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Abstract

Using the sinh-Gordon expansion method, doubly periodic solutions in terms
of Jacobian elliptic functions have been derived for a magma equation, a new
Hamiltonian amplitude equation and a coupled nonlinear wave equation. All

the solutions obtained are new ones.

1 Introduction

Investigation of exact solutions of nonlinear evolution equations1) has been a hot
topic of research for several decades. The powerful methods used for this pur-
pose are for example, Backlund transformation2), inverse scattering technique3),
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Hirota’s direct method4), tanh method5), series method6−7), Jacobian elliptic
function expansion method and its extension8−10), and the algebraic method11).

In this paper, we employ the method developed in [12,13] which proposes
a transformation from the sinh- Gordon equation which reveals a relationship
with nonlinear wave equations. The transformation and the sinh-Gordon equa-
tion are used to construct the doubly periodic Jacobian elliptic function solu-
tions of nonlinear wave equations. We give a brief description of the method.

The travelling wave transformation u(x, t) = u(ξ), ξ = k (x−λt) reduces
the sinh-Gordon equation

∂2 φ

∂x ∂t
= α sinh φ (1.1)

to an ordinary differential equation

d2 φ

d ξ2 = − α

k λ
sinh φ, (1.2)

where α is a constant, k and λ are the wave number and wave speed
respectively.

Integrating (1.2) w.r.t. ξ once, we get(
d

dξ

φ

2

)2

= − α

kλ
sinh2

(
φ

2

)
+ c, (1.3)

where c is a constant of integration.

Setting φ = 2 w, − α

kλ
= 1, (1.3) reduces to(
dw

dξ

)2

= sinh2 w + c. (1.4)

Taking c = 1−m2, where m (0 < m < 1) is the modulus of the Jacobian
elliptic functions, we can easily see that (1.4) has the general solution

sinh [w(ξ)] = cs(ξ; m), (1.5a)

or
cosh [w(ξ)] = ns(ξ; m), (1.5b)

which are two of the 12 Jacobian elliptic functions given by14)
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cs(ξ; m) =
cn(ξ, m)

sn(ξ; m)
, ns(ξ; m) =

1

sn(ξ; m)
, (1.6)

with the properties

d cs(ξ; m)

d ξ
= −ns(ξ; m) ds(ξ; m),

d ns(ξ; m)

d ξ
= − cs(ξ; m) ds(ξ; m), (1.7)

ns2(ξ; m) = 1 + cs2(ξ; m)

For a given nonlinear partial differential equation, we seek its travelling
wave solution which reduces it to a nonlinear ordinary differential equation. By
using the new variable w = w(ξ), we assume that the ODE has a solution in
the form

u(ξ) = u(w(ξ)) = A0 +
s∑

i=1

coshi−1 w [Ai sinh w + Bi cosh w], (1.8)

where Ai (i = 0, 1, 2, ...s), Bj (j = 1, 2, ...s) are constants to be deter-
mined later. Substituting (1.8) in the reduced ODE and balancing the highest
derivative term and the nonlinear term, we obtain the value of s.

In section 2, we derive some new doubly periodic solutions for magma equa-
tions with two sets of values of the physical parameters n and m, in section 3
we investigate the doubly periodic solutions for a new Hamiltonian amplitude
equation and in section 4, we consider a coupled nonlinear wave equation for
the Jacobian elliptic function solutions.

2 Magma equations

We consider the magma equation which describes the motion of melt in the
Earth15). The buoyancy force owing to the density difference of the liquid
phase of melt and the solid phase of matrix causes the melt in the earth’s
mantle propagate through the partially molten rock. This flow of melt is like
a porous flow. Assuming that the liquid phase of melt and the solid phase of
matrix are fully connected and incompressible, neglecting the phase transition
and allowing only vertical motions, Scott and Stevenson proposed an equation
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ut =
∂

∂x

[
un

{
∂

∂x
(u−m ut) − 1

}]
, (2.1)

where x is the vertical space coordinate and t is the time and u(x, t) is the
mean volume fraction of the liquid phase which should be nonnegative for any
x and t. The exponents n and m denote the dependence of permeability and
effective viscosity. It is suggested that the reasonable values of n and m are
2 ∼ 5 and 0 ∼ 1 respectively.

In this section we will consider two different sets of values of the parameters
n and m.

Solutions for n = 4 and m = 0

For this choice of parameters, equation (2.1) reduces to

ut =
(
u4(uxt − 1)

)
x

(2.2)

We seek travelling wave solutions of (2.2) in the form u(x, t) = u(z), z =
k(x− λ t) so that (2.2) reduces to

k2 λ

2
u2

z + u +
λ

2
u−2 + A u−3 + B = 0, (2.3)

where, A and B are constants of integration.

Using the independent variable transformation

ξ =

∫ z

u−3/2 dz, (2.4)

equation (2.3) becomes

λ

2
+ C u2 + 4 u3 + k2 λ u ξξ = 0, (2.5)

where C is the integration constant.

Assuming a solution in the form (1.8) for equation (2.5) and balancing the
highest order derivative term with the nonlinear term, we get 3s = s + 2
which gives s = 1.

Therfore, we have our solution in the form

u(ξ) = A0 + A1 sinh w(ξ) + B1 cosh w(ξ), (2.6)
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where, A0, A1, B1 are constants.

Substituting (2.6) in equation (2.5) and equating the coefficients of powers
of cosh w sinh w to zero, we get

4 B3
1 + 12 A2

1 B1 + 2 k2 λ B1 = 0, (2.7)

4 A3
1 + 12 A1 B2

1 + 2 k2 λ A1 = 0, (2.8)

C A2
1 + C B2

1 + 12 A0 A2
1 + 12 A0 B2

1 = 0, (2.9)

2 C A0 A1 + 12 A2
0 A1 + 12 A1 B2

1 + k2 λ A1 + k2 λ c A1 = 0, (2.10)

2 C A0 B1 − 12 A2
1 B1 + 12 A2

0 B1 − 2 k2 λ B1 + k2 λ c B1 = 0, (2.11)

2 C A1 B1 + 24 A0 A1 B1 = 0, (2.12)

λ

2
+ C A2

0 − C A2
1 + 4 A3

0 − 12 A0 A2
1 = 0. (2.13)

By solving the system of equations (2.7)− (2.13), we have

Case 1:

A0 = −C

12
, A1 = 0, B1 = ±

√
C2

24 (1 + m2)
, k = ±

√
− C2

12 λ (1 + m2)
.

(2.14)

For (2.14) to be valid, λ should be negative.

Case 2:

A0 = −C

12
, B1 = 0, A1 = ±

√
− C2

24 (2−m2)
, k = ±

√
C2

12 λ (2−m2)
.

(2.15)

Equations (2.15) will be valid only for negative values of λ.

Thus we have two new Jacobian elliptic function solutions

u(ξ) = − C

12
±

√
C2

24 (1 + m2)
ns(ξ), (2.16)

and

u(ξ) = − C

12
±

√
− C2

24 (2−m2)
cs(ξ). (2.17)
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Solutions for n = 3 and m = 0

For this choice of parameters, equation (2.1) reduces to

ut =
(
u3(uxt − 1)

)
x

(2.18)

We seek travelling wave solutions of (2.18) in the form u(x, t) = u(z), z =
k(x− λ t) so that (2.18) reduces to

k2 λ

2
u2

z + u +
λ

u
+ A u−2 + B = 0, (2.19)

where, A and B are constants of integration.

Using the independent variable transformation

ξ =

∫ z

u−1 dz, (2.20)

equation (2.19) becomes

λ + C u + 3 u2 + k2 λ u ξξ = 0, (2.21)

where C is the integration constant.

Assuming a solution in the form (1.8) for equation (2.21) and balancing
the highest order derivative term with the nonlinear term, we get 2s = s + 2
which gives s = 2.

Therefore, we have our solution in the form

u(ξ) = A0 + A1 sinh w(ξ) + B1 cosh w(ξ) + A2 cosh w sinh w + B2 cosh2 w,

(2.22)

where, A0, A1, B1, A2, B2 are constants.

Substituting (2.22) into the equation (2.21) and equating the coefficients
of powers of cosh w sinh w to zero, we get

6 k2 λ B2 + 3 A2
2 + 3 B2

2 = 0, (2.23)

2 k2 λ B1 + 6 B1 B2 + 6 A1 A2 = 0, (2.24)

2 k2 λ A1 + 6 A1 B2 + 6 A2 B1 = 0, (2.25)

6 k2 λ A2 + 6 A2 B2 = 0, (2.26)
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− 8 k2 λ B2 + 4 c k2 λ B2 + C B2 + 6 A0 B2 − 3 A2
2 + 3 B2

1 + 3 A2
1 = 0, (2.27)

− 2 k2 λ B1 + c k2 λ B1 + C B1 + 6 A0 B1 − 6 A1 A2 = 0, (2.28)

k2 λ A1 + c k2 λ A1 + C A1 + 6 A0 A1 + 6 A1 B2 + 6 A2 B1 = 0, (2.29)

− 5 k2 λ A2 + 4 k2 λ c A2 + 6 A1 B1 + 6 A0 A2 = 0, (2.30)

2 k2 λ B2 − 2 c k2 λ B2 + C A0 − 3 A2
1 + 3 A2

0 + λ = 0. (2.31)

By solving the system of equations (2.23)− (2.31), we have

A1 = 0, A2 = 0, B1 = 0, (2.32)

A0 =
4k2λ(1 + m2)− C

6
, B2 =

C2 − 16k4λ2(1 + m2)2 − 12λ

24 k2 λ m2 ,

k =

[
C2 − 12λ

8λ2(2 + m2 + 2m4)

]1/4

. (2.33)

Therefore, the new Jacobian elliptic function solution for (2.21) is

u(ξ) =
4k2λ(1 + m2)− C

6
+

C2 − 16k4λ2(1 + m2)2 − 12λ

24 k2 λ m2 ns2(ξ), (2.34)

with k given by (2.333).

3 New Hamiltonian amplitude equation

A new Hamiltonian amplitude equation16)

i ux + utt + 2 σ |u|2 u − ε uxt = 0, (3.1)

where σ = ±1, ε << 1, was recently introduced by Wadati et al17). This
is an equation which governs certain instabilities of modulated wave trains,
with the additional term − ε uxt overcoming the ill-posedness of the unstable
nonlinear Schrodinger equation. It is a Hamiltonian analogue of the Kuramoto-
Sivashinski equation which arises in dissipative systems and is apparently not
integrable.

We let

u(x, t) = φ(ξ) ei(Kx−Ωt), ξ = k(x− λt). (3.2)
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Substituting equation (3.2) into equation (3.1), we get

k2(λ2+ελ) φ′′ + ik(1+2λΩ+ελK+εΩ) φ′− (K+Ω2+εKΩ) φ + 2σφ3 = 0, (3.3)

with the prime meaning differentiation with respect to ξ.

If we take

λ = − 1 + εΩ

2Ω + εK
, (3.4)

equation (3.3) is transformed into

αφ′′ + βφ + γφ3 = 0, (3.5)

where

α = k2(λ2 + ελ), β = − (K + Ω2 + εKΩ), γ = 2σ. (3.6)

Assuming a solution in the form (1.8) for equation (3.5) and balancing the
highest order derivative term with the nonlinear term, we get 3s = s + 2
which gives s = 1.

Therefore, we have our solution in the form

φ(ξ) = A0 + A1 sinh w(ξ) + B1 cosh w(ξ), (3.7)

where, A0, A1, B1 are constants.

Substituting (3.7) into equation (3.5) and equating the coefficients of pow-
ers of cosh w sinh w to zero, we get

2 α B1 + γ B3
1 + 3 γ A2

1 B1 = 0, (3.8)

2 α A1 + γ A3
1 + 3 γ A1 B2

1 = 0, (3.9)

3 γ A0 A2
1 + 3 γ A0 B2

1 = 0, (3.10)

α A1 + α c A1 + β A1 + 3 γ A2
0 A1 + 3 γ A1 B2

1 = 0, (3.11)

− 2 α B1 + α c B1 + β B1 − 3 γ A2
1 B1 + 3 γ A2

0 B1 = 0, (3.12)

6 A0 A1 B1 γ = 0, (3.13)

β A0 + γ A3
0 − 3 γ A0 A2

1 = 0. (3.14)
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By solving the system of equations (3.8) − (3.14), we find that for this
equation, the only solution possible is when A0 = 0 and A2

1 = B2
1 .

Therefore, we have

A1 = ±
√
− α

2 γ
, k = ±

√
− 2 (K + Ω2 + ε K Ω)

(λ2 + ε λ) (2 m2 − 1)
. (3.15)

so that the solution is

φ = ±
√
− α

2 γ
(cs(ξ) ± ns(ξ)) (3.16)

Thus the new doubly periodic solution for the equation (3.1) is,

u(x, t) = ±
√
− α

2 γ
[cs {k(x− λt)} ± ns {k(x− λt)}] ei(Kx−Ωt), (3.17)

where k is given by (3.152).

4 Coupled nonlinear wave equation

We consider a coupled nonlinear wave equation18)

ut + α v2 vx + β u2 ux + λ u ux + γ uxxx = 0, (4.1)

vt + δ (uv)x + ε v3 vx = 0. (4.2)

We seek travelling wave solutions in the form

u(x, t) = u(ξ), v(x, t) = v(ξ), ξ = k(x− λt),

so that equation (4.2) reduces to

v3 =
4

ε
(λ − δ u), (4.3)

and we arrive at the equation for u in the form

k2 uξξ + P + Qu + R u2 + S u3 = 0, (4.4)
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where

P =
4 α δ

3 γ ε
+

C

γ
, Q = −

(
λ

γ
+

4 α δ

3 ε γ

)
, R =

λ

2 γ
, S =

β

3 γ
, (4.5)

with C being an integration constant.

Assuming a solution in the form (1.8) for equation (4.4) and balancing the
highest order derivative term with the nonlinear term, we get 3s = s + 2
which gives s = 1.

Therefore, we have our solution in the form

u(ξ) = A0 + A1 sinh w(ξ) + B1 cosh w(ξ), (4.6)

where, A0, A1, B1 are constants.

Thus we obtain the equations determining A0, A1, B1 and k as

2 k2 B1 + S B3
1 + 3 S A2

1 B1 = 0, (4.7)

2 k2 A1 + S A3
1 + 3 S A1 B2

1 = 0, (4.8)

R A2
1 + R B2

1 + 3 S A0 A2
1 + 3 S A0 B2

1 = 0, (4.9)

k2 A1 + k2 c A1 + P A1 + 2 R A0 A1 + 3 S A2
0 A1 + 3 S A1 B2

1 = 0, (4.10)

− 2 k2 B1 + k2 c B1 + P B1 + 2 R A0 B1 − 3 S A2
1 B1 + 3 S A2

0 B1 = 0, (4.11)

2 R A1 B1 + 6 S A0 A1 B1 = 0 (4.12)

P + QA0 + R A2
0 − R A2

1 + S A3
0 − 3 S A0 A2

1 = 0 (4.13)

Solving the system of equations (4.7)− (4.13), we have

Case 1:

A0 = − R

3 S
, A1 = 0,

B1 = ±

√
2 (R2 − 3 P S)

3 S2 (1 + m2)
, (4.14)

k = ±

√
− (R2 − 3 P S)

3 S (1 + m2)
.
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Case 2:

A0 = − R

3 S
, B1 = 0,

A1 = ±

√
− 2 (R2 − 3 P S)

3 S2 (2−m2)
, (4.15)

k = ±

√
R2 − 3 P S

3 S (2−m2)
.

Case 3:

A0 = − R

3S
, A2

1 = B2
1 ,

A1 = ±

√
R2 − 3 P S

3 S2 (2m2 − 1)
, (4.16)

k = ±

√
− 2(R2 − 3 P S)

3 S (2m2 − 1)
.

Therefore, we have 3 new doubly periodic Jacobian elliptic function solu-
tions such as

u1(ξ) = − R

3S
±

√
2(R2 − 3 P S)

3 S2 (1 + m2)
ns(ξ), (4.17)

u2(ξ) = − R

3S
±

√
− 2(R2 − 3 P S)

3 S2 (2−m2)
cs(ξ), (4.18)

u3(ξ) = − R

3S
±

√
R2 − 3 P S

3 S2 (2m2 − 1)
(cs(ξ) ± ns(ξ)) . (4.19)

and

v1(ξ) =

[
4

ε

{
λ +

δR

3S
∓ δ

√
2(R2 − 3 P S)

3 S2 (1 + m2)
ns(ξ)

}]1/3

, (4.20)

v2(ξ) =

[
4

ε

{
λ +

δR

3S
∓ δ

√
− 2(R2 − 3 P S)

3 S2 (2−m2)
cs(ξ)

}]1/3

, (4.21)
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v3(ξ) =

[
4

ε

{
λ +

δR

3S
∓ δ

√
R2 − 3 P S

3 S2 (2m2 − 1)
(cs(ξ) ± ns(ξ))

}]1/3

. (4.22)

5 Conclusion

The sinh-Gordon equation expansion method has been used to derive doubly
periodic solutions in terms of Jacobian elliptic functions. For the magma equa-
tion we have derived two new Jacobian elliptic function solutions in the case
of n = 4, m = 0 and one new solution in the case of n = 3, m = 0. A new
solution as a combination of cs(ξ; m) and ns(ξ; m) has been derived for the
new Hamiltonian amplitude equation. Also, we have derived 3 new solutions
for a coupled nonlinear wave equation in terms of Jacobian elliptic functions.
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