) arise in a fold bifurcation at QF = −14, 4. The stable branch F2c loses two

contracting directions in a supercritical Hopf bifurcation at QF = −14, 7, where
a stable limit cycle occurs. Further, F2a and F2b are destroyed in a fold bifurca-
tion at QF = −50.7, and for QF < −50.7 only F2c remains and changes slowly.

Figure 4 illustrates the existence of equilibria in different intervals from F2. Ta-
ble 3.1 summarizes the number of equilibria existing in different intervals of QF .
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Figure 2: The distance from the origin to the three equilibria F0, F1, F2 and the maximum distance
from the origin to a limit cycle marked P for −1000 ≤ QF ≤ 500.
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Figure 3: The variation of F1 in all coordinates for −200 ≤ QF ≤ 200, dotted lines show the
location of fold bifurcations and broken lines indicate the location of Hopf bifurcations.
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Figure 4: The variation of F2 in all coordinates for −200 ≤ QF ≤ 200, dotted lines show the
location of fold bifurcations and the broken line indicates the location of a Hopf bifurcation.

Table 3.1: Equilibria in different intervals of QF . The number of contracting di-
rections of each equilibrium are given by the number in each square.

QF No F0 F1a F1b F1c F2a F2b F2c

(1000, 200) 1 4 - - - - - -

(200, 172) 3 4 5 - - 6 - -

(172,−10.3) 3 4 3 - - 6 - -

(−10.3,−14.4) 5 4 3 6 5 6 - -

(−14.4,−14.7) 7 4 3 6 5 6 5 6

(−14.7,−28.6) 7 4 3 6 5 6 5 4

(−28.6,−50.7) 7 4 3 4 5 6 5 4

(−50.7,−61.0) 5 4 3 4 5 - - 4

(−61.0,−3000) 3 4 - - 5 - - 4

3.3 Attractors at different QF values

In this section we will look for different attractors that occur in system (10)

when changing QF and taking a starting point close to the origin. For large QF

values, the stable cycle P discussed in Section 3.2 is the attracting set, see figure
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5. By decreasing the parameter, cycle P disappears, and the stable equilibrium

F2a takes over.
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Figure 5: The limit cycle P of system (10) for QF = 300.

A more complicated attractor (CA) occurs when F2a destroys in the fold bi-
furcation at QF = −50, 7. Figure 6 shows this attractor for QF = −300. The

Z-coordinate for the five different parameter values QF = −300,−450,
−650,−1000 and QF = −2500 is shown in figure 7 to give an overview of how
the attractor changes with the parameter. For QF = −300, the attractor CA

clearly shows one repeating laminar and one repeating more complicated part.
In fact, the laminar part becomes longer by increasing the parameter until we

have the stable equilibrium. In order to explain this behaviour, consider the
following. Figure 8 illustrates the location of the attracting set for QF = −50.7

and QF = −51.0. In the first case, trajectories are attracted by the stable
equilibrium F2a, and in the latter, we have the attractor CA. In figure 8 one

can see that the laminar part lies close to the position of the stable equilibrium,
and we may guess, due to this and figure 7, that the attracting behaviour of F2a
remains even for small QF values, where the equilibrium does not exist. To see

that this is the case, the local linearization for the equilibrium F2a are evaluated
at QF = −50.7, that is, we calculate the eigenvalues and eigenvectors to the

Jacobian matrix of system (10) at that point. Now, consider the eigenvector
corresponding to the eigenvalue which is zero in the fold bifurcation where F2a

disappears. By comparing this eigenvector to the direction of trajectories in
the laminar part of CA for QF = −51.0, we conclude that trajectories leave the
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laminar part in a direction close to this eigenvector. Therefore, it is clear that

the laminar part occurs due to the earlier existing stable equilibrium. Moreover,
the behaviour of the more complicated parts of the attractor CA remains for

some parameter values larger than QF = −50.7. This can be seen by choosing
a starting point at each side of equilibrium F2b, (which has five contracting

directions, cf table 3.1) in the repelling direction. From both starting points,
the trajectory arrives F2a, and one of these orbits behaves similar to the more
complicated part of CA for nearby QF values. From this we conclude that the

attractor CA creates when the branches F2a and F2b meet and disappear in the
fold bifurcation.
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Figure 6: The attractor CA of system (10) for QF = −300. In this case the attractor shows a
limit cycle.

3.4 Analysing CA with a Poincaré map

In this section we will examine the behaviour of the attractor CA when changing
QF , that is, we will investigate whether CA shows some periodic cycles or
chaotic behaviour. For doing this, a Poincaré map1 PQF

, depending on QF is

defined.

PQF
: R

5 → R
5

1Theory about Poincaré maps can be found in [9], [10] and [11].
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Figure 7: The Z-coordinate of attractor CA when (a) QF = −300, (b) QF = −450, (c) QF =
−650, (d) QF = −1000, (e) QF = −2500.
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Figure 8: The distance from the origin to the stable equilibria F2a at QF = −50.7 as a broken line,
and to the attractor CA at QF = −51.0 as a solid curve.

3.4.1 Construction of the Poincaré map

Consider a five-dimensional plane nearly orthogonal to the direction of the tra-
jectory when it passes the middle of the laminar part of the attractor CA at

QF = −51.0. The Poincaré map PQF
will be defined by this plane, and when

investigating periodicity in the laminar part, we also need another condition
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for PQF
, namely, that trajectories cross the plane almost perpendicular. This

is to avoid all intersections from other parts of CA. With this definition of the
Poincaré map, it is clearly not well defined for all QF values, because the be-

haviour of the laminar part changes with QF , but it is enough for investigating
the attractor to approximately QF = −400.

To find the plane, new coordinates (x, g, h, f, y, z) are introduced such that

system (10) has, in these coordinates, the stable equilibrium F2a at the origin
for QF = −50.7. We now have system (10) written in the form

ẋ = κ(x), x ∈ R
6 (11)

where κ forms the right hand side of the equations and κ(0) = 0. In the next
step, system (11) is transformed into the eigenbasis to the Jacobian matrix for

F2a at QF = −50.7. This is done using diagonalization in the following way.
Let e1, . . . , e6 denote the set of eigenvectors to the Jacobian matrix, where
e1 is the eigenvector corresponding to the eigenvalue which is zero at the fold

bifurcation where F2a disappears. Then we put

P = [e1, . . . , e6] and x = [x, g, h, f, y, z]T

Now, new coordinates u = [a, b, c, d, k, l]T are defined by

x = Pu

System (11) can now be transformed into u coordinates by

Pu̇ = κ(Pu)

giving

u̇ = P−1κ(Pu) (12)

In system (12), variable a corresponds to the direction of the eigenvector e1,
therefore, a will change quite fast during the laminar part of CA, where the

rest of the variables, b, c, d, k, l will stay almost constant. The five-dimensional
plane seeked for can now be found as a = 0.

Electronic Journal. http://www.neva.ru/journal 18



Differential Equations and Control Processes, N 1, 2005

3.4.2 Implementation and results

To see when a trajectory crosses the plane a = 0, we check if

aiai−1 ≤ 0, i = 1, 2, 3, . . . (13)

where i symbolizes the number of steps taken by the C-programme. In words, it
is checked if the variable a has changed sign after every iteration. To constrain

PQF
to intersections only from the laminar part, we define the norm Ni in the

variables b, c, d, k, l by

Ni = b2
i + c2

i + d2
i + k2

i + l2i

Further, let the difference ∆Ni be given by

∆Ni = Ni − Ni−1

We demand that ∆Ni is bounded by a sufficiently small number ǫ, that is

∆Ni < ǫ (14)

By testing, we found a proper value of ǫ, giving only the intersections from the

laminar part of CA. If (13) and (14) simultaneously hold after iteration i, the
program checks if

ai < δ or ai−1 < δ (15)

where δ is a sufficiently small number determining the accuracy. If (15) does
not hold, the programme reverses one iteration and takes half the step size and

so on, until (15) is satisfied.

We show the result of 350 implementations for the parameter values QF =
−51,−52, . . . ,−400. By comparing the time τ at different intersections with the

plane, we found the proper value ǫ = 0.001. Further, the accuracy parameter
was δ = 10−7. In each simulation, 2 ·107 loops were carried out, (corresponds to

integrating to about τ = 3 · 104) before starting to analyse the Poincaré map to
avoid transients. Then we let the simulations go on until 100 points were found
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in the map. With this method it took about 17 minutes to analyse one parame-

ter value, which means that the whole simulation needed about 100 hours. For
QF = −51,−52, . . . ,−296, we have a fixed point in the Poincaré map, which

means that the laminar part of CA occurs periodically with periodicity one.
When the parameter decreases further, the attractor jumps between different

periodicities and more complicated behaviour due to unknown bifurcations. An
overview of this behaviour is illustrated in figure 9, which shows the results for
QF = −280,−281, . . . ,−400. In figure 9(a), black lines are plotted for QF

values corresponding to detected periodic solutions. In figure 9(b), solid lines
indicate the location of periodic cycles with periodicity two, and the broken

line indicates a periodic cycle having periodicity four.
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Figure 9: Strange bifurcation behaviour for QF = −280,−281, . . . ,−400. (a) A black line is
plotted for detected periodic attractors. (b) Solid lines indicate periodicity two, and the broken line
indicates periodicity four.

When decreasing the parameter from QF = −51, the first more complicated

result is obtained for QF = −306. The Poincaré map for this case together with
the result for QF = −305, a fixed point, are shown in figure 10. Here, solid

squares are plotted for the case QF = −305, and dots for QF = −306. Figure
11 shows the Poincaré map for QF = −324, a cycle with periodicity two, and for

QF = −359, a cycle with periodicity four. The Z-coordinate of the attractor
CA for the above cases QF = −305,−306,−324 and QF = −359 is shown in

figure 12.

To verify whether there are chaos in the more complicated attractors de-
tected above or not, one can, in each case, determine the corresponding Lya-
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punov spectrum. In Section 5, we present some theory about Lyapunov spectra

and a method for determining the spectrum. Calculations have been carried
out for QF = −300,−301, . . . ,−400. The result indicates that there are strange

attractors in the cases where no period was detected in the Poincaré map. In
table 5.1; Section 5.4, we show the resulting Lyapunov spectrum for the at-

tractor CA at some parameter values between QF = −3000 and QF = −300,
from which we conclude that there are chaos for QF values below approximately
QF = −600.
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Figure 10: Poincaré map for QF = −305 as solid squares, and QF = −306 as dots. In each case
100 intersections are plotted. The first case shows a fixed point while the second case shows a more
complicated behaviour.
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Figure 11: Poincaré map for QF = −324 as dots, and QF = −359 as solid squares. In each case
100 intersections are plotted. The first case shows a two periodic cycle while the second case shows
a four periodic one.
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Figure 12: Z-coordinate for the cases (a) QF = −305, showing a periodic cycle with periodicity
one. (b) QF = −306, more complicated attractor. (c) QF = −324, a two periodic cycle, (d)
QF = −359, a four periodic cycle.
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4 Bifurcations in the AB-plane

In this section we will investigate the fold and Hopf bifurcations2 that occur

when varying the parameters A and B for QF = 0 and the remaining parameters
to the values given in (2). In this case, the Bekryaev system (1) takes the form

∂X

∂τ
= −BUT − X − BeG + 2.2GH + (UU − H)

Y

50
+

(

A + B +
G

50

)

Z

∂G

∂τ
= BeX − G − 2.2XH + (H − UU)

F

50
+

1

50
XZ

∂H

∂τ
= −16

5
H −

(

5

16
(A + B) − G

160

)

F +
1

160
XY (16)

∂F

∂τ
= −UTG − F + (UU − H)Y + GZ

∂Y

∂τ
= UTX + (H − UU)F − Y − XZ

∂Z

∂τ
= −GF + XY − 16

5
Z

One can see that system (16) is symmetric in such a way that the substitution

A = −A, B = −B, X = −X, G = −G, F = −F , Y = −Y

leaves it invariant. This means that we only need to consider variations in some
values of the parameters A and B to understand the parameter plane.

4.1 The 20 regions

From Section 3 we know that system (16) has three equilibria for A = 2 and
B = 0. The software package AUTO was used in order to follow these equi-

libria under variations in the free parameters A and B. By doing this, several
bifurcations occurred that could be followed by the program in order to find

the corresponding bifurcation curves in the plane of the parameters A and B.
This analysis contains the fold and Hopf bifurcations, limit cycles are not anal-

ysed with exception of the fold-Hopf case studied in Section 4.2, however, some

2Theory about fold and Hopf bifurcations can be found in [9], [10] and [11].
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stable limit cycles that occur will be illustrated in Section 4.3. Figure 14 and

15 show that the interesting part of the bifurcation diagram are fairly close to
the origin in the AB-plane, therefore, an overview of all bifurcation curves and

regions are shown in figure 13, which has an “unreal” scale to enable us to show
all 20 regions bounded by the bifurcation curves in the same figure.
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Figure 13: Overview in an unreal scale of the bifurcation diagram in the AB-plane. The Roman
numerals symbolize the number of equilibria existing in each region. Solid curves indicate fold
bifurcations and broken curves indicate Hopf bifurcations.

The bifurcation diagram will be described from figure 13, but we will also refer
to the real bifurcation diagram illustrated in figure 14 - 17. One need to men-

tion that nothing ensures that all existing equilibria and bifurcations are found
in this analysis.

Far from the origin in the AB-plane the four regions Ia, Ib, Ic and IIIa dom-

inate, and in region Ib, we have only one unstable equilibrium. At the Hopf
bifurcation curves h2 and h3, this equilibrium becomes stable, therefore, we
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have one stable equilibrium in the regions Ia and Ic. The curves marked f1,

meeting at the cusp bifurcation point c1, denote a fold bifurcation. By cross-
ing f1 from region Ia, two equilibria are created, one stable and one unstable.

Thus, in region III ′a and IIIa, we have three equilibria, two stable and one
unstable. Moreover, close to the fold bifurcation curve f1 we have a Hopf bifur-

cation curve marked h1. These curves bound the narrow regions III ′a, III ′b, V ′
2 ,

III ′c, V ′
d and V ′

e . The equilibria in these regions differ from their corresponding
regions to the right with respect to the number of contracting directions on the

unstable equilibrium created at the fold bifurcation curve f1. When crossing
the Hopf bifurcation curve h1 to the left, the number of contracting directions

increase from three to five, and simultaneously an unstable limit cycle is created.

From the fact that the stable equilibrium in region Ia loses stability when
entering region Ib due to the Hopf bifurcation at the curve h2, we find that in

region IIIb, we have one stable and two unstable equilibria. In region III2,
bounded by the fold bifurcation curves marked f2, meeting at the cusp bifur-

cation c2, there are three unstable equilibria. By crossing the fold bifurcation
curve f2 from IIIb one enters region V2. Here we have five equilibria, the unsta-
ble one from Ib together with the equilibria created at f1 and f2 respectively.

Thus, there are one stable and four unstable equilibria in this region. In region
IIIc, we have the same set of equilibria as in region IIIb, that is, one stable

and two unstable ones.

For the parameter values A = 0.23114, B = −0.023035, the Hopf bifurca-
tion curve h3 collides with the fold bifurcation curve f3 and disappears. At this

point, we have two zero eigenvalues which means a Bogdanov-Takens (fold-fold)
bifurcation (marked B-T in the figures). Figure 16 shows the location of this

bifurcation. Moreover, the fold curves f1, joint at the cusp bifurcation c1 and
the Hopf curve h1 intersect at A = 1.2426, B = −0.016664. Here we have

one zero and a pair of pure imaginary eigenvalues which means a fold-Hopf
bifurcation (marked F-H in the figures). Figure 17 shows the location of this
bifurcation, which will be investigated further in Section 4.2. On the curve

segments f3, meeting at cusp point c3, one stable and one unstable equilibrium
arise if the curve is crossed above the Bogdanov-Takens bifurcation, otherwise,

two unstable equilibria are created. Therefore, in region IIId, we have one
stable and two unstable equilibria. Since the stable equilibria in Ic loses two

contracting directions at the supercritical Hopf bifurcation represented by the
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curve h3, there are three unstable equilibria in region III ′d, coexisting with the

stable limit cycle created at the Hopf bifurcation. This cycle is shown for some
parameter values in region III ′d in figure 24; Section 4.3.

In the regions Vd and Ve, we have the equilibria from region IIId together

with the two equilibria created at the fold bifurcation marked f1. This means
that there are two stable and three unstable equilibria in region Vd, and due

to the Hopf bifurcation at the curve h1, there are one stable and four unstable
equilibria in region Ve. Table 4.1 summarizes the number of stable equilib-

ria in each region, also, it tells about the number of contracting directions of
the equilibria. To understand the set of equilibria in region Vf , see Section 4.2.5.

From table 4.1 it is clear that all equilibria found in this analysis have one
feature in common, they all have at least three contracting directions. This

is also true for the equilibria discovered in Section 3, cf table 3.1; Section 3.2.
Moreover, all limit cycles found also have this property, and from Section 5.4, it

follows that all Lyapunov spectra determined have at least three strongly neg-
ative exponents. From these observations one may suspect that the dynamics

in the Bekryaev system (1) take place on a three-dimensional invariant manifold.
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Figure 14: Bifurcation diagram in the AB-plane.

−20 −15 −10 −5 0 5 10 15 20 25

−5

0

5

10

15

20

25

A

B

I
b

I
a

III
b
 

III
2
 

f
2
 

f
2

f
1
 

c
2
 

h
1
 

h
2
 

h
3
 

h
2
 

V
2

III
a

I
a

I
c

I
b

Figure 15: Magnification of part of figure 14.
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Figure 16: Magnification showing the location of the Bogdanov-Takens bifurcation.
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Figure 17: Magnification showing the location of the fold-Hopf bifurcation.
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Table 4.1: The number of equilibria and their type in each of the 20 regions bounded

by the fold and Hopf bifurcation curves.

Region No Stable Unstable Contracting directions

Ia 1 1 0 6

Ib 1 0 1 4

Ic 1 1 0 6

III2 3 0 3 4, 4, 3

IIIa 3 2 1 6, 6, 3

III ′a 3 2 1 6, 6, 5

IIIb 3 1 2 6, 4, 3

III ′b 3 1 2 6, 5, 4

IIIc 3 1 2 6, 4, 3

III ′c 3 1 2 6, 5, 4

IIId 3 1 2 6, 5, 4

III ′d 3 0 3 5, 4, 4

IIIe 3 0 3 5, 4, 4

V2 5 1 4 6, 4, 4, 3, 3

V ′
2 5 1 4 6, 5, 4, 4, 3

Vd 5 2 3 6, 6, 5, 4, 3

V ′
d 5 2 3 6, 6, 5, 5, 4

Ve 5 1 4 6, 5, 4, 4, 3

V ′
e 5 1 4 6, 5, 5, 4, 4

Vf 5 2 3 6, 6, 5, 5, 4
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4.2 The fold-Hopf bifurcation

In this section we will start by presenting some theory from [10] about center

manifolds that allow one to reduce the dimension of a given dynamical system
near a local bifurcation. The three-dimensional dynamical system restricted to

the center manifold for the fold-Hopf bifurcation at A = 1.2426, B = −0.016664
will be approximated with up to second order terms. Then this system is
transformed into a normal form for fold-Hopf bifurcations, and this normal

form is then analysed giving the local bifurcation diagram.

4.2.1 Center manifold theorems

Consider a continuous dynamical system defined by

ẋ = f(x), x ∈ R
n (17)

where f is sufficiently smooth and f(0) = 0. Let the eigenvalues of the Jacobian

matrix A evaluated at the equilibrium point x0 = 0 be λ1, λ2, . . . , λn. Suppose
that there are eigenvalues with zero real part, and assume that there are n+

eigenvalues (counting multiplicities) with Re λ > 0 , n0 eigenvalues with Re
λ = 0 and n− eigenvalues with Re λ < 0. Let T c denote the linear eigenspace

corresponding to the union of the n0 eigenvalues on the imaginary axis and let
ϕt denote the flow3 associated with (17). Under the assumptions stated above,
the following theorem holds.

Theorem 4.1 (Center Manifold Theorem) There is a locally defined
smooth n0-dimensional invariant manifold W c of (17) that is tangent to T c at
x = 0. Moreover, there is a neighborhood U of x0 = 0, such that if ϕtx ∈ U

for all t ≥ 0 (t ≤ 0), then ϕtx → W c for t → ∞ (t → −∞).

Definition 4.1 The manifold W c is called the center manifold.

3A definition of ϕt can be found in the beginning of Section 3.
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In its eigenbasis4, system (17) can be written as

u̇ = Bu + g(u, v)

v̇ = Cv + h(u, v)
(18)

where u ∈ Rn0, v ∈ Rn++n−, B is an n0 × n0 matrix with all its eigenvalues

on the imaginary axis, while C is an (n+ + n−) × (n+ + n−) matrix with no
eigenvalue on the imaginary axis. Functions g and h have Taylor expansions

starting with at least quadratic terms. Further, the center manifold W c of
system (18) can be locally represented as a graph of a smooth function

W c = {(u, v) : v = V (u)}

where V : R
n0 → R

n++n−, and due to the tangent property of W c, V (u) =
O(‖u‖2). Figure 18 illustrates a two-dimensional center manifold in a three-

dimensional dynamical system as the graph of a function v = V (u).

Figure 18: Center manifold as the graph of a function v = V (u).

4Recall that the eigenbasis is a basis formed by all (generalized) eigenvectors of A (or their linear combinations
if the corresponding eigenvalues are complex). Actually, the basis used in the following may not be the true
eigenbasis. Any basis in the noncritical eigenspace is allowed. In other words, the matrix C may not be in real
canonical (Jordan) form.

Electronic Journal. http://www.neva.ru/journal 31



Differential Equations and Control Processes, N 1, 2005

The following theorem ends this section.

Theorem 4.2 (Reduction Principle) System (18) is locally topologically equiv-

alent near the origin to the system

u̇ = Bu + g(u, V (u))

v̇ = Cv
(19)

Notice that the equations for u and v are uncoupled in (19). This means that
only the first equation, which is the restriction of (18) to its center manifold,

has to be analysed to understand the dynamics locally near the bifurcation. In
Section 4.2.2, we will show how to determine this equation for the fold-Hopf

bifurcation.

4.2.2 Approximating the system restricted to W c

The following calculations have been carried out using the software package

MAPLE. As a first step, it is verified by the eigenvalues to the Jacobian matrix
that n+ = 0, n0 = 3 and n− = 3, which means that the center manifold to the

fold-Hopf bifurcation is three-dimensional and stable.

We now define new parameters α = (α1, α2) and new coordinates (x, g,
h, f, y, z) in system (16) such that the fold-Hopf bifurcation occurs at the pa-
rameter values α = 0 and at the origin in the new coordinates. These parameter

values are called the critical parameter values and the point is referred to as
the critical point. With these coordinates and parameters, system (16) takes

the form
ẋ = κ(x, α), x ∈ R

6, α ∈ R
2 (20)

where κ forms the right hand side of the equations and κ(0) = 0. In the next

step, diagonalization is used to transform system (20) into the eigenbasis of
the Jacobian matrix at the critical point. This is done in the following way,

let e1, . . . , e6 denote the set of eigenvectors to the Jacobian matrix, where
e1, e2 and e3 are the eigenvectors corresponding to the three eigenvalues on

the imaginary axis. Then we put

P = [e1, . . . , e6] , x = [x, g, h, f, y, z]T
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and define new coordinates w = [u1, u2, u3, v1, v2, v3]
T by

x = Pw

The system ẋ = κ(x, α) can now be transformed into w coordinates by the
transformation

Pẇ = κ(Pw, α)

which gives

ẇ = P −1κ(Pw, α) (21)

By writing equation (21) as two vector equations in u and v respectively, we

find

u̇ = a(α) + B(α)u + g(u, v, α), u ∈ R
3

v̇ = b(α) + C(α)v + h(u, v, α), v ∈ R
3

(22)

where a(0) = b(0) = 0. By setting α = 0 in (22) we obtain the 3 × 3 matrices
B, C and the two functions g and h in the representation (18) of our system

in the eigenspace to the Jacobian matrix at the critical point.

Our next task is to find the function v = V (u), where V : R
3 → R

3, locally
representing the center manifold W c. As mentioned before, W c is tangent to

the critical eigenspace T c at the origin, and therefore, to obtain a second order
approximation of the function V (u), we only need to include second order terms.

We start by making the following approach, including all possible second order
terms terms

vi = aiu
2
1 + biu

2
2 + ciu

2
3 + diu1u2 + eiu1u3 + fiu2u3 i = 1, 2, 3 (23)

To determine the 18 coefficients ai, bi, . . . , fi, i = 1, 2, 3, we substituted (23) and

the derivative of (23) into equation (18). Then equations for the coefficients
could be verified and solved.

An approximation of the restriction of (18) to its center manifold given by

the first equation in (19) is now determined, and we will follow the theory from
Chapter 8 in [10] to determine the normal form in Section 4.2.3.

Electronic Journal. http://www.neva.ru/journal 33



Differential Equations and Control Processes, N 1, 2005

4.2.3 The normal form

In Chapter 8 in [10], the following lemma is derived for fold-Hopf bifurcations.

Lemma 4.1 Suppose that a three-dimensional system

ẋ = f(x, α), x ∈ R
3, α ∈ R

2 (24)

with smooth f, has at α = 0 the equilibrium x = 0 with eigenvalues

λ1(0) = 0, λ2,3(0) = ± iω0, ω0 > 0

Let

(ZP.1) g200 6= 0, where g200 is defined by (29).
(ZP.2) g011 6= 0, where g011 is defined by (29).

(ZP.3) E(0) 6= 0, where E(0) can be calculated using (31).
(ZP.4) the map α → (γ(α), µ(α))T is regular at α = 0.

Then, by introducing a complex variable, making smooth and smoothly parame-

ter dependent transformations, reparametrizing time (reversing it if E(0) < 0),
and introducing new parameters, one can bring system (24) into the following

form

ξ̇ = β1 + ξ2 + s | ζ |2 +O(‖ (ξ, ζ, ζ̄) ‖4)

ζ̇ = (β2 + iω1)ζ + (θ + iϑ)ξζ + ξ2ζ + O(‖ (ξ, ζ, ζ̄) ‖4)
(25)

where ξ ∈ R, ζ ∈ C are new variables; β1, β2 are new parameters; θ = θ(β), ϑ =

ϑ(β), ω1 = ω1(β) are smooth real-valued functions; ω1(0) 6= 0; and

s = sign (g200g011) = ±1 (26)

θ(0) =
Re h110

g200
(27)

Only s and θ(0) are important in what follows. Assume that

(ZP.5) θ(0) 6= 0
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Four different cases of the fold-Hopf bifurcation can occur, established by the

signs of the parameters s and θ(0). The two cases corresponding to s θ(0) < 0
are much more complex. To determine s and θ(0), we follow parts of the

derivation of the normal form (25). During these calculations we also verify
the conditions (ZP.1), (ZP.2), (ZP.3) and (ZP.5). Condition (ZP.4) is not

verified here, this because there are some printing mistakes in [10], making it
difficult to understand how γ(α) is defined. Therefore, we suppose that (ZP.4)
is satisfied, and apply Lemma 4.1 on the three-dimensional system restricted to

the center manifold. The system is given by the first equation in (19), that is

u̇ = Bu + g(u, V (u)), u ∈ R
3 (28)

where g(u, V (u)) = O(‖ u ‖2). Matrix B yields

B =







0 0 0

0 0 −ω0

0 ω0 0






, where ω0 = 46.529

and has the simple eigenvalues

λ1 = 0, λ2,3 = ± iω0

System (28) will now be transformed into a complex form. Let q0 ∈ R
3 and

q1 ∈ C3 be the eigenvectors to B corresponding to the eigenvalues λ1 = 0 and

λ = iω0 respectively, that is

Bq0 = λ1q0, Bq1 = λq1

giving

q0 =







1

0

0






and q1 =

1√
2







0

i

1







Moreover, the adjoint eigenvectors p0 ∈ R3 and p1 ∈ C3 can be defined by

BTp0 = λ1p0, BTp1 = λ̄p1
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which gives

p0 =







1

0

0






and p1 =

1√
2







0

i

−1







These normalized eigenvectors has the property

〈q0, p0〉 = 〈q1, p1〉5

The following orthogonality properties simultaneously hold due to the Fredholm

Alternative Theorem

〈q0, p1〉 = 〈q1, p0〉 = 0

Now any real vector u can be represented as

u = yq0 + zq1 + z̄q̄1

with
y = 〈u, p0〉
z = 〈u, p1〉

In the coordinates y ∈ R and z ∈ C system (28) reads

ẏ = g(y, z, z̄)

ż = ω0z + h(y, z, z̄)

where

g(y, z, z̄) = 〈F (yq0 + zq1 + z̄q̄1), p0〉
h(y, z, z̄) = 〈F (yq0 + zq1 + z̄q̄1), p1〉

are smooth functions of y, z, z̄ whose Taylor expansions start with quadratic

terms and are given by

5As usual, 〈v, w〉 = v̄1w1 + v̄2w2 + v̄3w3 for two complex vectors v, w ∈ C
3.
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g(y, z, z̄) =
∑

j+k+l≥2

1

j!k!l!
gjkl y

jzkz̄l (29)

and

h(y, z, z̄) =
∑

j+k+l≥2

1

j!k!l!
hjkl y

jzkz̄l (30)

From expansions (29) and (30), the 14 coefficients needed to calculate s, θ(0)

and E(0) are verified. Table 4.2 shows these coefficients from which we directly
get the conditions (ZP.1) and (ZP.2).

Table 4.2: The 14 complex constants needed to calculate s, θ(0) and E(0).

g011 −0.00468 h101 −0.0564− 0.0192i

g110 −0.0260− 0.0207i h110 0.0131− 0.0972i

g111 −0.0000461 h002 0.000404 + 0.00253i

g020 0.0242− 0.00494i h020 −0.0000280 + 0.0209i

g200 −0.000108 h200 0.197− 0.131i

g300 −0.0000920 h021 −0.00000679− 0.0000876i

h011 −0.00221 + 0.00890i h210 0.000220− 0.000400i

E(0) is given by the expression

E(0) =
1

2
Re

(

H210 + h110

(

ReH021

g011
− g300

g200
+

g111

g011

)

− H021g200

2g011

)

(31)

where G300, G111, H210 and H021 are calculated from

G300 = g300 −
6

ω0
Im(g110h200)

G111 = g111 −
1

ω0
(2Im(g110h011) + Im(g020h101))

H210 = h210 +
i

ω0

(

h200(h020 − 2g110)− | h101 |2 −h011h̄200

)
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H021 = h021 +
i

ω0

(

h011h020 −
1

2
g020h101 − 2 | h011 |2 −

1

3
| h002 |2

)

This gives E(0) = −0.0054650. Thus, condition (ZP.3) is satisfied. Finally, from
(26) and (27) we establish that in the normal form given by (25) the parameters

are s = 1 and θ(0) = −121.860, from which we also have the condition (ZP.5)
satisfied. This means that we have one of the more complicated cases of fold-

Hopf bifurcation.

4.2.4 Bifurcation diagram of the normal form

In coordinates (ξ, ρ, ϕ) with ζ = ρeiϕ, system (25) without O(‖ · ‖4) terms can
be written as

ξ̇ = β1 + ξ2 + sρ2

ρ̇ = ρ(β2 + θξ + ξ2)

ϕ̇ = ω1 + ϑξ

(32)

the first two equations of which are independent of the third one. The equa-

tion for ϕ describes a rotation around the ξ-axis with almost constant angular
velocity ϕ̇ ≈ ω1, for | ξ | small. Thus, to understand the bifurcations in (32),

one needs to study only the planar system for (ξ, ρ) with ρ > 0 given by

ξ̇ = β1 + ξ2 + sρ2

ρ̇ = ρ(β2 + θξ + ξ2)
(33)

The bifurcation diagram of (33) corresponding to the case s = 1, θ < 0 is shown

in figure 19. The system can have between zero and three equilibria in a small
neighborhood of the origin for ‖ β ‖ small. Two equilibria with ρ = 0 exists for

β1 < 0 and are given by

E1 =
(

−
√

−β1, 0
)

and E2 =
(

√

−β1, 0
)

These equilibria appear at the fold bifurcation on the line

S = {(β1, β2) : β1 = 0}
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The line S has two branches, S+ and S−, corresponding to β2 > 0 and β2 < 0
respectively. Crossing the branch S+ gives rise to an unstable node and a saddle,

while passing through S− implies a stable node and a saddle. The node can
bifurcate further, namely, a nontrivial equilibrium with ρ > 0,

E3 =

(

−β2

θ
+ o(β2),

√

−1

s

(

β1 +
β2

2

θ2
+ o(β2

2)

)

)

that appears at the bifurcation curve

H =

{

(β1, β2) : β1 = −β2
2

θ2
+ o(β2

2)

}

The nontrivial equilibrium E3 is a stable focus if β2 < 0, and an unstable focus
if β2 > 0. For parameter values belonging to the line

T = {(β1, β2) : β2 = 0, β1 < 0}

the nontrivial equilibrium has a nondegenerate Hopf bifurcation and a unique

unstable limit cycle exists for nearby parameter values. The cycle coexists with
the two trivial equilibria E1,2 which are saddles. Under parameter variation,

the cycle can approach a heteroclinic cycle formed by the separatrices of the
saddles, its period tends to infinity and the cycle disappears. The heteroclinic

cycle appears along a curve orginating at β = 0 and having the representation

P =

{

(β1, β2) : β2 =
θβ1

3θ − 2
+ o(β1), β1 < 0

}

Now we can use the obtained bifurcation diagram for (33) to reconstruct bifur-
cations in the three-dimensional truncated normal form (32) by “suspension”

of the rotation in ϕ around the ξ-axis. The equilibria E1,2 correspond to equi-
librium points of (32). Therefore, the curve S is a fold bifurcation curve where

two equilibria appear. Equilibrium E3 corresponds to a limit cycle in (32) of
the same stability as E3. The curve H, at which a small cycle bifurcates from
an equilibrium, corresponds to a Hopf bifurcation in (32). Moreover, the limit

cycle corresponds to an invariant torus. Therefore, the Hopf bifurcation curve
T describes a Neimark-Sacker bifurcation of the cycle, at which it gains stability

and an unstable torus appears “around” it.
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Figure 19: Bifurcation diagram for fold-Hopf bifurcation for the case s = 1, θ(0) < 0 in the β-plane.
In the phase portraits ξ is on the horizontal axis and ρ on the vertical axis.

Finally, the curve P corresponds to a “sphere” in (32).

Adding higher order terms to the truncated system (32) will result in a

nonequivalent bifurcation diagram. This because the spherelike surface that ap-
pears for parameter values on the curve P is an extremely degenerate structure,

which disappears when adding higher order terms. Therefore, the torus cannot
approach the “sphere”, since it simply does not exist, and must therefore dis-
appear before. Instead, system (32) may have near the curve P , in addition to

local bifurcation curves, a bifurcation set corresponding to global bifurcations
(heteroclinic tangencies, homoclinic orbits) and bifurcations of long-periodic

limit cycles (folds and period-doubling cascades).
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4.2.5 Comparing to simulated bifurcation diagram

By checking the stability of the two equilibria created when crossing the fold

bifurcation curve f1 at each side of the fold-Hopf bifurcation we verified the
branches S+ and S−. See figure 20, which shows the bifurcation diagram in the

AB-plane close to the critical parameter values A = 1.2426, B = −0.016664.
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Figure 20: Bifurcation diagram in the AB-plane close to the fold-Hopf bifurcation.

When moving from region IIId counter clockwise around the fold-Hopf
bifurcation, we have the following. By crossing the curve f1 entering region Ve,

two unstable equilibria are created, which means that we have crossed branch
S+. One of the equilibria has three (E2) and one has four (E1) contracting

directions. E2 gains two contracting directions when crossing the curve h1,
which corresponds to branch H+, and an unstable limit cycle occurs which
corresponds to the nontrivial equilibrium E3. By following this limit cycle

in the negative A-direction, we found the Neimark-Sacker bifurcation. The
corresponding bifurcation curve marked t1 splits region V ′

e into two regions, V ′
e1

and V ′
e2

. At the Neimark-Sacker bifurcation the cycle becomes stable and an
unstable torus is created. Thus, the curve t1 corresponds to the line T defined

in Section 4.2.4. The stable limit cycle coexisting with the unstable torus in
region V ′

e2
is illustrated in figure 21. This cycle disappears by crossing the curve
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h1 into region Vf and simultaneously, equilibrium E1 becomes stable. From

this we also conclude that in region Vf , we have two stable and three unstable
equilibria. Finally, by crossing the fold bifurcation curve f1 back into region

IIId, the equilibria E1 and E2 destroys.
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Figure 21: Limit cycle existing in region V ′

e2
for A = 1.23, B = −0.0133.

4.3 Some attractors in the AB-plane

In this section, we show some attractors to system (16) that occur for different
values of the parameters A and B. Figure 22 and 24 illustrate two limit cycles,

one in region Ib and one in III ′d, created at the supercritical Hopf bifurcations
represented by the bifurcation curves h2 and h3 respectively. The following at-

tractors are produced by choosing a point close to the origin as an initial point.
Figure 23 shows a limit cycle in region Ib for A = B = 0, in which the variables
H and Z are constant at the values H = 3.6397 and Z = 582.3547. Figure

25 and 26 illustrates limit cycles in region III2 for A = 2, B = 1, and in Ib for
A = 0, B = 15 respectively. Recall that due to the symmetry in system (16),

we obtain similar attractors by changing signs of A and B.

Figure 27 shows a more complicated periodic attractor that clearly reminds
about the behaviour of the attractor CA, discussed in Section 3. In this case it is

verified by calculating Lyapunov spectra that the attractor becomes chaotic by
decreasing the parameter B, see Section 5 for how the spectra were determined.
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Figure 28 illustrates a limit cycle for A = 15, B = 18. By increasing both

parameters to A = 20, B = 25, the attractor shows a quasi-periodic behaviour,
and the attracting set is an invariant torus, see figure 29. This was verified by

calculating the corresponding Lyapunov spectrum, having two zero exponents.
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Figure 22: Limit cycle in region Ib close to the Hopf bifurcation curve h2 for A = 7.90 ,B = 9.80.
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Figure 25: Limit cycle in region III2 for A = 2, B = 1.
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Figure 27: More complicated attractor for A = 15, B = −5.
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Figure 28: Limit cycle for A = 15, B = 18.
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Figure 29: The attracting set for A = 20, B = 25, showing an invariant torus.
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5 The Lyapunov spectrum

In this section we begin by presenting a definition and some properties of the

Lyapunov spectrum. Then a method for computing the exponents is shown,
and finally, we describe how to implement this method on a computer and show

some results. The theory presented here has been found in [12] and [13], and
we refer to these papers for more details.

5.1 The Lyapunov spectrum defined

The Lyapunov spectrum is a striking characterization of an n-dimensional dy-
namical system. It associates a set of n real values to each orbit of the system

which describes exponential instabilities of infinitesimal deviations from the or-
bit. Moreover, for an ergodic6 dynamical system, the spectrum is independent

of which orbit you choose. In more detail, consider a continuous n-dimensional
dynamical system given by

ẋ = v(x), v, x ∈ R
n

For an initial condition x(0) = x0, we integrate the system to obtain a corre-
sponding orbit

x(t) = ϕtx0

To examine the stability of this orbit, we look at the evolution of a nearby orbit
x(t)+u(t). In the first step, we linearize the equations of motion in u to obtain

u̇ = J (x(t))u(t) (34)

where J(x) is the Jacobian matrix at the point x. By integrating (34) along

the orbit we obtain the tangent map

u(t) = Mx0
(t)u0

where the time dependent n × n matrix Mx0
(t) is given by

6Theory about ergodic dynamical systems can be found in [14].
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Mx0
(t) =

∂ϕtx0

∂x0

The exponential instabilities of a trajectory are now reflected in the eigenvalue
spectrum to the matrix Mx0

(t), or rather, since the Lyapunov exponents are re-

lated to the modulus of the eigenvalues, the spectrum of the symmetric product

MT
x0

(t)Mx0
(t)

The eigenvalues of this matrix are real and positive and we order them in the
following way

µ2
1(t) ≥ µ2

2(t) ≥ . . . ≥ µ2
n(t) ≥ 0

From the analysis above one realizes that these eigenvalues are dependent of
the initial point x0 chosen. To overcome this we have a theorem by Oseledec

giving that the limit

λk = lim
t→∞

1

t
log µk(t), k = 1, . . . , n (35)

is independent of, and exists for almost every initial point x0. Thus, by taking

an arbitrary initial point and calculating the above limits, with probability 1
you will get its unique Lyapunov spectrum, {λ1 ≥ λ2 ≥ . . . ≥ λn}.

5.2 Properties of the Lyapunov spectrum

From the definition of the spectrum it can be proved that it is independent
of the choice of coordinate system. Moreover, any continuous time dependent

dynamical system without a fixed point will have at least one zero exponent,
corresponding to the linear changing magnitude of a principal axis tangent to
the flow. Axes that are on the average expanding correspond to positive ex-

ponents, and contracting axes correspond to negative exponents. Also, for a
dissipative dynamical system there will be at least one negative exponent. Fur-

ther, an attractor for a dissipative system with one or more positive exponents
is said to be a strange, or a chaotic attractor. From this discussion, we conclude

that, for example in a three-dimensional continuous dissipative dynamical sys-
tem, we can have the following spectra; (+, 0,−), a strange attractor; (0, 0,−),
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a torus (quasi-periodic behaviour); (0,−,−), a limit cycle; and (−,−,−), a

fixed point.

5.3 Determining the Lyapunov spectrum

From the numerical point of view, the above description is insufficient because
the matrix MT

x0
Mx0

becomes singular rather fast since its eigenvalues separate
exponentially in time, if not all exponents are equal. This makes it difficult to

measure the spectrum, and in this section we shall present a method for doing
this in which we augment the given dynamical system with an orthonormal

frame and a Lyapunov vector. The method applies to any finite-dimensional
dynamical system.

We define a time-dependent orthonormal k-frame to be the set of k(k ≤ n)

orthonormal n-dimensional vectors

ε(t) = e1(t), . . . , ek(t) (ei, ej) ≡ δij i ≤ i, j ≤ k (36)

where (., .) is the usual Euclidean product in Rn. Using this frame, we let the

matrix elements of the Jacobian matrix J be given by

Jlm = (el, Jem), l, m ≤ k

which depend on time both through the Jacobian and the frame. Further, we
introduce a stability parameter β > 0, and define the symmetric stabilized

matrix elements Lmm and Llm as

Lmm = Jmm + β ((em, em) − 1) , m ≤ k
and

Llm = Jlm + Jml + 2β(el, em), l 6= m, l, m ≤ k

Finally, let Λ = {Λ1(t), . . . , Λk(t)} be a k-dimensional real vector. The aug-
mented dynamical system is now given by the following set of differential equa-

tions, of which the first two are vector equations

ẋ = v(x), v, x ∈ R
n

Electronic Journal. http://www.neva.ru/journal 49



Differential Equations and Control Processes, N 1, 2005

ėm = Jem −
∑

l≤m

elLlm m = 1, . . . , k (37)

Λ̇m = Jmm m = 1, . . . , k

For system (37) we have the following theorem.

Theorem 1 Let x0 be an initial point for which the associated Lyapunov spec-
trum (cf equation 35) λ1 ≥ λ2 ≥ . . . ≥ λn exists. Set Λ(t = 0) = 0. Choosing

the stability parameter β > −λk, then for almost any (i.e. with probability
1 when choosing randomly) initial frame ε(t = 0) the time evolution of the

dynamical system (37) yields

lim
t→∞

1

t
Λm(t) = λm m = 1, . . . , k

Thus, by following a trajectory of the augmented system we obtain almost

surely the k first exponents in the Lyapunov spectrum for the given orbit. The
condition on the stability parameter is satisfied, for example by setting

β > max‖e‖=1(−(e, Je)) (38)

where the maximum is over all unit-length vectors e and over the relevant re-
gion of phase space. Dynamically, this corresponds to finding the strongest
local contraction. For details and a proof of the above theorem, see [12].

5.4 Implementations and results

In order to implement the augmented dynamical system (37), we use the same

algorithm as in the rest of the simulations on the Bekryaev system, that is, a
Runge-Kutta method in C-code. When calculating the complete spectrum, we

get k = n = 6, which means that the augmented system to implement gets a
dimension of 48. As an initial frame, we chose the orthonormal set of vectors

ei(j) =

{

1 i = j

0 i 6= j
1 ≤ i, j ≤ 6
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Also, we start at a point on the attractor of which we want to calculate the
spectrum. Further, in addition to the main system to simulate, the program

needs the Jacobian matrix explicitly to be able to set up the equations for ẋ, ėm

and Λ̇m in system (37). To choose the stability parameter β such that condition

(38) is satisfied, we started with β = 0, and at each step in the simulation we
check the condition

β ≤ max(−Jmm) m = 1, . . . , k (39)

If (39) holds we let β = max(−Jmm) + 1. After completed one simulation one

may fix β as some value greater than the value obtained above to speed up
future simulations.

Figure 30 shows the result of a simulation of the Bekryaev system (1) with

the parameters A = 2, B = 0, QF = −2500 and the remaining parameters as in
(2). We have the attractor CA discussed in Section 3, the spectrum obtained
yields (+, 0,−,−,−,−) which indicates a strange attractor. In this case we

had the stability parameter β = 416. The elapsed time for this simulation was
approximately 20 hours. In table 5.1, we present the result of some more cal-

culations of the Lyapunov spectrum for the attractor CA. All spectra obtained
for the Bekryaev system 1 include at least three strongly negative exponents.

Table 5.1: Lyapunov spectra for the attractor CA at different values of QF .

QF Lyapunov spectra QF Lyapunov spectra

−300 (0,−,−,−,−,−) −600 (+, 0,−,−,−,−)

−325 (+, 0,−,−,−,−) −650 (+, 0,−,−,−,−)

−350 (0,−,−,−,−,−) −700 (+, 0,−,−,−,−)

−375 (+, 0,−,−,−,−) −800 (+, 0,−,−,−,−)

−400 (+, 0,−,−,−,−) −900 (+, 0,−,−,−,−)

−450 (0,−,−,−,−,−) −1000 (+, 0,−,−,−,−)

−500 (+, 0,−,−,−,−) −2500 (+, 0,−,−,−,−)

−550 (+, 0,−,−,−,−) −3000 (+, 0,−,−,−,−)
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Figure 30: The six Lyapunov exponents from a single run of the Bekryaev system (1) for the
parameters A = 2, B = 0 and QF = −2500.
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