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Abstract. This paper concerns the study of the following stochastic differ-
ential equation:

dX = −f(X)dt + σ(X, ε)0dW,

X(0) = x0 > 0,

where ε is a positive parameter, f(s) ∈ C1(R) is a positive and increasing
function for the positive values of s, σ ∈ C1(R× R), W is a (one dimensional)
Wiener process defined on a given probability space (Ω, F, P) with a filtration
{F}t≥0 satisfying the usual conditions. Under some conditions, we show that
any solution of the above problem extincts in a finite time and its extinction
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time goes to the one of the solution of a certain differential equation as ε goes to
zero. We also extend the above results to other classes of extinction problems.
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1 Introduction

In this paper, we consider the following stochastic differential equation (SDE)

dX = −f(X)dt + σ(X, ε)0dW, (1)

X(0) = x0 > 0, (2)

where ε is a positive parameter, f(s) ∈ C1(R) is a positive and increasing func-
tion for the positive values of s, σ ∈ C1(R × R), W is a (one dimensional)
Wiener process defined on a given probability space (Ω, F, P) with a filtration
{F}t≥0 satisfying the usual conditions (i.e it is right continuous and {F}0 con-
tains all P-null sets (see [11]). Let us notice that our stochastic differential
equation is given in Stratonovich form. It is well known that if a SDE is given
in It form, it may be rewritten in Stratonovich form. In fact, if X(t) solves
dX = −f(X)dt+g(X)dW , where the SDE is given in It form, then X(t) solves

dX = −f(X)dt + b(X)0dW

with

b(s) = f(s) +
1

2
g
′
(s)g(s).

The first SDE dates back to 1930 and has been written by Uhlenbeck and Orn-
stein (see [17]) and has been used as a model for the Brownian motion (irregular
motion of a particle suspended in a fluid first observed on the microscope by
the botanist Brown in the XIX century). A mathematical study of SDEs is
due to It half a century age and they have extensively used in practically all
branches of science and technology from physics to biology (see [1], [4], [9],
[11]–[13], [15]-[17] and the references cited therein). We know that a solution
X(t) of the SDE in (1)–(2) may extinct in a finite time, namely there exists a
finite time T such that X(t) > 0 for t ∈ (0, T ) but X(t) = 0 for t ≥ T . The
time T is called the extinction time of X(t). In the case of ordinary differential

Electronic Journal. http://www.neva.ru/journal, http://www.math.spbu.ru/diffjournal/ 16



Differential Equations and Control Processes, N 1, 2008

equations (ODE), one may determine easily the extinction time in a lot of sit-
uations. In the case of SDE, the problem is more complicated because of the
stochastic term. Our aim in this paper is to describe the extinction time when
ε is small enough. Our work was motived by the paper of Friedman and Lacey
in [8] and the one of Groisman and Rossi in [10], concerning the phenomenon
of blow-up (we say that a solution blows up in a finite time if it reaches the
value infinity in a finite time). In [8], Friedman and Lacey have considered the
following initial-boundary value problem

ut(x, t) = ε∆u(x, t) + f(u(x, t)) in Ω× (0, T ),

u(x, t) = 0 on ∂Ω× (0, T ),

u(x, 0) = u0(x) in Ω,

where ∆ is the Laplacian, ε is a positive parameter, f(s) is a positive, increasing,
convex function for the nonnegative values of s,

∫ +∞
0

ds
f(s) < +∞, Ω is a bounded

domain in RN with smooth boundary ∂Ω, u0(x) is a continuous function in Ω.
Under some additional conditions on the initial data, they have shown that
if ε is small enough, the solution u of the above problem blows up in a finite
time and its blow-up time goes to the one of the solution α(t) of the following
differential equation

α
′
(t) = f(α(t)), t > 0, α(0) = M,

as ε goes to zero where M = supx∈Ω u0(x).
Let us notice that the blow-up time of the solution α(t) of the differential
equation is given by T0 =

∫ +∞
M

ds
f(s) . A similar result has been obtained by

Groisman and Rossi in [10], where they have considered the SDE below

dX = f(X)dt + σ(X, ε)0dW,

X(0) = x0.

In this problem, σ(X, ε) which represents the diffusion of the SDE plays the
same role as ε∆u of the partial differential equation considered in [8]. In this
paper, we obtain an analogous result for the problem of extinction.
Our paper is written in the following manner. In the next section, we show
that when ε is small enough, any solution X(t) of the SDE defined in (1)–(2)
extincts in a finite time and its extinction time goes to the one of the solution
of a certain differential equation. Finally, in the last section, we extend the
results of section 2 to other classes of extinction problems.
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2 Extinction times

In this section, under some conditions, we show that if ε is small enough, any
solution X(t) of (1)–(2) extincts in a finite and its extinction time goes the one
of the solution of a certain ordinary differential equation (ODE). For the sake
of simplicity, let us start with an example concerning the ODEs.
Consider the following ODE

y
′
(t) = −yp(t), t > 0, (3)

y(0) = M > 0, (4)

where p > 0. An explicit solution of (3)–(4) is given by

y(t) =
1

(M 1−p + (p− 1)t)
1

p−1

if p > 1,

y(t) = Me−t if p = 1,

y(t) = (M 1−p − (1− p)t)
1

p−1

+ if 0 < p < 1,

where (x)+ = max{x, 0}.
Thus, we see that if p ≥ 1, 0 < y(t) < M for t ≥ 0 and limt→+∞ y(t) = 0, but
if 0 < p < 1, 0 < y(t) < M for t ∈ [0, M1−p

1−p ) but y(t) = 0 for t ≥ M1−p

1−p . In this
case, we say that the solution y(t) of (3)–(4) extincts in a finite time and the
time T0 = M1−p

1−p is called the extinction time of the solution y(t).
More generally, consider the following ODE

α
′
(t) = −f(α(t)), t > 0, (5)

α(0) = M > 0 (6)

where f(s) ∈ C1(R) is a positive and increasing function for the positive values

of s. It is well known that if the integral
∫ M

0
ds

f(s) diverges then the solution

α(t) of (5)–(6) satisfies 0 < α(t) < M and limt→+∞ α(t) = 0 but if the integral∫ M

0
ds

f(s) converges then the solution of (5)–(6) extincts in a finite time and its

extinction time T0 is given by T0 =
∫ M

0
ds

f(s) .
Thus, we see that for certain ODEs, the extinction times of solutions are given
explicitly.
Now, let us consider the SDEs. Our first result is the following.
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Theorem 1 Suppose that σ(X, ε) = εX and
∫

0
ds

f(s) < +∞. Then for almost

every ω, any solution X(t) of the SDE in (1)–(2) extincts in a finite time for
every ε > 0 and its extinction time T ω

ε goes to
∫ x0

0
ds

f(s) as ε tends to zero.

Proof. Since σ(X, ε) = εX, then we have

dX = −f(X)dt + εX0dW,

X(0) = x0.

Setting Z = Xe−εW , it is not hard to see that dZ = e−εWdX − εe−εWX0dW ,
which implies that

dZ = −e−εWf(eεWZ)dt.

This gives a non-autonomous ODE for each ω such that W (., ω) is continuous,

Żω(t) = −e−εW (t,ω)f(eεW (t,ω)Zω(t)), t > 0,

Zω(0) = x0.

In the above problem ω is regarded as a parameter. Consider M > 0 and define

AM = {ω : W (., ω) is continuous and max
0≤t≤T+1

|W (., ω)| ≤ M},

where T =
∫ x0

0
ds

f(s) . Let Z1 be the solution of the following ODE

Z
′

1(t) = −e−εMf(e−εMZ1(t)), t > 0,

Z1(0) = x0.

Similarly, let Z2 be the solution of the ODE below

Z
′

2(t) = −eεMf(eεMZ2(t)), t > 0,

Z2(0) = x0.

It is not hard to see that Z1(t) extincts at the time T ε
1 = e2εM

∫ e−εMx0

0
ds

f(s) and

Z2(t) extincts at the time T ε
2 = e−2εM

∫ eεMx0

0
ds

f(s) . By the maximum principle
for ODE, we discover that

Z2(t) ≤ Zω(t) ≤ Z1(t) for t ≥ 0, ω ∈ AM .
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Therefore, if ω ∈ AM then Zω(t) extincts in a finite time T ω
ε such that T ε

2 ≤
T ω

ε ≤ T ε
1 . Obviously, we have limε→0 T ε

2 = limε→0 T ε
1 =

∫ x0

0
ds

f(s) . Consequently,

we obtain limε→0 T ω
ε =

∫ x0

0
ds

f(s) . Use the fact that P(
⋃∞

M=1 AM) = 1 and X =

eεWZ to complete the rest of the proof. �
Consider now the SDE in to sense. It may be rewritten as follows

dX = −f(X)dt + εXdW, (7)

X(0) = x0. (8)

We have the following result.

Theorem 2 Theorem 1 remains valid if X(t) solves (7)–(8).

Proof. Applying the formula given in the introduction, the SDE in (7)–(8)
may be rewritten in Stratonovich sense in the following manner

dX = −f(X)− ε2X

2
+ εX0dW,

X(0) = x0.

Setting Z = Xe−εW , it is not hard to see that

dZ = e−εWdX − εe−εWX0dW

which implies that

dZ = −[eεWf(eεWZ) +
ε2

2
eεWZ]dt.

This gives a non-autonomous ODE for each ω such that W (., ω) is continuous,

Żω(t) = −[eεW (t,ω)f(eεW (t,ω)Zω(t)) +
ε2

2
eεW (t,ω)Zω(t)], t > 0,

Zω(0) = x0.

Consider M > 0 and define

AM = {ω : W (., ω) is continuous and max
0≤t≤T+1

|W (., ω)| ≤ M},

where T =
∫ x0

0
ds

f(s) . Let Z1 be the solution of the following ODE

Ż1(t) = −[e−εMf(e−εMZ1(t)) +
ε2

2
e−εMZ1(t)], t > 0,
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Z1(0) = x0.

Similarly, let Z2 be the solution of the ODE below

Ż2(t) = −[eεMf(eεMZ2(t)) +
ε2

2
eεMZ2(t)], t > 0,

Z2(0) = x0.

It is not difficult to see that Z1(t) extincts at the time

T ε
1 = e2εM

∫ e−εMx0

0

dσ

f(σ) + ε2

2 eεMσ

and Z2(t) extincts at the time

T ε
2 = e−2εM

∫ eεMx0

0

dσ

f(σ) + ε2

2 e−εMσ
.

We observe that the above times are finite because
∫

0
ds

f(s) is finite. Owing to
the maximum principle for ODE, we obtain

Z2(t) ≤ Zω(t) ≤ Z1(t) for t > 0, ω ∈ AM .

We deduce that if ω ∈ AM then Zω(t) extincts at the time T ω
ε which is estimated

as follows
T ε

2 ≤ T ω
ε ≤ T ε

1 .

Since
∫

0
ds

f(s) is finite, applying the dominated convergence theorem, it is not
hard to see that

lim
ε→0

T ε
1 = lim

ε→0
T ε

2 =

∫ x0

0

dσ

f(σ)
.

Hence, we have

lim
ε→0

T ω
ε =

∫ x0

0

ds

f(s)
.

Use the fact that X = eεWZ and P(∪∞M=1AM) = 1 to complete the rest of the
proof. �
Now, let us consider the general case. We have the following result.

Theorem 3 Let φε(s, x) be the flux associated to the ODE ẏ = σ(y, ε), y(0) =

x and let H(s, x, ε) = f(φε(s,x))σ(x,ε)
σ(φε(s,x),ε) . Suppose that

lim
ε→0

H(s, x, ε) = f(x), (9)
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H(s, x, ε) ≥ H(t, x, ε) if s ≥ t (10)

and there exists a function ks(x) such that

1

H(s, x, ε)
≤ ks(x) ∈ L1([0, x0]). (11)

Then for almost every ω, any solution of (1)–(2) extincts in a finite time and
its extinction time T ω

ε satisfies the following relation limε→0 T ω
ε = T0 where

T0 =
∫ x0

0
ds

f(s). In addition if for every s ∈ R, there exists ls such that

∂

∂ε

1

H(s, x, ε)
≤ ls(x) ∈ L1([0, x0]), (12)

then there exists a random variable K = K(ω) such that with total probability
|Tε − T0| ≤ εK.

Proof. Since φε(t, x) is the flux of the following ODE

ẏ = σ(y, ε),

y(0) = x.

we have

(φε)t(t, x) = σ(φε(t, x), ε), (13)

φε(0, x) = x. (14)

Let Zω(t) be the solution of the Random differential equation

dZω =
−f(φε(W (t, ω), Zω(t)))

φx(W (t, ω), Zω(t))
, t > 0, (15)

Zω(0) = x0. (16)

Setting X(t, ω) = φε(W (t, ω), Zω(t)), we observe that

dX = (φε)t(W, Zω)dW + (φε)x(W, Zω)dZω

= σ(φε(W, Zω), ε)dW + (φε)x(W, Zω)dZω

= σ(X, ε)dW − f(X)dX.
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Therefore, X is a solution of the SDE defined in (1)–(2). On the other hand,
from (13)–(14), we get

dφε

σ(φε(t, x), ε)
= dt,

which implies that ∫ φε(t,x)

x

ds

σ(s, ε)
= t. (17)

Take the derivative in x of (17) to obtain

(φε)x(t, x)

σ(φε(t, x), ε)
− 1

σ(x, ε)
= 0,

which implies that

(φε)x(t, x) =
σ(φε(t, x), ε)

σ(x, ε)
.

It follows from (13) that

Żω =
−f(φε(W (t, ω), Zω(t)))σ(Zω(t), ε)

σ(φε(W (t, ω), Zω(t)), ε)
.

Take the expression of H to arrive at

Żω(t) = −H(W (t, ω), Zω(t), ε), t > 0,

Zω(0) = x0.

Consider M > 0 and define

AM = {ω : W (., ω) is continuous and max
0≤t≤T0+1

|W (., ω)| ≤ M},

where T0 =
∫ x0

0
ds

f(s) . Let Z1(t) be the solution of the following ODE

Z
′

1(t) = −H(−M, Z1(t), ε), t > 0,

Z1(0) = x0

and let Z2(t) be the one of the ODE below

Z
′

2(t) = −H(M, Z2(t), ε), t > 0,

Z2(0) = x0.
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From (11), we observe that the integrals
∫ x0

0
ds

H(−M,s,ε) and
∫ x0

0
ds

H(M,s,ε) are finite.

We deduce that the solution Z1(t) extincts in a finite time T ε
1 =

∫ x0

0
ds

H(−M,s,ε)

and the solution Z2(t) extincts in a finite time T ε
2 =

∫ x0

0
ds

H(M,s,ε) . The maximum
principle for ODE implies that

Z2(t) ≤ Zω(t) ≤ Z1(t) for t ≥ 0, ω ∈ AM .

Therefore, if ω ∈ AM then Zω(t) extincts in a finite time T ω
ε such that

T ε
2 ≤ T ω

ε ≤ T ε
1 .

Due to (11) and the dominated convergence theorem, it is not hard to see that

lim
ε→0

T ε
1 = lim

ε→0
T ε

2 = T0 =

∫ x0

0

ds

f(s)
.

Therefore, limε→0 T ω
ε = T0. We observe that P(

⋃+∞
M=1 AM) = 1. Use Taylor’s

expansion to obtain

1

H(−M, s, ε)
=

1

H(−M, s, 0)
+ ε

∂

∂ε

1

H(−M, s, ε̃)
,

where ε̃ is an intermediate value between 0 and ε. We deduce from (12) that∫ x0

0

ds

H(−M, s, ε)
≤

∫ x0

0

ds

f(s)
+ ε

∫ x0

0
l−M(s)ds.

It follows that there exists a random variable K = K(ω) such that

|Tε − T0| ≤ εK

and the proof is complete. �

Remark 1 If σ(x, ε) = εx and f(s) = sq with 0 < q < 1 then

φε(s, x) = xeεs and H(s, x, ε) = xqe−ε(1−q)s.

If σ(x, ε) = εxp and f(s) = sq with 0 < p ≤ q < 1, then

φε(s, x) = (x1−p + (1− p)εs)
1

1−p and H(s, x, ε) = xp(x1−p + (1− p)εs)
q−p
1−p .
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3 Other extinctions times

In this section, we show the possibility to extend the results of the previous
section to another problem of extinction which is called problem of quenching.
To illustrate our analysis, let us consider the following ODE

y
′
(t) = −y−p(t), t > 0, (18)

y(0) = M > 0, (19)

where p > 0. An explicit solution of (18)–(19) is given by

y(t) = (Mp+1 − (p + 1)t)
1

p+1 for t ∈ [0,
Mp+1

p + 1
).

Hence we see that if t = Mp+1

p+1 then y(t) reaches the value zero which implies

that y
′
(t) explodes at the same time. In this case, we say that the solution y(t)

quenches in a finite time.
More generally, consider the following ODE

y
′
(t) = −f(y(t)), t > 0, (20)

y(0) = M > 0, (21)

where f(s) is a positive, decreasing function for the positive values of s,

lims→0+ f(s) = +∞,
∫ M

0
ds

f(s) < +∞. It is not hard to see that M > y(t) > 0

for t ∈ [0, T0) but limt→T0
y(t) = 0 where T0 =

∫ M

0
ds

f(s) . Therefore, we discover

that y(t) quenches in a finite time and the time T0 is called the quenching time
of y(t). Let us also notice that the derivative in t of y(t) explodes at the time
T0.
Now, let us consider the following SDE

dX = −f(X)dt + σ(X, ε)0dW, (22)

X(0) = x0 > 0, (23)

where f(s) is positive, decreasing function for the positive values of s,
lims→0+ f(s) = +∞. We have the following result.

Theorem 4 Suppose that σ(X, ε) = εX and
∫

0
ds

f(s) < +∞. Then for almost

every ω, any solution X(t) of the SDE in (22)–(23) quenches in a finite time
for every ε > 0 and its quenching time T ω

ε goes to
∫ x0

0
ds

f(s) as ε tends to zero.
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Proof. Since σ(X, ε) = εX, then we have

dX = −f(X)dt + εX0dW,

X(0) = x0.

Take Z = Xe−εW . A straightforward computation yields

dZ = dXe−εW − εXe−εWdW,

which implies that
dZ = −e−εWf(X)dt.

Use the expression of X to obtain

dZ = −e−εWf(eεWZ).

Introduce the following Random differential equation

Żω(t) = −e−εW (t,ω)f(eεW (t,ω)Zω(t)),

Zω(0) = x0.

Consider M > 0 and define

AM = {ω : W (., ω) is continuous and max
0≤t≤T0+1

|W (., ω)| ≤ M},

where T0 =
∫ x0

0
ds

f(s) . Let Z1(t) be the solution of the following ODE

Ż1(t) = −e−εMf(e−εMZ1(t)), t > 0,

Z1(0) = x0,

and let Z2(t) be the one of the ODE below

Ż2(t) = −eεMf(eεMZ2(t)), t > 0,

Z2(0) = x0.

Setting g1(s) = e−εMf(e−εMs) and g2(s) = eεMf(eεMs), one easily sees that
lims→0+ g1(s) = +∞, lims→0+ g2(s) = +∞,∫ x0

0

ds

g1(s)
= e2εM

∫ e−εMx0

0

dσ

f(σ)
< +∞,
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∫ x0

0

ds

g2(s)
= e−2εM

∫ eεMx0

0

dσ

f(σ)
< +∞.

On the other hand, the maximum principle for ODE implies that

Z2(t) ≤ Zω(t) ≤ Z1(t),

as long as all of them are defined. Hence, it is not hard to see that Z1(t)
quenches at the time

T ε
1 = e2εM

∫ e−εMx0

0

ds

f(s)

and Z2(t) quenches at the time

T ε
2 = e−2εM

∫ eεMx0

0

ds

f(s)
.

We deduce that for ω ∈ AM , Zω(t) quenches at the time T ω
ε which obeys the

following estimates
T ε

2 ≤ T ω
ε ≤ T ε

1 .

Let us notice that limε→0 T ε
2 = limε→0 T ε

1 =
∫ x0

0
ds

f(s) . Therefore, we conclude that

limε→0 T ω
ε =

∫ x0

0
ds

f(s) . Since P(
⋃∞

M=1 AM) = 1, using the fact that X = eεWZ,

we see that the solution X(t) of the SDE quenches in a finite time with total
probability and its quenching time T ω

ε goes to
∫ x0

0
ds

f(s) as ε tends to zero. This
ends the proof. �
When σ(X, ε) = εX, the above theorem reveals that any solution of (22)–(23)
quenches in a finite time. In the following, we want to know what happens if
we consider the SDE in to sense. In this case, our problem can be rewritten as
follows

dX = −f(X)dt + εXdW, (24)

X(0) = x0. (25)

The result below gives an answer when the SDE is taken in to sense.

Theorem 5 Theorem 4 remains valid if X(t) solves (24)–(25).

Proof. Taking into account the formula given in the introduction, the SDE in
(24)–(25) may be rewritten in Stratonovich sense in the following manner

dX = −f(X)− ε2X

2
+ εX0dW,
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X(0) = x0.

Setting Z = Xe−εW , we easily see that

dZ = e−εWdX − εe−εWX0dW,

which implies that

dZ = −[eεWf(eεWZ) +
ε2

2
eεWZ]dt.

This gives a non-autonomous ODE for each ω such that W (., ω) is continuous,

Żω(t) = −[eεW (t,ω)f(eεW (t,ω)Zω(t)) +
ε2

2
eεW (t,ω)Zω(t)], t > 0,

Zω(0) = x0.

Consider M > 0 and define

AM = {ω : W (., ω) is continuous and max
0≤t≤T+1

|W (., ω)| ≤ M},

where T =
∫ x0

0
ds

f(s) . Let Z1 be the solution of the following ODE

Ż1(t) = −[e−εMf(e−εMZ1(t)) +
ε2

2
e−εMZ1(t)], t > 0,

Z1(0) = x0.

Similarly, let Z2 be the solution of the ODE below

Ż2(t) = −[eεMf(eεMZ2(t)) +
ε2

2
eεMZ2(t)], t > 0,

Z2(0) = x0.

Setting

g1(s) = e−εMf(e−εMs) +
ε2

2
e−εMs,

and

g2(s) = eεMf(eεMs) +
ε2

2
eεMs,

Electronic Journal. http://www.neva.ru/journal, http://www.math.spbu.ru/diffjournal/ 28



Differential Equations and Control Processes, N 1, 2008

we observe that

lim
s→0+

g1(s) = +∞ and lim
s→0+

g2(s) = +∞.

Taking into account g1 and g2, the above ODEs may be rewritten as follows

Z
′

1(t) = −g1(Z1(t)), t > 0, Z1(0) = x0,

Z
′

2(t) = −g1(Z2(t)), t > 0, Z2(0) = x0.

On the other hand, a routine calculation yields∫ x0

0

ds

g1(s)
=

∫ e−εMx0

0

dσ

f(σ) + ε2

2 eεMσ
≤

∫ e−εMx0

0

dσ

f(σ)
< +∞

and ∫ x0

0

ds

g2(s)
=

∫ eεMx0

0

dσ

f(σ) + ε2

2 e−εMσ
≤

∫ eεMx0

0

dσ

f(σ)
< +∞.

Hence, we easily see that Z1(t) quenches at the time

T ε
1 =

∫ e−εMx0

0

dσ

f(σ) + ε2

2 eεMσ

and Z2(t) quenches at the time

T ε
2 =

∫ eεMx0

0

dσ

f(σ) + ε2

2 e−εMσ
.

According to the maximum principle for ODE, we obtain

Z2(t) ≤ Zω(t) ≤ Z1(t) for ω ∈ AM

as long as all of them are defined. We deduce that if ω ∈ AM then Zω(t)
quenches at the time T ω

ε which satisfies the following estimates

T ε
2 ≤ T ω

ε ≤ T ε
1 .

Since
∫

0
ds

f(s) is finite, using the dominated convergence theorem, we easily derive
the following equalities

lim
ε→0

T ε
1 = lim

ε→0
T ε

2 =

∫ x0

0

ds

f(s)
.
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Hence, we have

lim
ε→0

T ω
ε =

∫ x0

0

ds

f(s)
.

Use the fact that X = eεWZ and P(∪∞M=1AM) = 1 to complete the rest of the
proof. �
Now, let us consider the general case concerning the phenomenon of quenching.
We can derive the following important result.

Theorem 6 Let φε(s, x) be the flux associated to the ODE ẏ = σ(y, ε), y(0) =

x and let H(s, x, ε) = f(φε(s,x))σ(x,ε)
σ(φε(s,x),ε) . Suppose that

lim
x→0+

H(s, x, ε) = +∞, lim
ε→0

H(s, x, ε) = f(x), (26)

H(s, x, ε) ≥ H(t, x, ε) if s ≥ t (27)

and there exists a function ks(x) such that

1

H(s, x, ε)
≤ ks(x) ∈ L1([0, x0]). (28)

Then for almost every ω, any solution of (22)–(23) quenches in a finite time
and its quenching time T ω

ε satisfies the following relation limε→0 T ω
ε = T0 where

T0 =
∫ x0

0
ds

f(s). In addition if for every s ∈ R, there exists ls such that

∂

∂ε

1

H(s, x, ε)
≤ ls(x) ∈ L1([0, x0]), (29)

then there exists a random variable K = K(ω) such that with total probability
|Tε − T0| ≤ εK.

Proof. Since φε(t, x) is the flux of the following ODE

ẏ = σ(y, ε),

y(0) = x,

we easily see that

(φε)t(t, x) = σ(φε(t, x), ε),

φε(0, x) = x.
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Let Zω(t) be the solution of the Random differential equation

dZω(t) =
−f(φε(W (t, ω), Zω(t))

φε(W (t, ω), Zω(t))
, t > 0,

Zω(0) = x0.

As in the proof of Theorem 3, we find that

Żω(t) = −H(W (t, ω), Zω(t), ε), t > 0,

Zω(0) = x0

and X(t, ω) = φε(W (t, ω), Zω(t)) is a solution of (22)–(23).
Consider M > 0 and define

AM = {ω : W (., ω) is continuous and max
0≤t≤T0+1

|W (., ω)| ≤ M},

where T0 =
∫ x0

0
ds

f(s) . Let Z1(t) be the solution of the following ODE

Z
′

1(t) = −H(−M, Z1(t), ε), t > 0

Z1(0) = x0

and let Z2(t) be the one of the ODE below

Z
′

2(t) = −H(M, Z2(t), ε), t > 0,

Z2(0) = x0.

Setting
g1(s) = H(−M, s, ε) and g2(s) = H(M, s, ε),

we easily see that

lim
s→0+

g1(s) = +∞ and lim
s→0+

g2(s) = +∞.

We also observe that the integrals
∫ x0

0
ds

H(−M,s,ε) and
∫ x0

0
ds

H(M,s,ε) are finite because

of (28). Hence, we deduce that the solution Z1(t) quenches in a finite time T ε
1 =∫ x0

0
ds

H(−M,s,ε) and the solution Z2(t) quenches in a finite time T ε
2 =

∫ x0

0
ds

H(M,s,ε) .
On the other hand, the maximum principle for ODE implies that

Z2(t) ≤ Zω(t) ≤ Z1(t) for ω ∈ AM ,
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as long as all of them are defined. Therefore, if ω ∈ AM then Zω(t) quenches
in a finite time T ω

ε such that

T ε
2 ≤ T ω

ε ≤ T ε
1 .

Due to (26) and the dominated convergence theorem, it is not hard to see that

lim
ε→0

T ε
1 = lim

ε→0
T ε

2 = T0 =

∫ x0

0

ds

f(s)
.

Therefore, limε→0 T ω
ε = T0. Obviously P(

⋃+∞
M=1 AM) = 1. Using Taylor’s ex-

pansion, we find that

1

H(−M, s, ε)
=

1

H(−M, s, 0)
+ ε

∂

∂ε

1

H(−M, s, ε̃)
,

where ε̃ is an intermediate value between 0 and ε. We deduce from (29) that∫ x0

0

ds

H(−M, s, ε)
≤

∫ x0

0

ds

f(s)
+ ε

∫ x0

0
l−M(s)ds.

It follows that there exists a random variable K = K(ω) such that

|Tε − T0| ≤ εK

and the proof is complete. �

Remark 2 If σ(x, ε) = εx and f(s) = s−q with q > 0, then

φε(s, x) = xeεs and H(s, x, ε) = x−qe−ε(q+1)s.

If σ(x, ε) = εxp and f(s) = s−q with q > 0, p > 1 then

φε(s, x) = (x1−p + (1− p)εs)
1

1−p and H(s, x, ε) = xp(x1−p + (1− p)εs)
p+q
p−1 .
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