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Abstract

In this paper, by constructing Lyapunov functionals we investigate sufficient condi-
tions, for the stochastic asymptotic stability of the zero solution of certain second-order
stochastic differential equations with delay.

By defining an appropriate Lyapunov functionals, we prove two new theorems on the
stochastic asymptotic stability. Our results improve and form a complement to some
known recent results in the literature.
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1 Introduction

Modeling of physical systems by ordinary differential equations, ignores
stochastic effects. By adding random elements into the differential equations we
obtain what is called a stochastic differential equation and the term stochastic
is called noise [10].
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Stochastic differential equation is a differential equation, in which one or
more of the terms is a stochastic process and resulting in a solution which is
itself a stochastic process.

Stochastic differential equations play a relevant role in many application
areas including environmental modeling, engineering, biological modeling and
mostly, one of more important application of stochastic differential equation is
in the modeling of electrical networks.

Due to statistical properties, a stochastic process can be used to define the
randomness in an uncorrelated white Gaussian noise, which can be thought of
as the derivative of Brownian motion (or the Wiener process) [20].

In many branches of science and industry stochastic delay differential equa-
tions have been used to model the evolution phenomena because the measure-
ments of time-involving variables and their dynamics usually contain some de-
lays.

Furthermore stochastic perturbations are often introduced into these deter-
ministic systems in order to describe the effects of fluctuations in real environ-
ment, thus yield stochastic delay differential equations.

Mathematically stochastic delay differential equations were first introduced
by Itô and Nisio [7], in which the existence and uniqueness of the solutions have
been investigated.

In the last several decades, numerous studies have been developed toward
the study of stochastic delay differential equations, such as stochastic stability,
Lyapunov functional method, Lyapunov exponent, stochastic flow and attrac-
tion etc. (see [5], [8], [9], [15], [16], [18], [24] and the references therein).

Stability is one of the most important problems in the study of stochastic
delay differential equations. One of the powerful techniques employed in the
study of the stability problem is the method of the Lyapunov functionals.

One general method of Lyapunov functionals constructed both for determin-
istic and stochastic delay differential equations was proposed and developed by
many authors, for examples, [12, 13, 19].

The advantage of this method can judge the stability of systems without
knowledge of the solutions. Therefore it is at all times hotpot in the study of
the stability theory in the last century.

On the other hand, since the introduced stochastic calculus about fifty
years ago, the theory of stochastic differential equations have been developed
very quickly. In particular, the Lyapunov’s second method has been developed
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to deal with stochastic stability by many authors, for example, [14, 17].

However it is generally much more difficult to construct the Lyapunov func-
tionals in the case of delay, than the Lyapunov functionals in the case of non-
delay of higher-order, for example, [1 − 3, 22, 23, 25 − 28]. Therefore anther
useful technique has been developed, that is to compare the stochastic delay
differential equations with the corresponding non-delay equations.

Besides it is worth-mentioning that, there are only few papers on the same
topic for certain first-order stochastic differential equations with delay, for ex-
ample, [14, 21].

In [14], Kolmanovskii and Shaikhet present an interesting survey of a gen-
eral method of Lyapunov functionals construction for stochastic differential
equations of neutral type.

In this paper by constructing Lyapunov functionals, we investigate sufficient
conditions for the asymptotic stability of the zero solution to the following
second-order stochastic delay differential equations

ẍ(t) + aẋ(t) + bx(t− h) + σx(t)ω̇(t) = 0 (1.1)

and

ẍ(t) + aẋ(t) + f(x(t− h)) + σx(t− τ)ω̇(t) = 0, (1.2)

where a, b and σ are positive constants, h and τ are two positive constant
delays; ω(t) ∈ R is a standard Wiener process; f(x) is a continuous function
and f(0) = 0.

2 Preliminaries and stability result

A general scalar stochastic differential equation has the following form

dx(t) = f(t, x(t))dt+ g(t, x(t))dω(t), (2.1)

where f(t, x(t)) : [0, T ] × R → R and g(t, x(t)) : [0, T ] × R → R are drift
and diffusion coefficients and ω(t) is the so called Wiener process, a stochastic
process representing the noise [11].

Instead the appropriate stochastic chain rule, known as Itô formula contains
an additional term. This additional term which roughly speaking is due to the
fact that the square of the stochastic differential (dω(t))2 is equal to dt, in the
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mean-square sense, i.e. E[(dω(t))2] = dt. So the second-order term in dω(t)
should really appear as a first-order term in dt.

Suppose x(t) is a solution of the stochastic differential equation (2.1) for
some suitable functions f, g. Let g(t, x(t)) : (0,∞)×R→ R be a twice contin-
uously differentiable function.

Let the function

y(t) = g(t, x(t)),

be a stochastic process, for which

dy(t) =
∂g

∂t
(t, x(t))dt+

∂g

∂x
(t, x(t))dx(t) +

1

2

∂2g

∂x2
(t, x(t))(dx(t))2, (2.2)

where (dx(t))2 = dx(t).dx(t) is computed according to the rules

dt.dt = dt.dω(t) = dω(t).dt = 0, dω(t).dω(t) = dt.

Hence for any given initial value x(0) = x0 the stochastic differential equa-
tion has a unique global solution denoted by x(t;x0). Assume furthermore that
f(t, 0) = 0 and g(t, 0) = 0 for all t ≥ 0. Hence the stochastic differential
equation admits the zero solution x(t; 0) ≡ 0.

Definition 2.1 The zero solution of the stochastic differential equation is said
to be stochastically stable or stable in probability, if for every pair of ε ∈ (0, 1)
and r > 0, there exists a δ = δ(ε, r) > 0 such that

P{|x(t;x0)| < r for all t ≥ 0} ≥ 1− ε, whenever |x0| < δ0.

Otherwise, it is said to be stochastically unstable.

Definition 2.2 The zero solution of the stochastic differential equation is said
to be stochastically asymptotically stable, if it is stochastically stable and more-
over for every ε ∈ (0, 1) and r > 0, there exists a δ = δ(ε) > 0 such that

P{lim
t→0

x(t;x0) = 0} ≥ 1− ε, whenever |x0| < δ0.

Let K denote the family of all continuous nondecreasing functions µ : R+ → R+

such that µ(0) = 0 and µ(r) > 0 if r > 0.

For h > 0, let Sh = {x ∈ Rm : |x| < h} and let C1,2(Sh×R+;R+) denote the
family of all continuous functions V (t, x) from Sh ×R+ to R+ with continuous
first partial derivatives with respect to every component of x and to t.
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We naturally consider the Itô differential of the process V (t, x(t)), where
x(t) is a solution of the stochastic differential equation and V is a Lyapunov
function. According to the Itô formula, we of course require V ∈ C1,2(Sh ×
R+;R+), which denotes the family of all non-negative functions V (t, x) defined
on Sh × R+ such that they are twice continuously differentiable in x and once
in t.

By the Itô formula we have

dV (t, x(t)) = LV (t, x(t))dt+ Vx(t, x(t))g(t, x(t))dω(t),

where

LV (t, x(t)) = Vt(t, x(t))+Vx(t, x(t))f(t, x(t))+
1

2
tr[gT (t, x(t))Vxx(t, x(t))g(t, x(t))].

We shall see that V̇ (t, x(t)) will be replaced by the diffusion operator LV (t, x(t))
in the study of stochastic stability. For example, the inequality V̇ (t, x(t)) ≤ 0
will sometimes by replaced by LV (t, x(t)) ≤ 0 to get the stochastic stability.

Theorem 2.1 Assume that there exist V ∈ C1,2(Sh×R+;R+) and µ ∈ K such
that

V (t, 0) = 0, µ(|x|) < V (t, x) and

LV (t, x(t)) ≤ 0, for all (t, x) ∈ Sh × R+.

Then the zero solution of the stochastic differential equation is stochastically
stable.

Theorem 2.2 Assume that there exist V ∈ C1,2(Sh×R+;R+) and µ1, µ2, µ3 ∈
K such that

µ1(|x|) ≤ V (t, x) ≤ µ2(|x|) and

LV (t, x(t)) ≤ −µ3(|x|), for all (t, x) ∈ Sh × R+.

Then the zero solution of the stochastic differential equation is stochastically
asymptotically stable.

Now we present the main stability results of (1.1) and (1.2).

Theorem 2.3 Suppose that there exist positive constants a, b, σ and h with ab−
σ2 > 0, then the zero solution of (1.1) is stochastically asymptotically stable,
provided that

h < min

{
ab− σ2

ab
,

a

(4 + a)b

}
.
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Theorem 2.4 If a, σ, h and τ are positive constants, f(x)
x ≥ b > 0 for x 6= 0,

ab − σ2 > 0 and there exists l > 0 with |f ′(x)| ≤ l, then the zero solution of
(1.2) is stochastically asymptotically stable, provided that

h < min

{
ab− σ2

al
,

a

(4 + a)l

}
.

3 Proof of Theorem 2.3.

We write equation (1.1) in the following equivalent form

ẋ = y,

ẏ = −ay − bx+ b

∫ t

t−h
y(s)ds− σx(t)ω̇(t).

(3.1)

Define the Lyapunov functional V1(xt, yt) as

V1(xt, yt) =
1

2
y2 + bx2 +

1

2
(y + ax)2 + γ

∫ 0

−h

∫ t

t+s

y2(u)duds, (3.2)

where xt = x(t+s), s ≤ 0 and γ is a positive constant, which will be determined
later.

From (3.2), (3.1) and by using Itô formula, we obtain

LV1(xt, yt) =− ay2(t)− abx2(t) + 2by

∫ t

t−h
y(s)ds+ abx

∫ t

t−h
y(s)ds+ σ2x2(t)

+ γhy2(t)− γ
∫ t

t−h
y2(u)du,

it follows by using the inequality 2uv ≤ u2 + v2,

LV1(xt, yt) ≤− ay2 − abx2 + bhy2 + b

∫ t

t−h
y2(s)ds+

abh

2
x2 +

ab

2

∫ t

t−h
y2(s)ds

+ σ2x2 + γhy2 − γ
∫ t

t−h
y2(s)ds.

Then we have

LV1(xt, yt) ≤− (a− bh− γh)y2 − (ab− abh

2
− σ2)x2 + (b+

ab

2
− γ)

∫ t

t−h
y2(s)ds.

If we take

γ =
b

2
(a+ 2) > 0,
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then we find

LV1(xt, yt) ≤− {a− bh−
bh

2
(a+ 2)}y2 − (ab− abh

2
− σ2)x2.

Therefore if

h < min

{
ab− σ2

ab
,

a

(4 + a)b

}
,

we obtain

LV1(xt, yt) ≤−
1

2
{ay2 + (ab− σ2)x2}.

Then we have

LV1(xt, yt) ≤ −α(x2(t) + y2(t)), for some α > 0. (3.3)

Since
∫ 0

−h
∫ t
t+s y

2(u)duds is non-negative, consequently we find

V1(xt, yt) ≥
1

2
y2 + bx2 +

1

2
(y + ax)2.

Then there exists a positive constant D1 such that

V1(xt, yt) ≥ D1(x
2(t) + y2(t)). (3.4)

We can write (3.2) as the following form

V1(xt, yt) = y2 + bx2 + axy +
1

2
a2x2 + γ

∫ 0

−h

∫ t

t+s

y2(u)duds.

Since xy ≤ 1
2(x2 + y2), then we find

V1(xt, yt) ≤ y2 + bx2 +
a

2
(x2 + y2) +

1

2
a2x2 + γ

∫ t

t−h
(θ − t+ h)y2(θ)dθ.

Therefore we obtain

V1(xt, yt) ≤
a+ 2

2
‖y‖2 +

2b+ a+ a2

2
‖x‖2 + γ

h2

2
‖y‖2.

Then we have

V1(xt, yt) ≤
2b+ a+ a2

2
‖x‖2 +

a+ γh2 + 2

2
‖y‖2.

Then we can say that there exists a positive constant D2, which satisfies

V1(xt, yt) ≤ D2(x
2(t) + y2(t)). (3.5)

Hence from (3.3), (3.4) and (3.5) all the conditions of Theorem 2.2 are satisfied,
so that the zero solution of (1.1) is stochastically asymptotically stable.
Thus the proof of Theorem 2.3 is now complete.
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4 Proof of Theorem 2.4.

We write (1.2) as the following equivalent system

ẋ = y,

ẏ = −ay − f(x) +

∫ t

t−h
f ′(x(s))y(s)ds− σx(t− τ)ω̇(t).

(4.1)

Define the Lyapunov functional as

V2(xt, yt) =2

∫ x

0

f(η)dη +
1

2
y2 +

1

2
(y + ax)2 + λ

∫ 0

−h

∫ t

t+s

y2(θ)dθds

+ σ2

∫ t

t−τ
x2(s)ds,

(4.2)

where λ is a positive constant, which will be determined later.

From (4.2), (4.1) and by using Itô formula, we have

LV2(xt, yt) =− ay2(t) + 2y

∫ t

t−h
f ′(x(s))y(s)ds− axf(x) + ax

∫ t

t−h
f ′(x(s))y(s)ds

+ σ2x2(t) + λy2(t)h− λ
∫ t

t−h
y2(θ)dθ,

Suppose |f ′(x)| ≤ l, l > 0 and f(x)
x ≥ b > 0, then

LV2(xt, yt) ≤− (a− λh)y2 − abx2 + σ2x2 + 2ly

∫ t

t−h
y(s)ds+ alx

∫ t

t−h
y(s)ds

− λ
∫ t

t−h
y2(θ)dθ.

Thus by using the inequality 2uv ≤ u2 + v2, we get

LV2(xt, yt) ≤− (a− λh)y2 − (ab− σ2)x2 + lhy2 + l

∫ t

t−h
y2(s)ds

+
alh

2
x2 +

al

2

∫ t

t−h
y2(s)ds− λ

∫ t

t−h
y2(θ)dθ.

Then we obtain

LV2(xt, yt) ≤− (a− lh− λh)y2 − (ab− alh

2
− σ2)x2 + (l +

al

2
− λ)

∫ t

t−h
y2(s)ds.
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If we take

λ =
l

2
(a+ 2) > 0,

then we get

LV2(xt, yt) ≤− {a− 2lh− lha

2
}y2 − (ab− alh

2
− σ2)x2.

Thus if

h < min

{
ab− σ2

al
,

a

(4 + a)l

}
,

we find

LV2(xt, yt) ≤−
1

2
{(ab− σ2)x2 + ay2}.

Therefore we have

LV2(xt, yt) ≤ −β(x2(t) + y2(t)), for some β > 0. (4.3)

Since
∫ 0

−h
∫ t
t+s y

2(θ)dθds and σ2
∫ t
t−τ x

2(s)ds are non-negative, then we find

V2(xt, yt) ≥ 2

∫ x

0

f(η)dη +
1

2
y2 +

1

2
(y + ax)2.

Since f(x)
x ≥ b > 0, therefore we get

V2(xt, yt) ≥ bx2 +
1

2
y2 +

1

2
(y + ax)2,

then there exists a positive constant D3 such that

V2(xt, yt) ≥ D3(x
2(t) + y2(t)). (4.4)

Since |f ′(x)| ≤ l and f(0) = 0, then by using the mean-value theorem, we
obtain f(x) ≤ lx. Thus we can write (4.2) as the following form

V2(xt, yt) ≤lx2 +
1

2
y2 +

1

2
(y + ax)2 + λ

∫ 0

−h

∫ t

t+s

y2(θ)dθds+ σ2

∫ t

t−τ
x2(s)ds.

Since xy ≤ 1
2(x2 + y2), then we find

V2(xt, yt) ≤lx2 + y2 +
a

2
(x2 + y2) +

1

2
a2x2 + λ

∫ t

t−h
(θ − t+ h)y2(θ)dθ

+ σ2

∫ t

t−τ
x2(s)ds.
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Thus we obtain

V2(xt, yt) ≤
a+ 2

2
‖y‖2 +

2l + a+ a2

2
‖x‖2 +

λh2

2
‖y‖2 + σ2τ‖x‖2

=
2l + a+ a2 + 2σ2τ

2
‖x‖2 +

a+ 2 + λh2

2
‖y‖2.

Hence we have a positive constant D4 satisfying

V2(xt, yt) ≤ D4(x
2(t) + y2(t)). (4.5)

From the results (4.3), (4.4) and (4.5), we note that all the conditions of Theo-
rem 2.2 are satisfied, so that the zero solution of (1.2) is stochastically asymp-
totically stable.
This completes the proof of Theorem 2.4.

5 Conclusions

If we allow for some randomness in some of the coefficients of a differential
equation, we often obtain a more realistic mathematical model of the situation.
So the study of stochastic differential equations is richer than the classical
deterministic ones.

By constructing Lyapunov functionals, sufficient conditions for the stochas-
tic asymptotic stability of the zero solution of two equations (1.1) and (1.2).
The obtained results are extend existing results in the literature on determin-
istic systems to stochastic delay systems.

Finally, we can say that there exist a lot of applications for the second-order
stochastic differential equations with delay or without delay.

The importance of second-order equations is conditioned by Newton second
low.
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