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1 Introduction

Byszewski [6] has established the existence and uniqueness of mild, strong and classical solutions of
the following nonlocal Cauchy problem

dl;—it) + Au(t) = f(t,u®)), te(0,al, €Y
u(0) +g (tl, tay s by u(ty), ulty), . .,u(tp)) = u,, (2)

where -A is the infinitesimal generator of a C,-semigroup T(t),t =0, in a Banach space
X, 0<t;<-,<t,<a,a>0uy€X and f:[0,a] XX —X,g:[0,a]’P xXP - X are given
functions. Subsequently many authors extended the work to various kinds of nonlinear evolution
equations [3, 4, 7, 8].

Abstract quasilinear integrodifferential equations arise in many areas of science such as population
dynamics, mathematical physics, heat conduction theory of materials with memory etc. For this
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reason, such types of equations have received much attention in recent years. The literature related to
quasilinear differential and integrodifferential equations is very extensive.

T. Kato [12] has proved two general theorems on the nonhomogeneous quasilinear evolution equations
of the type

u'(@®) + A u@®)u@®) = f(tu®), 0<t<T, u(0)=u, A3)

one on the existence and uniqueness, and the other on the continuous dependence of a solution on the
initial data.

Crandall and Souganidis [9] have used a different method to prove the existence, uniqueness and
continuous dependence of a continuously differentiable solution to the quasilinear evolution equation

W)+ Au@®)u@®) =0, 0<t<T, u(0)=1u,
under similar assumptions considered by T. Kato [12].
Pazy [15] considered the following quasilinear equation of the form

u (@) +AGwWu() =0, 0<t<T, u(0)=u,

and discussed the mild and classical solutions by using the fixed point argument. Bahuguna [1, 2], Oka
[13], and Oka and Tanaka [14] discussed the existence of solutions of quasilinear integrodifferential
equations in Banach spaces. Recently Balachandran and Samuel [5] studied the existence of solutions
for quasilinear delay integrodifferential equations with nonlocal conditions by using C,-semigroup and
the Banach fixed point theorem. Shengli Xie [16] studied the existence of solutions for nonlinear
mixed type integrodifferential functional evolution equations with nonlocal conditions using Monch
fixed point theorem. Dhakne and Ku*cche [10] prove the existence, uniqueness and continuous
dependence of mild solution of a nonlinear mixed Volterra-Fredholm functional integrodifferential
equation with nonlocal condition by using semigroup theory and Banach fixed point theorem. An
equation of this type occurs in a nonlinear conservation law with memory

u(t,x) + l/)(u(t, x))x = fb(t — S)Y (u(t,x))xds + f(t,x), tel[0,a], x€R (4)
0

u(0,x) = 8(x), X €E€R (5)

It is clear that if nonlocal condition (2) is introduced to (4), and then it will also have better effect than
the classical condition u(0,x) = @(x). Therefore, we would like to extend the results for (1) — (2) to a
class of integrodifferential equations in Banach spaces.

In this paper we study the following quasilinear mixed Volterra-Fredholm integrodifferential equation
with nonlocal condition of the form
t a
u' () + A, wWult) =f t,u(t),f k(t, s,u(s))ds,f h(t, s,u(s))ds , te[o0,al (6)
0 0
u(0) + g(w) = u, ()

where A(t, u) is the infinitesimal generator of a C,-semigroup in a Banach space X,uy € X, f:] X X X
XXX->XkhAxX—->X and ¢g:C(J:X) » X are given functions. Here J=1[0,a] and A=
{(t,s):0 < s <t < a}. The results obtained in this paper are generalization of the results given by
Pazy [15], Kato [11] and Bahuguna [2].

2 Preliminaries

Let X and Y be two Banach space such that the embedding Y < X is dense and continuous. The norm
in any Banach space Z is denoted by ||.|| or ||.|l;. The space of all bounded linear operators from a
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Banach space X to a Banach space Y is denoted by B(X,Y) and B(X,X) is written as B(X). we
remember some definitions and known facts from Pazy [15].

Definition 2.1: Let S be a linear operator in X and let Y be a subspace of X. The operator S defined by
D(S) ={x € D(S) N Y:Sx € Y} and Sx = Sx for x € D(S) is called the part of S in Y.

Definition 2.2: Let B be a subset of X and for every 0 <t <a and b € B, let A(t,b) be the
infinitesimal generator of a Cy-semigroup S;,(s),s =0, on X. The family of operators
{A(t,b)}, (t,b) € ] X B, is stable if there are constants M > 1 and w such that

p(A(t, b)) o Jw, [  for (t,b) €] X B,

and

k
HR (2:A(t,))|| < M@ - @)
j=1

for 1 > w and every finite sequence 0 < t; < t, ... ... <tyr<ab €B1=<j<k

Definition 2.3: Let S;,(s),s =0 be the Cy-semigroup generated by {A(t,b)},(t,b) €] xB. A
subspace Y of X is called A(t, b)-admissible if Y is invariant subspace of S; ,(s), and the restriction of
St p(s) to Y isa Cy-semigroup in Y.

For more details of the above mentioned notions, one may refer to the chapters 5 and 6 in Pazy [15].
On the family of operators {A(t, b): (t,b) € ] X B}, we make the same assumptions (H,) — (H,)
considered in 6.6.4 in Pazy [15] for the homogenous quasilinear evolution equation, as restated below.

(H,) The family {A(t, b): (t, b) € ] x B} is stable.

(H,) Y is A(t, b)-admissible for (t,b) € ] x B and the family {A(t, b): (t,b) € ] x B} of the parts of
A(t,b) inY isstableinY.

(H;3) For (t,b) € ] x B,D(A(t, b)) DY, A(t,b) is a bounded linear operator from Y to X and the map
t — A(t, b) is continuous in the B(Y,X) norm ||. ||, x for every b € B.

(H,) There is a constant L such that
lACt, by) — A(t, bo)llyox < Lllby — by llx
forevery b,,b, e Band 0 <t < a.

A two parameter family of bounded linear operators U(t,s),0 <s<t<a, on X is called an
evolution system if the following two conditions are satisfied:

(i) U(s,s)=Tand U(t,7)U(r,s) =U(t,s)for0<s<r<t<a.
(i) ~ The map (t,s) — U(t,s) is strongly continuous for0 < s <t < a.

If u € C(J,X) has values in B and the family {A(¢t,b): (t,b) € ] x B} of the operators satisfies the
assumptions (H,) — (H,) then there exists a unique evolution system U(t, s; u) in X satisfying

(i U, s; W)l < Me®E= (8)
for0 < s <t < a, where M and w are stability constants;

i) Zu@sww| =A@ uE)w 9)
at ) ) t=s )
forweY,and0<s<t<a;

(iii) %U(t, s;ww = =U(t,s;u *)A(S,u(s))w (10)
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forweY,and0<s<t<a.

Further, there exists a constant C; > 0 such that for every u, v € C(J, X) with values in B and for every
w €Y, we have

Ut s; wWw = UL, s; v)w|| < C1|IW|ny|Iu(T) —v(7)|ldr. (11)

For the details of the above mentioned results, one may refer to Theorem 6.4.3 and Lemma 6.4.4 in
Pazy [15].

We further assume that
(Hs) Forevery u € C(J, X) satisfying u(t) € B for 0 < t < a, we have
Ult,s;w)YcY, 0<s<t<a
and U(t,s;u) is strongly continuous inY for0 <s <t < a.
(Hg) Y is reflexive.
(H,) For every (t,by,by,b3) €] X B X B X B, f(t,by, by, b3) €Y.

(Hg) g:C(J,B) — X is Lipschitz continuous in X and bounded in Y, that is, there exist constants G > 0
and G, > 0 such that

lg@lly <G,
lg@w) — gWllx < G, rglg]XHu(t) = v(Ollx.

For the conditions (H,), (H,,) and (H,,) let Z be taken as both X and Y.
(Hy) f:] X Z X Z X Z — Z is continuous and there exist constants F; > 0 and F, > 0 such that
If (&, ug, v, wy) = f(&up, v, wo)llz < Fi(llug — uplly + llvg — vyl + llwy —wylly),

F, = r{lea}XIIf(t, 0,0,0)]l.

(Hyp) k: A X Z — Z is continuous and there exist constants K; > 0 and K, > 0 such that
k(t, s, u) —k(t,s,u)llz < Killug —uzllz,
K, = max{||k(t,s,0)||,: (t,s) € A}.
(Hy1) h: A X Z — Z is continuous and there exist constants H; > 0 and H, > 0 such that
IR(t, s,uq) — h(t, s, u)llz < Hyllug — usllz,
H, = max{||h(t, s, 0)||;: (t,s) € A}.
Let us take M, = max{IIU(t, s;Wllpiz,0<s<t<aue B}.
(Hy2)
My(luglly + G) + MyFira + MyF, K ra? + MyF,K,a? + MyF,H,ra? + MyF,H,a? + MyF,a <7
and
q = Cialluglly + GCia + MyG, + Cya(Fir + F,K,ar + FiK,a + FiH,ar + F,H,a + F,)
+MyFya + MyF, K a% + MyF,H,a? < 1.

By a mild solution of (6) — (7) we mean a function u € C(J,X) with values in B and u, € X satisfying
the integral equation
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u(t) =U(t, 0;u)uy — U(L, 0;u)g(u)

a

+fU(t,s; wf S,u(s),fk(s, 7,u(7)) dr,fh(s,r,u(r)) drt |ds. (12)

0 0

By the classical solution of (6) — (7) we mean a function u € C(J, X) such that u(t) € D (A(t,u(t)))
fort € (0,al,u € ¢*((0,a], X) and satisfies (6) — (7) on J.

3 Main Result

Theorem 3.1: Let up €Y and let B ={u € X : |[ully < r},r > 0. If the assumptions (H,) — (H;,)
are satisfied, then the quasilinear problem (6) — (7) has a unique classical solution u € C([0,a]:Y) N

¢((0,a]: X).
Proof: Let S be a nonempty closed subset of C(J, X) defined by
S={wuecy,X)lu@®l|ly <rfor0<t<al
Consider a mapping F on S defined by
(Fu)(t) = U(t, 0;wuy — U(t, 0;u) g (u)
t N a

+fU(t, s;u)f s,u(s),jk(s,r,u(r)) dr,jh(s,r,u(r)) dt |ds.
0

0 0

We claim that F maps S into S. For u € S, we have
IFu(Olly

U(t,0; wuy — U(t,0;u)g(u)

t N a

+fU(t,s;u)f s,u(s),fk(s,r,u(r)) dr,fh(s,r,u(r)) dr |ds
0

0 0

< JU(t, 0; wuell + UL, 0; w) gl

t
|
0

< JU(t, 0; wuell + UL, 0; w) gl
t
v
0

o

< Mylluglly + MG + M, f Fy | hu(s) —oll +
0 L

a

ut,s;u)f s,u(s),fk(s, r,u(r)) dr,fh(s,r,u(r)) dr ||| ds

0

ds

ut,s;u) |f S,u(s),f k(s, r,u(r)) dr,f h(s, r,u(r)) dt | — f(s,0,0,0) + f (s, 0,0,0)]

0

N

f k(s, r,u(r))dr -0

0

a

f h(s, T,u(r))dr -0

0

+

+ [If (s, 0,0,0)|I‘ ds
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t

< Mylluolly + MoG + Mof
0

S

Fir+F, f”k(s, T,u(r)) —k(s,7,0) + k(s, 1, 0)||dr
0

+Fy jllh(s' 7,u(0)) - h(s,7,0) + h(s, 7,0)||dz + F, | ds
0

< Mylluolly + MoG

+ M, j[Flr + Fya(Kyr + K,) + Fya(Hr + H,) + F,]ds
0
< Mylluglly + MyG + MyF,ra + MyF,K,ra? + MyF,K,a? + MyF,Hyra? + MyF,H,a? + MyF,a <.
Therefore F maps S into itself. Moreover, if u, v € S, then
IFu(t) — Fo(Oll < [JU(E, 0;wue — UL, 0; v)ull + [[U(E, 0, wg(w) — Ut 0;v) g ()]

t

+f Ut,s;u)f s,u(s),ojk(s,r,u(r)) dr,jh(s, T,u(T)) dt

0 0

a

a

—U(t,s;v)f s,v(s),jk(s,r,v(r)) dT,Jh(S,T,U(T)) dr ||| ds
0

0
< Ut 0;wuy — UL, 0; v)uoll + UL, 0; w)g(w) — UL, 0; v) gl
+1U(t, 0;v)g(w) — U, 0; v)gW)|

a

+f Ut,s;w)f s,u(s),fk(s, t,u(r)) dr,fh(s,r,u(r)) dt
0 0 0

a

—U(t,s;v)f s,u(s),fk(s, ‘L',u(‘[)) dr,fh(s,r,u(r)) dt
0 0

a

+ (U, s;v)f s,u(s),fk(s,r,u(r)) dr,fh(s,r,u(r)) dt

a

—U(t,s;v)f s,v(s),fk(s,r,v(r)) dr,fh(s,r,v(r)) dt ds

0

< Cialluglly max,¢;llu(z) —v(@)I| +6Ca rgg]XIIu(r) —v(@)|l + MyGy max¢;llu(r) — v(D)l
+C,a(Fir + F,K,ar + FiK,a + F{H,ar + FiH,a + F,) nggxllu(r) —v(D||
+M,F,a nflngIIu(T) — v(0D)|l + MyF, K, a* ngnglIu(r) —v(D|
+M,F,H,a? r;ngIIu(T) — vl

< g max.g;llu(r) —v(@)|,

where
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q = Cialluglly + GCia + MyG, + Cya(Fir + F,K,ar + F1K,a + F{H,ar + FiH,a + F,)+M,F,a
+MyF,K,a* + MyF,H,a*
and hence, we obtain
IFu(t) — Fv(O)ll < q rggXlIu(T) —v(@l,

with 0 < g < 1. This shows that the operator F is a contraction on S. From the contraction mapping
theorem it follows that F has a unique fixed point u € S which is the mild solution of (6) — (7) on
[0, a]. Note that u(t) isin C(J,Y) by (E,) (see [12] Lemma 7.4). In fact, u(t) is weakly continuous as
a Y-valued function. This implies that u(t) is separably valued in Y, hence it is strongly measurable.
Then, ||u(t)|ly is bounded and measurable function in t. Therefore, u(t) is Bochner integrable (see
e.g. [17, Chapter-V]). Using relation u(t) = Fu(t), we conclude that u(t) isin C(J,Y).

Consider the following linear evolution equation
v'(t) + B(t)v(t) = h(t), t € [0,a] (13)
v(0) = up — g(w) (14)

where B(t) = A(t,u(t)) and h(t) = f (t,u(t), fotk(t, s,u(s))ds, foa h(t, s,u(s))ds), t € [0,a] and
u is the unique fixed point of F in S. We note that B(t) satisfies (H,) — (H;) of [15] (Section 5.5.3)
and h € C(J,Y). Theorem 5.5.2 in Pazy [15] implies that there exists a unique function v € C(J,Y)
such that v € €*((0, a], X) satisfying (13) — (14) in X and v is given by

v(t) = U(t, 0;wuy — U(t,0;u)g(u)

t N a

+fU(t, s;u) f S,u(s),fk(s, T,u(‘[))d‘[,fh(s,‘[,u(‘[))d‘[ ds, te]j,
0

0 0

where U(t,s;u),0 <s <t < ais the evolution system generated by the family {A(t,u(t))}, t €],
of linear operator in X. The uniqueness of v implies that v = u on J and hence u is a classical solution
of (6) — (7) and u € €([0,a]:Y) n C*((0,a]: X).
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