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Abstract.

We investigate control systems as variational equations in non-standard chains
of rigged Hilbert spaces. Monotonicity properties of nonlinearities are intro-
duced with respect to such riggings generated by Lyapunov operators and in-
variant cones. Sufficient frequency domain conditions for boundedness and the
existence of Bohr and Stepanov almost periodic solutions are derived. As an
example we consider equations with Duffing-type nonlinearities and almost pe-
riodic forcing terms.

1 Introduction

Let us introduce some function spaces. Suppose (F, | - ||g) is a Banach space.

If J C R is an interval, denote by C(J; E) the space of all continuous
functions from J to E, endowed with the topology of uniform convergence on
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compact sets. If G = R or G = R, the space C,(G; E) is the subspace of
C(G; F) of bounded functions equipped with the norm

[ flle, == sup [ f(uw)lle -
ueG

The Banach space of Stepanov bounded on J = R or J = R, functions (of
exponent p = 2) is the space BS?(J; E) which consists of all functions f €
L% (J; FE) having finite norm

t+1
15 = sup [ ) e

A subset § C R is relatively dense if there is a compact interval C C R such
that (s +K) NS # @ for all s € R. A function f € Cy(R; E) is said to be Bohr
almost periodic if for any € > 0 the set

(r € R sup [f(s+7) = f()]z < <)

of e-almost periods is relatively dense in R.

For a function f € L? (R, E), put

loc
fot) = f(t+w),w € [0,1],t € R.
Function f’(t) is regarded with values in the space L%(0,1; E). Then
BS*(R; E) = {f € Li,.(R; B)|f* € L™(R; L*(0,1; E))}

and, moreover, ||f|ls: = || f°||z=. A function f € BS?(R; E) is called an almost
periodic function in the sense of Stepanov and of exponent 2 (abbreviated S
a.p.) if f* € CAP(R; L%*(0,1; E)). In this case the ¢ -almost periods of f? are
called the e-almost periods of f. The space of S?-a.p. functions with values in
F is denoted by S?*(R; E). Obviously, CAP(R; E) C S*(R; E).

2 Control systems with monotone nonlinearities

Consider the Gelfand rigging of a real Hilbert space Yj, i.e. a chain
YiCYyCY (1)

in which Y] (“positive” space) and Y_; (“negative” space) are further real
Hilbert spaces and the inclusions are dense and continuous. Let (-,-); and
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|- |lisi = 1,0,—1, denote the scalar product and the norm in Y;, respectively.
Continuity of the inclusions means that there are constants k; > 0 and ko > 0
such that

lyllo < killylli, Vyen (2)
and
kallyll-1 < llyllo, VyeYs. (3)

Suppose that the rigging (1) — (3) is realized in the following sense ([1, 15]).
Assume that from the inclusion chain (1) only Y} C Y is given and (2) is
satisfied, for simplicity, with k; = 1. We introduce on Yj a second norm by

HyH—l = sup |(y777)0| (4)
oznevy  |[nlh

and denote by Y_; the completion of Y with respect to this norm. Then Y _;
can be taken as third space in the Gelfand rigging (1) (see [1, 15]). This space
can be considered as dual to Y; with respect to Yj, i.e. when the duality of Y;
and Y_; is written in terms of Yj. Extending by continuity the function (u,v)y
onto Y_; x Yj, we get the pairing between Y_; and Y7, i.e. the bilinear form
(+,-)=11 on Y_; x Y] which coincides with (-, )y on Y x Y; and which satisfies
the inequality

((yy)—aal < 1Pl allylly s YheYo, VyeY:. (5)
With respect to the chain (1) we consider the three linear operators
Ae L, Y1), BeLlRY,), CeLl(Y,R). (6)

Together with the operator A € £(Y1,Y_1) we also need the adjoint with
respect to Yy operator AT € L(Y1,Y_1) which is given by the relation ([1])

(Ay,n)-11=(A"n,y)-11, YyneY. (7)

If AT = A the operator A is called self-adjoint with respect to Yy. The adjoint-
ness with respect to Yy can be introduced similarly for linear operators acting
between other spaces in the chain (1).

The construction of some auxilary evolutionary variational equation is based
on the following function spaces which we shortly introduce.

If —oo <Ti < Ty < +o0 are two arbitrary numbers, we define the norm for
Bochner measurable functions ([15]) in L?(Ty,Ty;Y;), j=1,0,—1, by

oy = ( / ol dt) " 5)

T
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Let W(T1,Ty) denote the space of functions y such that y € L*(T1, T»; Y1) and
y € L?(Ty, Ty; Y_1) equipped with the norm

1/2

20+ 19112,-1) (9)
By an embedding theorem ([10, 15]) one can assume that any function from
W(Ty, Ts) belongs to C(T1,T5;Yy).

Throughout the paper we use the following assumptions about the operators

A B,C.

HyHW(T17T2) = (H?J

Denote for —oo < 71 < Ty < +o0 by L*(T1,Ty;Y;) with j = 0, P and
j = —1, P the Bochner measurable functions for which the norm || - ||2 ;, defined
by (8), is finite. Let Wp(T11,T5) be the space of functions such that

y € L*(T1,T»; Y1) and y € L*(Th, To; Yo1.p) |
equipped with the norm
ez = (Yl + 1915 -1.0)"
(H1) For any T > 0 and any f € L?(0,T;Y_1) the problem
y=Ay+ft), y0)=uwo (10)

is well-posed, i.e. for arbitrary yo € Yy, f € L*(0,T;Y_;) there exists a unique
solution y € W(0,T) satisfying (10) in a variational sense and depending con-
tinuously on the initial data, i.e.

ly () vy < Esllyollg + kall FOI5 -1 - (11)

where k3 > 0 and k4 > 0 are some constants.

(H2) The operator A is Hurwitz, i.e. any solution of
y=Ay, y(0)eYy, (12)

is exponentially decreasing for t — +o0.

(H3) The operator A € L(Y1,Y 1) is regular ([8, 9]), i.e. for any T > 0,
Yo € Y1,2r € Y1 and f € L?(0,T;Y;) the solution of the direct problem (10)
and the solution of the adjoint problem (understood in the above sense)

i=—-ATz+ f(t), 2T)=2r, (13)
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are strongly continuous in ¢ in the norm of Y;.

(H4) The pair (A, B) is L*-controllable, i.e. for arbitrary yy € Y, there exists
a control a(-) € L*(0, 00;R) such that the problem

y=Ay+ Ba, y(0)=1y (14)
is well-posed in the variational sense on (0, +00).

Let us denote by H¢ and L the complexification of a linear space H and a
linear operator L, respectively, and introduce by

x(p) = C(A = pI°)"'B*, pep(A9 (15)

the transfer operator function of the triple (A€, B¢, C°).
(H5) There exist numbers ko > 0 and € > 0 such that

1
— 4+ Rex(iw) >¢, VweR. (16)
Ko

Theorem 1 Assume for the linear operators A € L(Y1,Y_1),B € L(R,Y ;)
and C' € L(Yy,R) that the assumptions (H1) — (H5) are satisfied. Then there
exists an operator P € L(Y_1,Yy) N L(Yy, Y1), self-adjoint and positive in Yy,
and a number € > 0 such that

(Ay + BE, Py) 11+ &(Cy — &g ) < —e(lylli +&7). ¥ (y.6) eVixR. (17)

Proof. Consider in Y; x R the quadratic form F(y,&) = £(Cy — €ky') and
their Hermitian extension F°(y,£) = Re(£*C%) — €)%k, in Y x C. From
the Likhtarnikov-Yakubovich theorem ([8]) it follows that under the conditions
(H1), (H3), (H4) and the frequency-domain condition

Re(¢"Cy) — [67ry " < —el¢]” (18)
VEeC\ {0} VweR VyeY, iwy= A%+ B¢,
there exists a number € > 0 and an operator P € L£(Y_1,Y)) N L(Yp, Y1) self-

adjoint in Y, such that (17) is satisfied. As it is easy to see, inequality (18) is
equivalent to (16).

Let us show that P > 0. Introduce on Yj the Lyapunov functional V(y) :=
(y, Py)o. Putting in (17) £ = 0 we get the inequality

(Ay, Py)-10 < —¢lylli, Vyen. (19)
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Thus we have along an arbitrary solution y(-) of § = Ay with y(0) = yy € Yy
on an interval [0, ¢] the inequality

V(1) < Viy) - / ly(r)2dr (20)

From (H2) and (20) it follows for t — 400 that

0< Viy) < / "y Bdr

But this implies that V' (yy) > 0 if yy # 0. H

In the following we suppose the properties (H1) — (H5). Thus we can as-
sume that there exists an operator P and a number € > 0 satisfying (17). Note
that the operator P can be explicitly determined as solution of a Hamiltonian
system of equations ([8]). The number € > 0 can be estimated with the knowl-
edge of €. Our aim is to derive with the help of P a new Gelfand chain from
(1) which is better adapted to the nonlinear system which will be investigated.

Consider in Y, the new scalar product (-, ) p given by

(yﬂ?)o,P = <y7 P77)0 ’ vy)ﬁ € YE) .

The associated norm is denoted by || - [lo,>. The completion of Yy w.r.t. the
scalar product (-)o p gives the Hilbert space Yj p. The space Y; is dense in Yj p
since Y; is dense in Yj and Yj is dense in Y{ p. By (2) and the boundedness of
P it follows that for all y € Y7

1/2
0.0 = (4, Py)e> < [1PIMllyllo < 1P]"2kaflylls (21)

ly

But this means that the inclusion Y] C Y} p is continuous. Thus we can continue
the inclusion Y; C Y p to a Gelfand rigged chain

YiCYopCY  p (22)
of Hilbert spaces. In order to define the negative space in this chain explicitly
we introduce ([1]) on Yj p the negative norm || - |1 p given on Yj p by

Y, M)o,pP
lollrp = sup W0 (23)

oznevi Il

The completion of Y p in this norm gives the negative space Y_; p in the chain
(22).
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Let us denote the pairing between Y_; p and Y7 by (-,-)-1.p1. We extend
by continuity the operators A, B and C' from (6) to operators

Ap € ﬁ(Yl,Y_LP) , Bp € ﬁ(R, Y_Lp) , Cp € ﬁ(Yb’p,R) . (24)

Now we introduce a class of nonlinearities which will be considered in the
sequel.

(H6) The function ¢ : R x R — R is continuous, ¢(¢,0) =0, V¢ € R, and

0< ((p(tfwl) - (,O(t, ’U}Q))(UJl - w2) < Ho(wl - UJ2)2, Vit e R: Vw1’w2 €ER )
(25)
where kg > 0 is the constant from assumption (H5).

Note that for w; = w and wy = 0 we have from (25) and ¢(¢,0) = 0 the
inequality
0 < ot,w)w < kow?, VteR, VweR. (26)

Let us consider the family of nonlinear operators Ap(t) : Y1 — Y_1 p, given by
Ap(t)n == —Apn — Bpp(t,Cpn), VIER, VneY, (27)
and the family A(¢) : Y7 — Y_; given by
A(t)n:= —An— Bp(t,Cn), VteR, VneY;. (28)
Theorem 2 Under the hypotheses (H1) — (HG6) the operator family
{Ap(t) }1er has the following properties:

(P1) For each t € R the operator Ap(t) is monotone, i.e.,
(Ap(t)n — Ap(t)d,n —V)-1,pn 20, Vn,0 €Yy; (29)

(P2) For each t € R the operator Ap(t) is semicontinuous, i.e., for any
n,y,0 € Y1 the scalar-valued function & — (Ap(t)(n + &y, V)_1.pa is contin-
uous ;

(P3) For any 9 € Yy and any bounded set S C Y the family of functions
{(Ap(t)n,V)-1.p1|n € S} is equicontinuous on any compact subinterval J C R;

(P4) The family {Ap(t)}ier is uniformly bounded, i.e., there is a constant
ks > 0, which s independent on t € R, such that

lAp(E)nll-1p < EslinllL, Vi € Yi; (30)
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(P5) There is a constant kg > 0, which does not depend on t € R, such that
(Ap(t)n.n)-1.pa > Kellnll? . Vn € Yi; (31)

(P6) There is a constant k7 > 0, which does not depend on t € R, such that
(Ap(t)n — Ap)0,n =) -1p1 > kelln =95 . ¥ oevi.  (32)

Proof.
(P1): Inequality (29) is satisfied if for each ¢t € R,
(A(n =) + Blp(t,Cn) — ¢(t,CY)], P(n—=17))120 <0, VndeYr. (33)
If we put in (17) y = n—19 and £ = ¢(t, Cn) — ¢(t, CY) we receive the inequality
(A(n =) + Blo(t,Cn) — ¢(t, CI)], P (n—17))-1.
+(p(t, Cn) — o(t, V) ((Cn — CV) — (p(t, C) — o(t, CV))rg ")
< —e(lln =7 + (o(t,Cn) — o(t,CV))?) . (34)
From (25) it follows that the second term on the left-hand side of (34) is non-
negative. Thus (34) implies (33).
(P2): This is equivalent to the property that for each t € R

§ = (Aln+ &y) + Bo(t,C(n + &y)), PU)-11

is continuous. The last property is satisfied because of (6) the boundedness of
P and the continuity of ¢.

(P3): We have to show that for any ¢ € ¥; and any bounded set S C Y7 the
family of functions {(An+ By(t,Cn), PY)_11|n € S} is equicontinuous on any
compact subinterval J C R. But this follows from (6), the boundedness of P,
and the equicontinuity of (-, ) on any compact set K1 x Ko C R x R.

(P4): This is true because the family {A(t)}ier is uniformly bounded, i.e.,
there is a constant kf such that

A1 < Ksllnlle, ¥neYi. (35)
Really, we have for each n € Y7 and t € R

[A@)n]|-1 = [|[An + Bo(t, Cn)||-1 < [|[Allzon v ollnll + 1Bl ey |, Cn)l.
(36)
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The value |@(t,Cn)| in (36) can be estimated from (26) and (6) by
|o(t, Cn)| < kolCn| < kollCll v myllnllo - (37)
Using now (2), we see that (36) and (37) imply (35).

P5): This property is shown if there is a constant k; > 0, which does not
6
depend on t, such that

(An+ Bo(t,Cn), Pn)_11 < —ki|nlli, Vnev. (38)

In order to show (38) we put in (17) y = n and £ = ¢(t,Cn) and receive the
inequality

(An + Be(t,Cn), Pn)-11+ ¢(t,Cn)(Cn — ¢(t,Cn)ry") < —elnllf . (39)

The second term in the left-hand side of (39) is non-negative because of (26).
Thus (39) implies (38).

(P6): Again it is sufficient to show that there is a constant k% > 0, which does
not depend on ¢ € R, such that

(A(n =) + Ble(t, Cn) — p(t, CO)], P(n—0))-11 < —kzlln = 9]5,
Vn,deYr. (40)
If we put y =n — 9 and £ = ¢(t,Cn) — ¢(t,CY) in (17) we get the inequality
(34). Using (25) we receive from (34) the inequality
(A(n =) + Ble(t, Cn) — p(t, CI)], P(n—0))-11 < —eln =7,
Vn, ey, VteR.  (41)

From (2) we have the estimate
£
—elln =9l < —k—ll\ﬁ—ﬁH%, Vi, 0 €Y. (42)

Clearly, that (41) and (42) imply (40). H
Let us consider w.r.t. the Gelfand triple Y; C Yy p C Y_; p on the interval
J C R the equation

y = Apy + Bpo(t,Cpy) + f(t), (43)
where f € L2 (J;Y_1p).

loc

A solution of (43) is a function y € L2 (J;Y1) N C(J; Yy p) such that y €

loc

L% (J;Y_1p) and (43) is satisfied in a variational sense, i.e. for a.a. t € J

(y(t) — Apy(t) — Bpp(t,Cpy(t)) — f(t), n—y(t))-1p1 =0, VneYy. (44)

In this situation we have the following existence and uniqueness result ([3]).
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Theorem 3 Assume that the hypotheses (H1) — (HG6) are satisfied. Then
for any f € L2 (Ry;Y_1) and any yo € Yop there exists a unique solution
ye L (R; Y1) NC(Ry;Yop) of (44) such that y(0) = yo. Moreover, we have
for any T >0

[yl 207 < Ka(llfllz20,1v-10)s l190llo,p) (45)
and
Yoy < Kol fll2omy ) llwollo,p) (46)

where K1(+,+) and Ks(-,+) are continuous non-decreasing to each variable func-
tions.

Proof. Since P is bounded and f € L2 (Ry;Y;) we have f € L2 (R,;Y_q p).
According to Theorem 2 we have for the family {Ap(¢) }+cr, of operators (among
others) the properties (P1), (P2) and (P5). Thus w.r.t. the rigging Y7 C
Yo.p C Y_1 p the assumptions of the existence and uniqueness theorem from [3]
are satisfied and the assertion follows immediately. |

Lemma 1 Assume that (H1) — (H6) are satisfied.

a) Suppose that y;(i = 1,2) are two solutions of (44) with f = f; €
L2 (J;Y_1) (i = 1,2). Then for any s,t € J,s < t, the following estimate
15 valid:

1 " !
() = @l 4= [ nlr) = el ar

< / (1(r) = folr), Pln(r) — ga(r))-1adr (47)

b) Suppose that y;(i = 1,2) are two solutions of (44) with common f; =
fo=f on J. Then for any ty € J and allt > ty,t € J, we have the inequality

1 () = y2(O)llo.p < e g1 (t0) — ya(to)llo.r - (48)

where the constant kg > 0 depends only on the constants € from (17), ki from
(2) and from the operator norm of P.

Proof. a) For the difference y; — yo we derive from (44) for a.a. 7 € J the
equation

(1) = 92(7) = Alyr(7) = ya(7)] + B (7, Cyi(7))
=@ (1,Cp(1))] + ful7) = fa(7) . (49)
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Multiplying (49) with y1(7) — y2(7) w.r.t. the scalar product (-,-)o p and inte-
grating over |[s, t], we receive the equation

sl (7) = (M) e [, =
[ A7) = () + Blo(r. () = 5, Conlr))] Pla(r) = ()1
+ [ (Gl0) = £l0), Plonl) = salr ) (50

If we putin (17) y = y1(7)—y2(7), & = (7, Cy1 (7)) — (7, Cya(7)), and integrate
over [s,t] we get the inequality

[ (Aln(r) = (o) + Blotr, Con(7) = (7. Con()) Pl () = () -
+ [l Cn(r) = o(r. Conlr )] (Clun(7) = ()

— (7, Cya(7)) — (7, Cya(7))]rig )T < —8/2 ly1(7) = ya (7[5 d - (51)

The second integral on the left-hand side of (51) is by (H6) non-negative. Thus
we receive from (50) and (51) the inequality (47).

b) For f; = fo we get from (47) the inequality

1) =@l e [ ) - wlRdr<o. 62
From (1) it follows that on [s, t]
e'llya(m) = we()ll5.p < € lln(r) — w2(7)Il7, (53)
where £’ = m . Thus with m(7) := 3|ly1(7) — y2(7)|[§ p We get from (52)
and (53) the estimate
m(t) |l +2¢€ /tm(T) dr <0. (54)
Now Gronwall’s inequality gives the estimate (48) with kg = &’ H

Lemma 2 Let (H1) — (H6) be satisfied and let y, € L*(J; Y1) NC (J;Yyp) be
solutions of (44) with perturbations f, € L*(J;Y_1). Assume that

limy, o0 fr = f in L2(J;Y 1), lim, ooy = y in C(J; Yo p). Then y is a solution
of (44) with forcing function f.
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Proof. The result follows immediately from [11], Proposition 1.6, Ch. 3 and
Lemma 1.7, Ch. 4 , if we note that f, — f in L?(J;Y_;) implies that f, — f
in L?(J;Y_1 p). The last property results from the fact that for a.a. t € J we
have

Hf_an2_1P: sup |(f(t) _fn(t)an)—l,P:ﬂ

T 0w 71l
< sup 1f(t) = fu()||=1,pl| Pl
 0Aen; 7]

< | f) = ful®)ll-1.p-

Theorem 4 Assume that the hypotheses (H1) — (H6) are satisfied. Then for
any f € BS*(R;Y_q) there exists a solution y. € BS*(R;Y;) N Cy(R; Yo p)
of equation (44) and such a solution is unique. Moreover, the solution y,. is
exponentially stable in the whole in the norm of Yo p, i.e. there exist numbers
k19 > 0,k11 > 0 such that for any other solution y of (44) on [ty,00) and any
t >ty we have

ly(2) = g (Ollo.p < ko ey (t) — yu(to)lo.r (55)

Proof. To prove the existence of at least one solution y, on R we consider as
in [11] sequences {y,} of solutions. Define a solution y, € L2 ([-n,00); Y1) N

loc

C([—n,+00); Yy p) of equation (44) such that y,(—n) = 0. By Theorem 1 such
a solution is uniquely defined. Put

fult) = { AU

0 , t<n,

and extend y, by zero to the whole R. Then vy, is a solution of (44) with forcing
term f,. Estimate (47) gives on [s, t] the inequality

1 ; t t
Sl @l [ wltdr < [ Gup)madr. 60
From (56) and Lemma 1.1, Ch. 2 in [11] it follows that
i € BS(R; Y1) N Gy(R: Yo p),

and the sequence {y,} is bounded in this space, i.e. there is a constant ks > 0
such that forn=1,2,....

HynHCb(R;YQp) S k:12 (57)
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and
|ynlls2 < kia . (58)

In order to prove the existence of a solution it is by Lemma 2 sufficient to
establish the existence of the strong limit lim, . y, = y. in C(R; Y} p).

From Lemma 1 we have for all m,n € N the inequality

1 : t t
§Hyn - ymHg,P |S + 8/ Hyn - ym”%dT < / (fn - fmyyn - ym)—l,P;l dr . (59)

Since f,(7) = fi(7) = f(7) for 7 > —min{m,n} by using Lemma 1.3, Ch. 2,
of [11] we obtain from (59) that {y,} is a Cauchy sequence in C(R; Y} p).

By (57) and (58) its limit y, = lim,, o ¥, lies in BS?(R;Y;) N Cy(R; Yy p)
and so the existence of a solution is proved.

Let us show the uniqueness. Suppose that there are two solutions,
and y2, on R, such that yi(tog) # ya2(tp). Then from (48) it follows that
limy o ||y1(t) — y2(t)|lo.p = +o0. But this contradicts the boundedness of
and 5. The exponential stability in the whole characterized by the estimate
(55) follows from the forward estimate (48) stated in Lemma (1). |

The following lemma is a slight modification of Theorem 3.1, Ch. 3 and
Lemma 1.11, Ch. 4 from [11]. The proof is omitted.

Lemma 3 Under the assumptions (H1) — (H6) the operator
Fy: BS*(R;Y_;) = C (R; Yy p)

18 continuous and the operator
F,: BS*(R;Y_1) — Cy(R; Yo p)

with g € BS*(R;Y_1) is locally Holderian with exponent 1.

(H7) For any bounded set S C R the family of functions {o(-,w)|w € S} is
uniformly almost periodic.

Theorem 5 Suppose that the assumptions (H1) — (HT) are satisfied. If
f € S*R;Y_1) then the unique bounded solution y. of (44) belongs to
CAP(R; Y p) N S%(R; Vi),

Proof. The operator-valued function t — Ap(t) with Ap(t)y = —Apy—
Bpp(t,Cpy),y € Y1, is extended to Rp as a function continuous in the dy, o-
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metric. The function f(-+s) is Bohr a. p. in s and hence can also be extendend
to a continuous function on Rp with values in BS*(R;Y_4 p).

Now consider the family of equations depending on the parameter ¢ € Rp
d
at

Theorem 2 is applicable to any of these equations. Therefore, for any ¢ € Rp
there is a unique solution y, € BS*(R;Y1)NCy(R; Yy p). By uniqueness we have

(t) = Apyy(t) + Bro(t +q, Cpy,(t)) + f( +q). (60)

Y() =y(-+q), VgeRCRg. (61)
Let F|, be the inverse of the operator corresponding to equation (60). Then

Y = Foolf (- +9) — Bpo(- + 9o, Cpyq) + Bpe(- + ¢, Cpy,)] . (62)
By Lemma 3 the set {y,} is bounded in the space BS?*(R;Y;). Hence, by (HT7),

Hm[Bp(- 4 q0)yq — Bp(- + @)y, = 0 (63)

in BQ(R ; Y_l’p).

By Lemma 3 F,, : BS?*(R;Y;) — Cy(R;Yyp) is continuous. This, the
representation (62) and (63) imply that ys is continuous in ¢ € Rp as an
element of C(R; Yy p). If we put y(q) := v,(0), ¢ € Rp, we obtain the continuous
extension of y(t) to Rp. Consequently, y € CAP(R;Yp p). In order to prove the
second inclusion we use the second part of Lemma 3. Then y, € BS*(R;Y])
depends continuously on ¢ € Rp. This together with (61) gives y € S%(R;Y}).

|

3 Control systems in Lur’e form with a Duffing type
nonlinearity

Let V1 C Vy C V_; be a Gelfand rigging of the real Hilbert space V), i.e. a
chain of Hilbert spaces with dense and continuous inclusions. Denote by (-, -)y,
and || - |[y,,7 = 1,0,—1, the scalar product resp. norm in V;(j = 1,0,—1)
and by (+,-)y_,y, the pairing between V_; and V. Let Ay € L(V1,V-1) be a
linear operator, by € V_1 a generalized vector, ¢y € Vy a vector and dy < 0 a
number. According to the vectors ¢y and by we introduce the linear operators
Cy € E(V(),R) and B, € [,(R, Vfl) by Cyv = (C(), V)VO, Yve)y, and

Bo& := &by, VE € R.
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Assume that ¢ : RxR — R and g : R — R are two scalar-valued functions.

Our aim is to study a system of indirect control, which is formally given as

v = Aov + bolo(t,w) + g(t)],

w = (co, )y, + dolo(t,w) + g(t)]. (64)
Let us demonstrate how (64) can be written as a standard control system. Con-
sider for this the Gelfand rigging Z; C Zy C Z_1, in which Z; := V; x R,
j = 1,0,—1. The scalar product (-,-)z in Z; is introduced as
((Vl,wl), (VQ,’UJQ))Zj = (v1,12)y, + wiwy, where (v, wy), (v2, we) € Z; are arbi-

trary. The pairing between Z_; and Z; is defined for (h,&) x V_; x R = Z_4
and (v,¢) € V1 x R = Z; through

((hn 5)7 (V7 g))Zf17Z1 = (h7 V)Vfl,Vl +<&s.

Let b:= [Zﬂ € Z 1 and ¢:= [(f] € Zy. Suppose further that the operators

C e L(Zy,R) and B € L(R, Z_,) are given as
Cz=(¢,2)y, VzelZ,, B&=¢b, VEeR,

and the operator A € £(Z;,Z_1) is defined as
. Ay 0

A= :
[Co 0]

i =Az+ Blp(t,w)+gt)], w=Cz, (65)

Consider now the system

which is equivalent to (64) through z = (v,w). If —oco < T} < Ty < 400 are
arbitrary, we define the norm for Bochner measurable functions in L*(T, Ty; Z;),

j — 1707 _17 by
T 1/2
lotai= ([ Il de) (6)

T

Let W(Ty,Ty; Z1, Z_1) be the space of functions z such that z € L*(Ty,Ty; Z1)
and 2 € L*(Ty,Ty; Z_1), equipped with the norm

1/2
5-1) " (67)

21+ 112

Izl mzz0) = (I

Let us introduce the following assumptions (A1) — (A6) about the operator
Ay € L(V1,V_1), the vectors by € V_1 and ¢y € Vp, and the functions ¢ and g.
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Note that (A1) — (A6) for (64) are related to the assumptions (H1) — (H6)
for (65).

(A1) For any T' > 0 and any f = (f1, f2) € L*(0,T;V_1 x R) the problem
b= A + filt)., (68)
w = (co, v, + falt) , - (¥(0),w(0)) = (v, wo)

is well-posed, i.e. for arbitrary (v, wy) € Zo, (f1, f2) € L*(0,T;V_; x R) there
exists a unique solution (v, w) € W(0,T; Z1, Z_4) satisfying (68) in a variational
sense and depending continuously on the initial data, i.e.

(v, 1U>||12/V(0,T;Zl,z_1) < k13|\(Vo,wo)|\%}oxR + k14‘|(f1,f2)”§,—1 3 (69)

where k13 > 0 and k14 > 0 are some constants .
(A2) There is a A > 0 such that Ay + Al is a Hurwitz operator .

(A3) For any T > 0, (vg,wp) € Z1 X R, (2, ) € Z1 X R and (f1, f2) €
L*(0,T; V1 x R) the solution of the direct problem (68) and the solution of the
adjoint problem

v =—(AJ + XD)v + fi(t),
0= —Cf — A+ fot), (70)

£:

are strongly continuous in ¢ in the norm of V; x R.

(A4) The pair (A, by) is L*-controllable, i.e. for arbitrary vy € V, there exists
a control a (-) € L?(0, 00; R) such that the problem

v=Aw+ba, v0)=uy
is well-posed in the variational sense on (0, 00) .
Introduce by
X(p) = (5, (A5 —pI)705) 5, p € p(Af)
the transfer function of the triple (A§, b, c§) .
(A5) Suppose A > 0 and k; > 0 are parameters, where A is from (A2). Then:

a) Ao +Re (—iw — ) x(iw—A) + 51 | x(iw—A)—do > <0, Yw>0. (71)
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(A6) The function ¢ : R x R — R is continuous and ¢(¢,0) = 0, V¢t € R. The
function g : R — R belongs to L (R;R). There are numbers x; > 0 (from

loc

(A5), 0 < Ky < kg < +00,q1 < ¢2 and (o < (3 such that:

a) Q< g(t) <q, (72)

for a.a. t from an arbitrary compact time interval ;

b))  (B(tw) +a)(w—G) < mi(w = G), 1=1,2 (73)
VteR, Yw € [(,G];

) ra(wr —wa)® < (Pt wi) — G(t,wa))(wi — wa) < kz(wy —wa)?,  (74)

VteR, Ywy,ws € (o, ]

We assume in the next theorem that the solutions of (2) are for every T > 0
elements of the space W(0,T; Z1, Z_1). Then we show the existence of solutions
with initial states from a certain set.

Theorem 6 Assume that for system (64) the hypotheses (Al) — (AT) are
satisfied. Then there exists a closed, positively invariant and convex set G such
that

{(vyw) eV xR|v=0,we[l,G]} G C{(yv,w) ey xR|w e [§2,Cl]% )
75

In order to prove this theorem we need some auxilary results.

Suppose that Y7 C Yy, C Y_; is a Gelfand rigging of Yg, || - ||;, (-, -); are
the corresponding norms and scalar products, respectively, and (-, -)_; is the
pairing between Y 1 and Y;. Consider the linear system

y = Ay7 w = (C7 y)O ) (76)
where A € L(Y1,Y_1) and ¢ € Y;.

Assume that for each yy € Y| there exists a unique solution y(-,1o) of
(76) in W(0, c0) satisfying y(0,y9) = yo. In the sequel we need the following
assumption.

(A7) The space Yy can be decomposed as Yy = Y;" @Y, such that the following
holds:
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a) For each yy € Y;" we have tlim y(t,y0) = 0. For each yy € Y, there exists
—00

a unique solution y_(t) = y(t,yy) of (76), defined on (—o0,0), such that
7flim y—(t) =0 and (c,y(t,y0))o =0, Vt > 0, if and only if yy = 0.
——00

b) For each yy € Y," the equality (¢, y(t,40))o = 0, V¢ < 0, holds if and only
if yo = 0. For each yy € Y, the equality (c,y(t,v0))o =0, V¢ < 0, holds if
and only if yy = 0.

Remark 1 Assumption (A7) a) means that we assume for the linear system
(76) the decomposition of Y; in y = 0 into a stable subspace E* = Y;" and an
unstable subspace E* = Y. Assumption (A7) b) characterizes the identifia-
bility in the sense of Kalman of the pair (4,c) on Y;" and Y, , respectively.

In the following L > 0 for a linear operator L € L(Z),Z a Hilbert space,
means that L is positive, i.e. (z,Lz)z >0, Vz € Z\{0}; L < 0 means that
— L is positive.

Lemma 4 Suppose that system (76) satisfies (AT) and there exists a linear
continuous operator P : Yy — Yy, P* = P, such that for any s < t and any
solution y(-,yo) of (76) we have with V (y) := (y, Py)o,y € Yo,

V(y(t, 1)) — V(y(s.m0)) < - / (c.y(r.30))2 dr . (77)

Then Py+ >0, ie., (y,Py)o>0 foral yeY;"\{0} (78)
and Py- <0, e, (y,Py) <0 forall yeY;\{0}. (79)
Proof. Let yy € Y;"\{0}. Then by (A7) a) we have lim;_, y(¢, yo) = 0 and,

due to the boundedness of P, lim; o V(y(t,40)) = 0. It follows from (77) for
s =0 and t — oo that

Vi - [ (eyltrm)dr 80
0
Using again (A7) a), we conclude from (80) that
Viw) = [ (eotmm)li dr > 0.
0

Thus (78) is shown.
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Let now yp € Y, \{0}. Then by (A7) b) we have lim;,_ y(t,y0) = 0 and,
consequently, lim;, o V(y(t,yo)) = 0. If we take in (77) s — —oo and t — 0,
we recelve

Vi) < — / (. y(r.90))2 dr (s1)

o

Assumption (A1) b) implies that fi)oo(c,y(T, Y0))5 dr > 0. Thus we conclude
from (81) that V (yy) < 0. This proves (79). |

The next lemma is concerned with the separation of quadratic cones by
special functionals. Let us recall some definitions. Assume that H is a Hilbert
space with scalar product (-,-). A cone in H is a set C C H,C # &, such that
uweC,( € Ry imply that (u € C. It is easy to see that a cone C in H is convex
if and only if u,v € C imply that u + v € C.

Suppose that P € L(H), P = P*. Then the set C := {u € H | (u, Pu) < 0}
is a cone which is called by us quadratic.

Assume that there is a decomposition H = H* @ H~ such that Pg+ > 0
and Py~ < 0. Then the quadratic cone {u € H | (u, Pu) < 0} is called by us
quadratic cone of dimension dim H ™.

Lemma 5 Suppose that:

1) Y1 C Yy C Y1 is a Gelfand rigging of the Hilbert space Yy with scalar
products (-, -);, corresponding norms || - ||;,i = 1,0, —1, and pairing (-,-)_1,
between Y_1 and Y7,

2) There is an operator P € L(Y_1,Yy) N L(Yy, Y1), self-adjoint and positive
m Yy such that

C:={yeYy|(y,Py)o <0} s an 1-dimensional quadratic cone;

3) There are vectors h € Y_1 and r € Yy such that

2(h, Py)-11=(r,y)o, Yy €Y1 (82)
and (h,r)-11 <0.
(83)
Then we have
intCN{yeY1|(y,r)o=0} =9. (84)
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Proof. Suppose that (83) is not true, i.e., assume that there is a yy € Y7,
yo # 0, such that

(o, Pyo)o <0 and  (yo,7)o =0 (85)
Since C is a cone, we have &yy € C, V& € R, and
span{yo}\{0} C intC. (86)

o

Since the inclusions Y; C Yy C Y_; are dense, there exists a sequence {h, }>° ,,

h, € Y1 (n=1,2,...) such that h,, — h for n — oo in the norm of Y_;.

Because of (82) we have
2 (hyp, Php)o — (ryhy)o for n— oo (87)

Since (-, )11 is the unique extension by continuity of the scalar product (-, -)g
defined on Yy x Yj, it follows from (83) that there are numbers gy > 0 and
no € N such that

(T,hn)()S —e9 < 0, Vn >ng. (88)

Thus for each g1 € (0,&¢) there is an n; € N such that
4 (hy, Phy)o < —€y, VYn>ng, (89)

where €] :=v —¢;.
From (82) we conclude that 2 (h,, Pyo)o — (r,y0)o = 0 for n — oo. Thus
we have for each €9 > 0 a number ny € N such that

2|(hn,Py0)0| < &9, Vn>no. (90)

Take now n := max{ng, ni,ne}. Then the properties (87) — (90) are satisfied
for n > n. By (85) and the inequality (9 — €1) > 0, we can choose the number
g9 in (90) so small that

— (Yo, Pyo)o (g0 — 1) —e5 > 0. (91)

Let us show now that the plane IT := {&yp+<¢2h; | €, ¢ € R}, with exception of
the point 0, is contained in int C. This will be a contradiction to assumption 2)
of the theorem if we show that dim II = 2. Suppose that this is not the case.
This means that there is a & # 0 such that

oo = ha - (92)
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It follows from (88) and (92) that (r,hz)o < 0, and from (85) and (93) that
(r,hi)o = 0. This contradiction shows that dim II = 2. It remains to demon-
strate that IT\ {0} C int C. Consider for arbitrary &,¢ € R with €2+ ¢%2>0 the
expression

(Eyo+<s2ha, P(Eyo+<2ha)),
= & (yo, Pyo)o + 45 (ha, Pyo)o + < 4(ha, Pha)o (93)
Under our conditions the quadratic form (93) is negative definite. Really, from
(85) we have (yg, Pyo)o < 0 and from (89) 4 (h, Phy)o < 0. Thus by the Routh
criterion the negative definiteness of the form is shown if the determinant D,
associated to this form, is positive. The straight forward computation of D and
the use of (89) — (91) gives the estimates
D = (y()) PyO)O 4 (hﬁa Phﬁ)(} - (4hﬁ7 PZUO)%
> —(y0, Pyo)o(e0 — 1) — €5 > 0.
|

Remark 2 Lemma 5 can be considered as generalized lemma about the
separation of cones ([2, 5, 7, 13]). Really, in the finite-dimensional case we have
Vi=Yy=Y,=R"(,)11=(,")o= () the Euclidean inner product and
P = P* det P # 0, a regular symmetric n X n matrix. Assumption (82) in
Lemma 5 states that there are vectors h,r € R" such that

2(h,Py)=(r,y), VyeR". (94)

It follows from (94) that
2h =P r. (95)

Equation (95) shows that assumption (83) of Lemma 5 takes the form
(r,P7'r) <0. (96)

If (96) is satisfied, it follows from Lemma 5 for the 1-dimensional quadratic
cone C = {y € R"|(y, Py) < 0} that

intCN{y eR"|(y,r) =0} =92 . (97)

But this is exactly the sufficient part of the statement in [5].

The following lemma from [2] will be used in the proof of Theorem 6.

Electronic Journal. http://www.math.spbu.ru/diffjournal 60



Differential Equations and Control Processes, N 4, 2012

Lemma 6 Suppose that tg > 0, k(-), R(-), Vi(-), U;(+) : [to,0) — R,
1 = 1,2, are continuous functions and 3, > 3 are numbers such that the
following conditions are satisfied:

1) In some neighborhood of the set
Ty :={t € (tg,00) | R(t) = 21, V;(t) <0, i=1,2, Uy(t) <0}
the function R is non-increasing, and in some neighborhood of the set
Ty :={t € (tg,0) | R(t) = 20, Vi(t) <0, i=1,2, Uy(t) > 0}
the function R is non-decreasing.
2) In some neighborhood of the set
T3 :={t € (tg,00) |30 < R(t) <31, Vi(t) <0, i=1,2, Uy(t) =0}
the function Uy is non-increasing, and in some neighborhood of the set
Ty :={t € (ty,00) |30 < R(t) < 3e1, Vi(t) <0, i=1,2, Us(t) =0}
the function U, is non-decreasing.

3) On the set {t € (ty,0) | 30 < R(t) < 31} the function k(-) is non-negative
and the functions t — Vi(t) + f(f k(T)Vi(T)dT,i = 1,2, are non-increasing.

4) R(to) € [302, 5], Vi(to) <0, i=1,2, Ui(to) <0, Usz(to) > 0.

Then for all t > ty it holds R(t) € [, 51|, Vi(t) <0, Ui(t) <0, Us(t) > 0.

Proof.[Proof of Theorem 6] Let us consider system (64) in the form (2).
The hypotheses (A1), (A3), (A4), (A6) ensure ([8]) that there exists a linear
continuous operator P € L(Z_1, Zo)NL(Zy, Z1), selfadjoint in Zy, such that the
quadratic form in Z; x R

W(z,€) :==2((A+ M)z + b8, P2) 7, 7 + (k1(6,2) 7z, — €) (¢,2) 7,
satisfies the inequality
W(z,§) <0, VzeZ, VEeR. (98)
Putting £ = 0 in (98), we deduce
2((A+ Xz, P2)z 7, < —ra1(é, 2)y., Vz€Z. (99)
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By (A2), there exists a splitting Zy = Z; @ Z; with dim Z; = 1 such that
(A7) is satisfied for Y; = Z;,7 =1,0,—1, A= A+ X[ and ¢ = ¢. From (99) it
follows that for any zy € Zj the solution z(-) of

= (A+ M)z, 2(0) =z (100)

satisfies inequality (77) with V(z) = (2, Pz)z, and ¢ = ¢ By Lemma 4 we
conclude that

A A

Thus the set K := {z € Zy|(z,Pz)z

, < 0} is a 1-dimensional quadratic
cone. It follows also from (98) that

2(b,Pz)y 7, =(¢,2)z,, VYz€Z. (102)

Clearly, that in the pairing (-,-)z_, z, we have

~

(b, é)Zfl,Zl =K <0. (103)

By (101) — (103) all hypotheses of Lemma 5 are satisfied with respect to the
rigging 71 C Zy C Z_1, the vector r = ¢ and the generalized vector h = 0. Thus
we have from this lemma the relation

ntKN{zez|(z2)=0=0. (104)

Take now the points 21,20 € Vi X R as z; = (0,(1) and 23 := (0,(2). It is clear
that
(é, Zl)Zo = Cl ; AZl = 0, (é, Z2)Zo = gg, AZQ =0. (105)

Define along an arbitrary solution z(-) of (2) the functions
Vi(t) == (2(t) — 2, P(2(t) = 2))z, ,
Ui(t) = (& 2(t) = 21)z,, i = 1,2,
and introduce the set
G={z€Z1|(z—2,P(z—2))z <0,i=1,2, (&,2)z € [(,G]}. (106)

It follows from P > 0, (101) and (104) that the set G is convex and bounded.
Let us show that G is positively invariant for the solutions of (2). For this
we applicate Lemma 4 for a given time interval [ty,00), the functions k(t) =
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2\, Vi(t) = Vi(t), Ui(t) = U;(t) and the numbers 36, = wy, 365 = wy. From (98) it
follows that fori = 1,2, ¢ty < s <, along the solution z(¢) and w(t) = (¢, 2(t))z,

<= [ Iatwir) = )~ (67, 0(r)) + )] (w(r) = G)ir
= [ o) - a)wtr) - Gr (107)

From (A6) we conclude that for : = 1,2 and all t > s > ¢, such that
w(T) € [CQ)Cl]?T € [Sat]n
t
[ bt - 6) = @ wlr) + a)lwlr) - G dr > 0

and / (9(7) — q;) (w(T) = ;) dr <0. (108)

Thus (107) and (108) imply that for i = 1,2 and such t > s > ¢, we have

t
‘71(7') ]Z, + 2)\/ Vi(r)dr <0,

i.e., the functions ¢t — V )+ 2\ fo 7) dt are non-increasing. That is, condi-
tlon 3) of Lemma 4 is satlsﬁed Slnce z(to) € g, condition 4) of this lemma is
also satisfied.

In the following T;,7 = 1, 2, 3, 4, are the sets which are defined in Lemma 6.
It follows from (104) that if ¢ € Ty then z(¢) = z;. Thus we have by (64) and
(3.9a) that

w(t) = do[o(t, w(t)) +9(t)] < 0. (109)
In the same way one shows that w(t) is non-decreasing in a neighborhood of
T,.

From (104) and the inequality dy = (I; ¢)z_,.z, < 0 it follows that for t € Tj
) =

(1
we have z(t) = 2z, and this by (106) and (A6)

U(t) =(2(1), )72 = (A=(t) + b [6(t, w(®)) + g(1)], D)7,
(b,&) 7,20t w1) + ()] <0 .

Similarly one can show that Us(t) is non-decreasing near T;.
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Thus we have verified all hypotheses of Lemma 6. By this lemma it follows
that G is positively invariant. It remains to show the inclusion (75). Let z =
(0, w) € V; xR with w € [wsy, w;]. Since (¢, )z, = w, the inclusion (75) is shown
if

(z—2, P(z—2))z, <0, i=12. (110)
From (104) and (105) it follows that for (110) it is sufficient that Az = 0 implies
that (z, Pz)z, < 0. But the last inequality results from (99) since

2Nz, P2)z, < —k1(¢, z)5 <0.

Now we prove for (64) the existence of solutions in W(0,T;V; xR, V_; xR)
and the existence of at least one solution in Cy(R;Vy x R) N BS*(R;V; x R).
We need for this the a priori inclusion given by Theorem 6 and two additional
assumptions.

(A8) The imbedding V; C V) is compact.

(A9) The family of operators {A(t)}ser, A(t) - Z) — Z_y, given by
A(t)z == —Az — B¢(t,Cz),Vt € R,Vz € Z;, is monotone on the segment
{z€ Z,|Cz € [C,C1]}, ie. for any t € R we have

(A(t)n - A(t)ﬁ7 n— 19)2172—1 > 07 \v/n7 S Zl )
such that Cn, C0 € [, G - (111)

There exists a continuous function gz~5 : R x R such that §5|R><[g2,<1] = ¢ and
(111) with ¢ instead of ¢ is satisfied for all n,d € Z;.

Remark 3 1f ¢ has the form ¢(t, w) = ¢1(t)p2(w) with ¢; and ¢ continuous,
it is clear that such a monotone extension exists.

Theorem 7 Assume that for system (64) the assumptions (Al) — (A9) are
satisfied. Then it holds:

a) For any g € BS*(R;R) and any (vy,wy) € G, where G 1is the associated
positively invariant set, there exists a solution (v, w) € W(0,00; V1 xR, V_1 xR)
of (64) such that (v(0),w(0)) = (v, wo).

b) For any g € BS*(R;R) there exists for (64) a solution
(v, ws) € Cy(R;Vy x R) N BS*(R; V; x R). (112)
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Proof. Consider system (64) written in the form (65). Introduce the new
nonlinearity ¢ : R x R — R given by assumption (A9). Thus we have the
auxiliary system

= Az + Blp(t,w) +g(t)], w=Cz (113)

on the Gelfand triple Vi xR C Vy xR C V_; x R. It follows from (AS8) that the
embedding V; x R C Vy x R is compact. Under these conditions it was shown
in [11] (Theorem 4.3, Ch. 3) that the above statements a) and b) are true for
system (112) for all (v, wg) € Vo x R. Thus the positive invariance of G for
(64) implies that solutions of (112) with initial states from G are also solutions

of (64). The forward solutions of (64) in G can be used to construct for any
g € BS?(R;R) a bounded solution of (64) which satisfies (112). |

(A10) Any continuous function ¢ which satisfies (3.9a) and (3.9b) has a con-

tinuous extension to a function ¢ : R x R — R which satisfies (3.9a) and (3.9b)
for all (t,w) € R x R.

Theorem 8 Assume that for system (64) the assumptions (A1) — (A9) are
satisfied and in addition to this the following holds:

A B
(i) The operator | =" o from L(Zy,7_1) is Hurwitz ;
0 Kado
(i)
1 w) —d
fRe— X =do oy e (114)
K3 — K2 iw + ko(x(iw) — do)

Then we have:

a) For any g € BS*(R;R) system (64) has a unique solution (vy,w,) inside
G which satisfies (112) and this solution is exponentially stable inside G.

b) Let the families of functions {o(-,w) |w € [C, 1]} and {(-,w)|w € S},
where ¢ is from (A9) and S C R is an arbitrary bounded interval, be uniformly
Bohr a.p.. Then for any S*-a.p. forcing function g the unique in G bounded
and exponentially stable solution (v.,w,) is Bohr a.p. .

Proof. Consider in the Gelfand rigging structure Z; C Zy C Z_; the system

A A ~ A~

i=Az+ Blo(t,w)+g(t)], w=Cxz, (115)
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where gg is the monotone extension of ¢ given by assumption (A10). Introduce
the new nonlinearity

o(t,w) :=¢(t,w) —rkow, teR weR. (116)
Then system (115) can be written with w = Cz and f(¢t) := Byg(t) as
2= (A + roC)z + Bo(t,w) + f(t). (117)
Note that ¢ satisfies the inequality

0< (¢(t, wl) — ¢(t, wz))(wl — UJQ) < (/433 — /@)(wl — ’LUQ)2, Vi, wy,wy, €R.
(118)
For system (117) with a nonlinearity of the type (118) we can apply Theorems
4 and 5. According to Theorem 4 there exists a Gelfand rigged chain

Z CZoyp CZap (119)

with the property: For any f € BS2(R; Z_,) there is for (117) an exponentially
stable in the whole solution z.. € Cy(R; Zyp) N BS*(R, Z;). Theorem 5 says
that for Bohr a.p. f and uniformly S%-a.p. functions ¢ this solution is Bohr
a.p. .

From Theorem 7 it follows that equation (117) has a bounded solution
ze = (Ui, wy) w.r.t. the rigging Z; C Zy C Z_1. But z, is also a solution w.r.t.
the rigging Z; C Zyp C Z_1 p. By uniqueness we have z, = z.,. Thus

Czn(t) € [0, ¢, VEER. (120)
Inclusion (120) implies that z,.. is also a solution of (64) and this solution is
exponentially stable inside G. |
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