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Abstract.

We investigate control systems as variational equations in non-standard chains
of rigged Hilbert spaces. Monotonicity properties of nonlinearities are intro-
duced with respect to such riggings generated by Lyapunov operators and in-
variant cones. Sufficient frequency domain conditions for boundedness and the
existence of Bohr and Stepanov almost periodic solutions are derived. As an
example we consider equations with Duffing-type nonlinearities and almost pe-
riodic forcing terms.

1 Introduction

Let us introduce some function spaces. Suppose (E, ‖ · ‖E) is a Banach space.

If J ⊂ R is an interval, denote by C(J ;E) the space of all continuous
functions from J to E, endowed with the topology of uniform convergence on

1Supported by DAAD.
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compact sets. If G = R or G = R+ the space Cb(G;E) is the subspace of
C(G;E) of bounded functions equipped with the norm

‖f‖Cb
:= sup

u∈G
‖f(u)‖E .

The Banach space of Stepanov bounded on J = R or J = R+ functions (of
exponent p = 2) is the space BS2(J ;E) which consists of all functions f ∈
L2

loc(J ;E) having finite norm

‖f‖2
S2 := sup

t∈J

∫ t+1

t

‖f(τ)‖2
E dτ .

A subset S ⊂ R is relatively dense if there is a compact interval K ⊂ R such
that (s+K)∩S 6= ∅ for all s ∈ R. A function f ∈ Cb(R ;E) is said to be Bohr
almost periodic if for any ε > 0 the set

{τ ∈ R | sup
s∈R
‖f(s+ τ)− f(s)‖E ≤ ε}

of ε-almost periods is relatively dense in R.

For a function f ∈ L2
loc(R, E), put

f b(t) := f(t+ w), w ∈ [0, 1], t ∈ R.

Function f b(t) is regarded with values in the space L2(0, 1;E). Then

BS2(R;E) = {f ∈ L2
loc(R;E)|f b ∈ L∞(R;L2(0, 1;E))}

and, moreover, ‖f‖S2 = ‖f b‖L∞. A function f ∈ BS2(R;E) is called an almost
periodic function in the sense of Stepanov and of exponent 2 (abbreviated S2-
a.p.) if f b ∈ CAP (R;L2(0, 1;E)). In this case the ε -almost periods of f b are
called the ε-almost periods of f . The space of S2-a.p. functions with values in
E is denoted by S2(R;E). Obviously, CAP (R;E) ⊂ S2(R;E).

2 Control systems with monotone nonlinearities

Consider the Gelfand rigging of a real Hilbert space Y0, i.e. a chain

Y1 ⊂ Y0 ⊂ Y−1 (1)

in which Y1 (“positive” space) and Y−1 (“negative” space) are further real
Hilbert spaces and the inclusions are dense and continuous. Let (·, ·)i and
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‖ · ‖i, i = 1, 0,−1, denote the scalar product and the norm in Yi, respectively.
Continuity of the inclusions means that there are constants k1 > 0 and k2 > 0
such that

‖y‖0 ≤ k1‖y‖1 , ∀ y ∈ Y1 (2)

and
k2‖y‖−1 ≤ ‖y‖0 , ∀ y ∈ Y0 . (3)

Suppose that the rigging (1) – (3) is realized in the following sense ([1, 15]).
Assume that from the inclusion chain (1) only Y1 ⊂ Y0 is given and (2) is
satisfied, for simplicity, with k1 = 1. We introduce on Y0 a second norm by

‖y‖−1 := sup
0 6=η∈Y1

|(y, η)0|
‖η‖1

(4)

and denote by Y−1 the completion of Y0 with respect to this norm. Then Y−1

can be taken as third space in the Gelfand rigging (1) (see [1, 15]). This space
can be considered as dual to Y1 with respect to Y0, i.e. when the duality of Y1

and Y−1 is written in terms of Y0. Extending by continuity the function (u, v)0

onto Y−1 × Y1, we get the pairing between Y−1 and Y1, i.e. the bilinear form
(·, ·)−1,1 on Y−1 × Y1 which coincides with (·, ·)0 on Y0 × Y1 and which satisfies
the inequality

|(h, y)−1,1| ≤ ‖h‖−1‖y‖1 , ∀ h ∈ Y−1, ∀ y ∈ Y1 . (5)

With respect to the chain (1) we consider the three linear operators

A ∈ L(Y1, Y−1) , B ∈ L(R, Y−1) , C ∈ L(Y0,R) . (6)

Together with the operator A ∈ L(Y1, Y−1) we also need the adjoint with
respect to Y0 operator A+ ∈ L(Y1, Y−1) which is given by the relation ([1])

(Ay, η)−1,1 = (A+η, y)−1,1 , ∀ y, η ∈ Y1 . (7)

If A+ = A the operator A is called self-adjoint with respect to Y0. The adjoint-
ness with respect to Y0 can be introduced similarly for linear operators acting
between other spaces in the chain (1).

The construction of some auxilary evolutionary variational equation is based
on the following function spaces which we shortly introduce.

If −∞ ≤ T1 < T2 ≤ +∞ are two arbitrary numbers, we define the norm for
Bochner measurable functions ([15]) in L2(T1, T2;Yj) , j = 1, 0,−1, by

‖y‖2,j :=

(∫ T2

T1

‖y(t)‖2
j dt

)1/2

. (8)
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Let W(T1, T2) denote the space of functions y such that y ∈ L2(T1, T2;Y1) and
ẏ ∈ L2(T1, T2;Y−1) equipped with the norm

‖y‖W(T1,T2) :=
(
‖y‖2

2,1 + ‖ẏ‖2
2,−1

)1/2
. (9)

By an embedding theorem ([10, 15]) one can assume that any function from
W(T1, T2) belongs to C(T1, T2;Y0).

Throughout the paper we use the following assumptions about the operators
A,B,C.

Denote for −∞ ≤ T1 < T2 ≤ +∞ by L2(T1, T2;Yj) with j = 0, P and
j = −1, P the Bochner measurable functions for which the norm ‖ ·‖2,j, defined
by (8), is finite. Let WP (T1, T2) be the space of functions such that

y ∈ L2(T1, T2;Y1) and ẏ ∈ L2(T1, T2;Y−1,P ) ,

equipped with the norm

‖y‖WP (T1,T2) := (‖y‖2
2,1 + ‖ẏ‖2

2,−1,P )1/2 .

(H1) For any T > 0 and any f ∈ L2(0, T ;Y−1) the problem

ẏ = Ay + f(t) , y(0) = y0 (10)

is well-posed, i.e. for arbitrary y0 ∈ Y0, f ∈ L2(0, T ;Y−1) there exists a unique
solution y ∈ W(0, T ) satisfying (10) in a variational sense and depending con-
tinuously on the initial data, i.e.

‖y(·)‖2
W(0,T ) ≤ k3‖y0‖2

0 + k4‖f(·)‖2
2,−1 , (11)

where k3 > 0 and k4 > 0 are some constants.

(H2) The operator A is Hurwitz, i.e. any solution of

ẏ = Ay , y(0) ∈ Y0 , (12)

is exponentially decreasing for t→ +∞.

(H3) The operator A ∈ L(Y1, Y−1) is regular ([8, 9]), i.e. for any T > 0,
y0 ∈ Y1, zT ∈ Y1 and f ∈ L2(0, T ;Y1) the solution of the direct problem (10)
and the solution of the adjoint problem (understood in the above sense)

ż = −A+z + f(t) , z(T ) = zT , (13)
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are strongly continuous in t in the norm of Y1.

(H4) The pair (A,B) is L2-controllable, i.e. for arbitrary y0 ∈ Y0 there exists
a control α(·) ∈ L2(0,∞;R) such that the problem

ẏ = Ay +Bα , y(0) = y0 (14)

is well-posed in the variational sense on (0,+∞).

Let us denote by Hc and Lc the complexification of a linear space H and a
linear operator L, respectively, and introduce by

χ(p) = Cc(Ac − p Ic)−1Bc , p ∈ ρ (Ac) (15)

the transfer operator function of the triple (Ac, Bc, Cc).

(H5) There exist numbers κ0 > 0 and ε > 0 such that

1

κ0
+ Reχ(iω) > ε , ∀ ω ∈ R . (16)

Theorem 1 Assume for the linear operators A ∈ L(Y1, Y−1), B ∈ L(R, Y−1)
and C ∈ L(Y0,R) that the assumptions (H1) – (H5) are satisfied. Then there
exists an operator P ∈ L(Y−1, Y0) ∩ L(Y0, Y1), self-adjoint and positive in Y0,
and a number ε > 0 such that

(Ay +Bξ, Py)−1,1 + ξ(Cy − ξκ−1
0 ) ≤ −ε(‖y‖2

1 + ξ2), ∀ (y, ξ) ∈ Y1 ×R . (17)

Proof. Consider in Y1 × R the quadratic form F (y, ξ) = ξ(Cy − ξκ−1
0 ) and

their Hermitian extension F c(y, ξ) = Re(ξ∗Ccy) − |ξ|2κ−1
0 in Y c

1 × C. From
the Likhtarnikov-Yakubovich theorem ([8]) it follows that under the conditions
(H1), (H3), (H4) and the frequency-domain condition

Re(ξ∗Ccy)− |ξ|2κ−1
0 < −ε|ξ|2 , (18)

∀ ξ ∈ C \ {0} ∀ ω ∈ R ∀ y ∈ Y c
1 : iωy = Acy +Bcξ ,

there exists a number ε > 0 and an operator P ∈ L(Y−1, Y0) ∩ L(Y0, Y1) self-
adjoint in Y0, such that (17) is satisfied. As it is easy to see, inequality (18) is
equivalent to (16).

Let us show that P ≥ 0. Introduce on Y0 the Lyapunov functional V (y) :=
(y, Py)0. Putting in (17) ξ = 0 we get the inequality

(Ay, Py)−1,1 ≤ −ε‖y‖2
1 , ∀ y ∈ Y1 . (19)
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Thus we have along an arbitrary solution y(·) of ẏ = Ay with y(0) = y0 ∈ Y0

on an interval [0, t] the inequality

V (y(t)) ≤ V (y0)− ε
∫ t

0

‖y(τ)‖2
1dτ . (20)

From (H2) and (20) it follows for t→ +∞ that

0 ≤ V (y0)− ε
∫ ∞

0

‖y(τ)‖2
1dτ .

But this implies that V (y0) > 0 if y0 6= 0. �

In the following we suppose the properties (H1) – (H5). Thus we can as-
sume that there exists an operator P and a number ε > 0 satisfying (17). Note
that the operator P can be explicitly determined as solution of a Hamiltonian
system of equations ([8]). The number ε > 0 can be estimated with the knowl-
edge of ε. Our aim is to derive with the help of P a new Gelfand chain from
(1) which is better adapted to the nonlinear system which will be investigated.

Consider in Y0 the new scalar product (·, ·)0,P given by

(y, η)0,P := (y, Pη)0 , ∀ y, η ∈ Y0 .

The associated norm is denoted by ‖ · ‖0,P . The completion of Y0 w.r.t. the
scalar product (·)0,P gives the Hilbert space Y0,P . The space Y1 is dense in Y0,P

since Y1 is dense in Y0 and Y0 is dense in Y0,P . By (2) and the boundedness of
P it follows that for all y ∈ Y1

‖y‖0,P = (y, Py)
1/2
0 ≤ ‖P‖1/2‖y‖0 ≤ ‖P‖1/2k1‖y‖1 . (21)

But this means that the inclusion Y1 ⊂ Y0,P is continuous. Thus we can continue
the inclusion Y1 ⊂ Y0,P to a Gelfand rigged chain

Y1 ⊂ Y0,P ⊂ Y−1,P (22)

of Hilbert spaces. In order to define the negative space in this chain explicitly
we introduce ([1]) on Y0,P the negative norm ‖ · ‖−1,P given on Y0,P by

‖y‖−1,P := sup
06=η ∈Y1

|(y, η)0,P |
‖η‖1

. (23)

The completion of Y0,P in this norm gives the negative space Y−1,P in the chain
(22).
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Let us denote the pairing between Y−1,P and Y1 by (·, ·)−1,P ;1. We extend
by continuity the operators A,B and C from (6) to operators

AP ∈ L(Y1, Y−1,P ) , BP ∈ L(R, Y−1,P ) , CP ∈ L(Y0,P ,R) . (24)

Now we introduce a class of nonlinearities which will be considered in the
sequel.

(H6) The function ϕ : R× R→ R is continuous, ϕ(t, 0) = 0, ∀ t ∈ R, and

0 ≤ (ϕ(t, w1)− ϕ(t, w2))(w1 − w2) ≤ κ0(w1 − w2)
2 , ∀ t ∈ R, ∀w1, w2 ∈ R ,

(25)
where κ0 > 0 is the constant from assumption (H5).

Note that for w1 = w and w2 = 0 we have from (25) and ϕ(t, 0) = 0 the
inequality

0 ≤ ϕ(t, w)w ≤ κ0w
2 , ∀ t ∈ R, ∀w ∈ R . (26)

Let us consider the family of nonlinear operators AP (t) : Y1 → Y−1,P , given by

AP (t)η := −APη −BPϕ(t, CPη) , ∀ t ∈ R, ∀ η ∈ Y1 (27)

and the family A(t) : Y1 → Y−1 given by

A(t)η := −Aη −Bϕ(t, Cη) , ∀ t ∈ R, ∀η ∈ Y1 . (28)

Theorem 2 Under the hypotheses (H1) – (H6) the operator family
{AP (t)}t∈R has the following properties:

(P1) For each t ∈ R the operator AP (t) is monotone, i.e.,

(AP (t)η −AP (t)ϑ, η − ϑ)−1,P ;1 ≥ 0 , ∀ η, ϑ ∈ Y1 ; (29)

(P2) For each t ∈ R the operator AP (t) is semicontinuous, i.e., for any
η, y, ϑ ∈ Y1 the scalar-valued function ξ 7→ (AP (t)(η + ξy, ϑ)−1,P ;1 is contin-
uous ;

(P3) For any ϑ ∈ Y1 and any bounded set S ⊂ Y1 the family of functions
{(AP (t)η, ϑ)−1,P ;1 | η ∈ S} is equicontinuous on any compact subinterval J ⊂ R ;

(P4) The family {AP (t)}t∈R is uniformly bounded, i.e., there is a constant
k5 > 0, which is independent on t ∈ R, such that

‖AP (t)η‖−1,P ≤ k5‖η‖1 , ∀ η ∈ Y1 ; (30)
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(P5) There is a constant k6 > 0, which does not depend on t ∈ R, such that

(AP (t)η, η)−1,P ;1 ≥ k6‖η‖2
1 , ∀ η ∈ Y1 ; (31)

(P6) There is a constant k7 > 0, which does not depend on t ∈ R, such that

(AP (t)η −AP (t)ϑ, η − ϑ)−1,P ;1 ≥ k7‖η − ϑ‖2
0 , ∀ η, ϑ ∈ Y1 . (32)

Proof.

(P1): Inequality (29) is satisfied if for each t ∈ R,

(A(η − ϑ) +B[ϕ(t, Cη)− ϕ(t, Cϑ)] , P (η − ϑ))−1,1 ≤ 0 , ∀ η, ϑ ∈ Y1 . (33)

If we put in (17) y = η−ϑ and ξ = ϕ(t, Cη)−ϕ(t, Cϑ) we receive the inequality

(A(η − ϑ) +B[ϕ(t, Cη)− ϕ(t, Cϑ)] , P (η − ϑ))−1,1

+ (ϕ(t, Cη)− ϕ(t, Cϑ)) ((Cη − Cϑ)− (ϕ(t, Cη)− ϕ(t, Cϑ))κ−1
0 )

≤ − ε(‖η − ϑ‖2
1 + (ϕ(t, Cη)− ϕ(t, Cϑ))2) . (34)

From (25) it follows that the second term on the left-hand side of (34) is non-
negative. Thus (34) implies (33).

(P2): This is equivalent to the property that for each t ∈ R

ξ 7→ (A(η + ξy) +Bϕ(t, C(η + ξy)), Pϑ)−1,1

is continuous. The last property is satisfied because of (6) the boundedness of
P and the continuity of ϕ.

(P3): We have to show that for any ϑ ∈ Y1 and any bounded set S ⊂ Y1 the
family of functions {(Aη+Bϕ(t, Cη), Pϑ)−1,1 | η ∈ S} is equicontinuous on any
compact subinterval J ⊂ R. But this follows from (6), the boundedness of P ,
and the equicontinuity of ϕ(·, ·) on any compact set K1 ×K2 ⊂ R× R.

(P4): This is true because the family {A(t)}t∈R is uniformly bounded, i.e.,
there is a constant k′5 such that

‖A(t)η‖−1 ≤ k
′

5‖η‖1 , ∀ η ∈ Y1 . (35)

Really, we have for each η ∈ Y1 and t ∈ R

‖A(t)η‖−1 = ‖Aη +Bϕ(t, Cη)‖−1 ≤ ‖A‖L(Y1,Y−1)‖η‖1 + ‖B‖L(R,Y−1)|ϕ(t, Cη)| .
(36)
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The value |ϕ(t, Cη)| in (36) can be estimated from (26) and (6) by

|ϕ(t, Cη)| ≤ κ0|Cη| ≤ κ0‖C‖L(Y0,R)‖η‖0 . (37)

Using now (2), we see that (36) and (37) imply (35).

(P5): This property is shown if there is a constant k′6 > 0, which does not
depend on t, such that

(Aη +Bϕ(t, Cη) , Pη)−1,1 ≤ −k′6‖η‖2
1 , ∀ η ∈ Y1 . (38)

In order to show (38) we put in (17) y = η and ξ = ϕ(t, Cη) and receive the
inequality

(Aη +Bϕ(t, Cη) , Pη)−1,1 + ϕ(t, Cη)(Cη − ϕ(t, Cη)κ−1
0 ) ≤ −ε‖η‖2

1 . (39)

The second term in the left-hand side of (39) is non-negative because of (26).
Thus (39) implies (38).

(P6): Again it is sufficient to show that there is a constant k′7 > 0, which does
not depend on t ∈ R, such that

(A(η − ϑ) +B[ϕ(t, Cη)− ϕ(t, Cϑ)] , P (η − ϑ))−1,1 ≤ −k′7‖η − ϑ‖2
0 ,

∀ η, ϑ ∈ Y1 . (40)

If we put y = η − ϑ and ξ = ϕ(t, Cη) − ϕ(t, Cϑ) in (17) we get the inequality
(34). Using (25) we receive from (34) the inequality

(A(η − ϑ) +B[ϕ(t, Cη)− ϕ(t, Cϑ)] , P (η − ϑ))−1,1 ≤ −ε|η − ϑ‖2
1 ,

∀ η, ϑ ∈ Y1, ∀ t ∈ R . (41)

From (2) we have the estimate

−ε‖η − ϑ‖2
1 ≤ −

ε

k1
‖η − ϑ‖2

0 , ∀ η, ϑ ∈ Y1 . (42)

Clearly, that (41) and (42) imply (40). �

Let us consider w.r.t. the Gelfand triple Y1 ⊂ Y0,P ⊂ Y−1,P on the interval
J ⊂ R the equation

ẏ = APy +BPϕ(t, CPy) + f(t) , (43)

where f ∈ L2
loc(J ;Y−1,P ) .

A solution of (43) is a function y ∈ L2
loc(J ;Y1) ∩ C(J ;Y0,P ) such that ẏ ∈

L2
loc(J ;Y−1,P ) and (43) is satisfied in a variational sense, i.e. for a.a. t ∈ J

(ẏ(t)− APy(t)−BPϕ(t, CPy(t))− f(t) , η − y(t))−1,P ;1 = 0 , ∀ η ∈ Y1 . (44)

In this situation we have the following existence and uniqueness result ([3]).
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Theorem 3 Assume that the hypotheses (H1) – (H6) are satisfied. Then
for any f ∈ L2

loc(R+;Y−1) and any y0 ∈ Y0,P there exists a unique solution
y ∈ L2

loc(R+;Y1) ∩ C (R+;Y0,P ) of (44) such that y(0) = y0. Moreover, we have
for any T > 0

‖y‖L2(0,T ;Y1) ≤ K1(‖f‖L2(0,T ;Y−1,P ), ‖y0‖0,P ) (45)

and
‖y‖C([0,T ];Y0,P ) ≤ K2(‖f‖L2(0,T ;Y−1,P ), ‖y0‖0,P ) , (46)

where K1(·, ·) and K2(·, ·) are continuous non-decreasing to each variable func-
tions.

Proof. Since P is bounded and f ∈ L2
loc(R+;Y1) we have f ∈ L2

loc(R+;Y−1,P ).
According to Theorem 2 we have for the family {AP (t)}t∈R+

of operators (among
others) the properties (P1), (P2) and (P5). Thus w.r.t. the rigging Y1 ⊂
Y0,P ⊂ Y−1,P the assumptions of the existence and uniqueness theorem from [3]
are satisfied and the assertion follows immediately. �

Lemma 1 Assume that (H1) – (H6) are satisfied.

a) Suppose that yi(i = 1, 2) are two solutions of (44) with f = fi ∈
L2

loc(J ;Y−1) (i = 1, 2). Then for any s, t ∈ J, s ≤ t, the following estimate
is valid:

1

2
‖y1(τ)− y2(τ)‖2

0,P

∣∣t
s

+ ε

∫ t

s

‖y1(τ)− y2(τ)‖2
1 dτ

≤
∫ t

s

(f1(τ)− f2(τ), P (y1(τ)− y2(τ))−1,1dτ . (47)

b) Suppose that yi(i = 1, 2) are two solutions of (44) with common f1 =
f2 = f on J . Then for any t0 ∈ J and all t ≥ t0, t ∈ J , we have the inequality

‖y1(t)− y2(t)‖0,P ≤ e−k9(t−t0) ‖y1(t0)− y2(t0)‖0,P , (48)

where the constant k9 > 0 depends only on the constants ε from (17), k1 from
(2) and from the operator norm of P .

Proof. a) For the difference y1 − y2 we derive from (44) for a.a. τ ∈ J the
equation

ẏ1(τ)− ẏ2(τ) = A [y1(τ)− y2(τ)] +B [ϕ(τ, Cy1(τ))

− ϕ (τ, Cy2(τ))] + f1(τ)− f2(τ) . (49)
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Multiplying (49) with y1(τ)− y2(τ) w.r.t. the scalar product (·, ·)0,P and inte-
grating over [s, t], we receive the equation

1
2‖y1(τ)− y2(τ)‖2

0,P

∣∣t
s

=∫ t

s

(A[y1(τ)− y2(τ)] +B[ϕ(τ, Cy1(τ))− ϕ(τ, Cy2(τ))], P (y1(τ)− y2(τ)))−1,1 dτ

+

∫ t

s

(f1(τ)− f2(τ), P (y1(τ)− y2(τ)))−1,1 dτ . (50)

If we put in (17) y = y1(τ)−y2(τ), ξ = ϕ(τ, Cy1(τ))−ϕ(τ, Cy2(τ)), and integrate
over [s, t] we get the inequality∫ t

s

(A[y1(τ)− y2(τ)] +B[ϕ(τ, Cy1(τ))− ϕ(τ, Cy2(τ))], P (y1(τ)− y2(τ)))−1,1dτ

+

∫ t

s

[ϕ(τ, Cy1(τ))− ϕ(τ, Cy2(τ))] (C[y1(τ)− y2(τ)]

− [ϕ(τ, Cy2(τ))− ϕ(τ, Cy2(τ))]κ−1
0 )dτ ≤ −ε

∫ t

2

‖y1(τ)− y2(τ)‖2
1 dτ . (51)

The second integral on the left-hand side of (51) is by (H6) non-negative. Thus
we receive from (50) and (51) the inequality (47).

b) For f1 = f2 we get from (47) the inequality

1

2
‖y1(τ)− y2(τ)‖2

0,P + ε

∫ t

s

‖y1(τ)− y2(τ)‖2
1 dτ ≤ 0 . (52)

From (1) it follows that on [s, t]

ε′‖y1(τ)− y2(τ)‖2
0,P ≤ ε ‖y1(τ)− y2(τ)‖2

1 , (53)

where ε′ = ε
‖P‖L(Y0,Y0)k1

. Thus with m(τ) := 1
2‖y1(τ)−y2(τ)‖2

0,P we get from (52)

and (53) the estimate

m(τ) |ts + 2 ε′
∫ t

s

m(τ) dτ ≤ 0 . (54)

Now Gronwall’s inequality gives the estimate (48) with k9 = ε′. �

Lemma 2 Let (H1) – (H6) be satisfied and let yn ∈ L2(J ;Y1)∩C (J ;Y0,P ) be
solutions of (44) with perturbations fn ∈ L2(J ;Y−1). Assume that
limn→∞ fn = f in L2(J ;Y−1), limn→∞ yn = y in C(J ;Y0,P ). Then y is a solution
of (44) with forcing function f .
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Proof. The result follows immediately from [11], Proposition 1.6, Ch. 3 and
Lemma 1.7, Ch. 4 , if we note that fn → f in L2(J ;Y−1) implies that fn → f
in L2(J ;Y−1,P ). The last property results from the fact that for a.a. t ∈ J we
have

‖f − fn‖2
−1,P = sup

06=η∈Y1

|(f(t)− fn(t), η)−1,P :1|
‖η‖1

≤ sup
06=η ∈Y1

‖f(t)− fn(t)‖−1,P‖Pη‖1

‖η‖1
≤ ‖f(t)− fn(t)‖−1,P .

�

Theorem 4 Assume that the hypotheses (H1) – (H6) are satisfied. Then for
any f ∈ BS2(R ;Y−1) there exists a solution y∗ ∈ BS2(R ;Y1) ∩ Cb(R ;Y0,P )
of equation (44) and such a solution is unique. Moreover, the solution y∗ is
exponentially stable in the whole in the norm of Y0,P , i.e. there exist numbers
k10 > 0, k11 > 0 such that for any other solution y of (44) on [t0,∞) and any
t ≥ t0 we have

‖y(t)− y∗(t)‖0,P ≤ k10 e
−k11(t−t0)‖y(t0)− y∗(t0)‖0,P (55)

Proof. To prove the existence of at least one solution y∗ on R we consider as
in [11] sequences {yn} of solutions. Define a solution yn ∈ L2

loc([−n,∞);Y1) ∩
C([−n,+∞);Y0,P ) of equation (44) such that yn(−n) = 0. By Theorem 1 such
a solution is uniquely defined. Put

fn(t) :=

{
f(t) , t ≥ −n

0 , t < n ,

and extend yn by zero to the whole R. Then yn is a solution of (44) with forcing
term fn. Estimate (47) gives on [s, t] the inequality

1

2
‖yn(τ)‖2

0,P

∣∣t
s

+ ε

∫ t

s

‖yn‖2
1 dτ ≤

∫ t

s

(fn, yn)−1,P ;1 dτ . (56)

From (56) and Lemma 1.1, Ch. 2 in [11] it follows that

yn ∈ BS2(R ;Y1) ∩ Cb(R ;Y0,P ) ,

and the sequence {yn} is bounded in this space, i.e. there is a constant k12 > 0
such that for n = 1, 2, . . . .

‖yn‖Cb(R ;Y0,P ) ≤ k12 (57)
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and
‖yn‖S2 ≤ k12 . (58)

In order to prove the existence of a solution it is by Lemma 2 sufficient to
establish the existence of the strong limit limn→∞ yn = y∗ in C(R ;Y0,P ).

From Lemma 1 we have for all m,n ∈ N the inequality

1

2
‖yn − ym‖2

0,P

∣∣t
s

+ ε

∫ t

s

‖yn − ym‖2
1dτ ≤

∫ t

s

(fn − fm, yn − ym)−1,P ;1 dτ . (59)

Since fn(τ) = fm(τ) = f(τ) for τ ≥ −min{m,n} by using Lemma 1.3, Ch. 2,
of [11] we obtain from (59) that {yn} is a Cauchy sequence in C(R ;Y0,P ).

By (57) and (58) its limit y∗ = limn→∞ yn lies in BS2(R ;Y1) ∩ Cb(R ;Y0,P )
and so the existence of a solution is proved.

Let us show the uniqueness. Suppose that there are two solutions, y1

and y2, on R, such that y1(t0) 6= y2(t0). Then from (48) it follows that
limt→−∞ ‖y1(t) − y2(t)‖0,P = +∞. But this contradicts the boundedness of y1

and y2. The exponential stability in the whole characterized by the estimate
(55) follows from the forward estimate (48) stated in Lemma (1). �

The following lemma is a slight modification of Theorem 3.1, Ch. 3 and
Lemma 1.11, Ch. 4 from [11]. The proof is omitted.

Lemma 3 Under the assumptions (H1) – (H6) the operator

F0 : BS2(R ;Y−1)→ C (R ;Y0,P )

is continuous and the operator

Fg : BS2(R ;Y−1)→ Cb(R ;Y0,P )

with g ∈ BS2(R ;Y−1) is locally Hölderian with exponent 1.

(H7) For any bounded set S ⊂ R the family of functions {ϕ(·, w) |w ∈ S} is
uniformly almost periodic.

Theorem 5 Suppose that the assumptions (H1) – (H7) are satisfied. If
f ∈ S2(R ;Y−1) then the unique bounded solution y∗ of (44) belongs to
CAP (R ;Y0,P ) ∩ S2(R ;Y1).

Proof. The operator-valued function t 7→ AP (t) with AP (t)y = −APy−
BPϕ(t, CPy), y ∈ Y1, is extended to RB as a function continuous in the dY1,2-
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metric. The function f(·+s) is Bohr a. p. in s and hence can also be extendend
to a continuous function on RB with values in BS2(R ;Y−1,P ).

Now consider the family of equations depending on the parameter q ∈ RB

d

dt
yq(t) = APyq(t) +BPϕ(t+ q, CPyq(t)) + f(t+ q). (60)

Theorem 2 is applicable to any of these equations. Therefore, for any q ∈ RB

there is a unique solution yq ∈ BS2(R ;Y1)∩Cb(R ;Y0,P ). By uniqueness we have

yq(·) = y(·+ q) , ∀ q ∈ R ⊂ RB . (61)

Let Fq be the inverse of the operator corresponding to equation (60). Then

yq = Fq0[f(·+ q)−BPϕ(·+ q0, CPyq) +BPϕ(·+ q, CPyq)] . (62)

By Lemma 3 the set {yq} is bounded in the space BS2(R ;Y1). Hence, by (H7),

lim[BP (·+ q0)yq −BP (·+ q)yq] = 0 (63)

in B2(R ;Y−1,P ).

By Lemma 3 Fq0 : BS2(R ;Y1) → Cb(R ;Y0,P ) is continuous. This, the
representation (62) and (63) imply that ys is continuous in q ∈ RB as an
element of C(R ;Y0,P ). If we put y(q) := yq(0), q ∈ RB, we obtain the continuous
extension of y(t) to RB. Consequently, y ∈ CAP (R ;Y0,P ). In order to prove the
second inclusion we use the second part of Lemma 3. Then yq ∈ BS2(R ;Y1)
depends continuously on q ∈ RB. This together with (61) gives y ∈ S2(R ;Y1).

�

3 Control systems in Lur’e form with a Duffing type

nonlinearity

Let V1 ⊂ V0 ⊂ V−1 be a Gelfand rigging of the real Hilbert space V0, i.e. a
chain of Hilbert spaces with dense and continuous inclusions. Denote by (·, ·)Vj
and ‖ · ‖Vj , j = 1, 0,−1, the scalar product resp. norm in Vj(j = 1, 0,−1)
and by (·, ·)V−1,V1 the pairing between V−1 and V1. Let A0 ∈ L(V1,V−1) be a
linear operator, b0 ∈ V−1 a generalized vector, c0 ∈ V0 a vector and d0 < 0 a
number. According to the vectors c0 and b0 we introduce the linear operators
C0 ∈ L(V0,R) and B0 ∈ L(R,V−1) by C0ν = (c0, ν)V0, ∀ ν ∈ V0, and
B0ξ := ξb0, ∀ξ ∈ R.
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Assume that φ : R×R→ R and g : R→ R are two scalar-valued functions.
Our aim is to study a system of indirect control, which is formally given as

ν̇ = A0ν + b0[φ(t, w) + g(t)] ,

ẇ = (c0, ν)V0 + d0[φ(t, w) + g(t)] . (64)

Let us demonstrate how (64) can be written as a standard control system. Con-
sider for this the Gelfand rigging Z1 ⊂ Z0 ⊂ Z−1, in which Zj := Vj × R,
j = 1, 0,−1. The scalar product (·, ·)Zj

in Zj is introduced as(
(ν1, w1), (ν2, w2)

)
Zj

:= (ν1, ν2)Vj + w1w2, where (ν1, w1), (ν2, w2) ∈ Zj are arbi-

trary. The pairing between Z−1 and Z1 is defined for (h, ξ) × V−1 × R = Z−1

and (ν, ς) ∈ V1 × R = Z1 through

((h, ξ), (ν, ς))Z−1,Z1
:= (h, ν)V−1,V1 + ξ ς .

Let b̂ :=
[
b0
d0

]
∈ Z−1 and ĉ :=

[
0
1

]
∈ Z0 . Suppose further that the operators

Ĉ ∈ L(Z0,R) and B̂ ∈ L(R, Z−1) are given as

Ĉz = (ĉ, z)Z0
, ∀ z ∈ Z0 , B̂ξ = ξb̂ , ∀ ξ ∈ R ,

and the operator Â ∈ L(Z1, Z−1) is defined as

Â :=

[
A0 0

C0 0

]
.

Consider now the system

ż = Âz + B̂ [φ(t, w) + g(t)] , w = Ĉz , (65)

which is equivalent to (64) through z = (ν, w). If −∞ ≤ T1 < T2 ≤ +∞ are
arbitrary, we define the norm for Bochner measurable functions in L2(T1, T2;Zj),
j = 1, 0,−1, by

‖z‖2,j :=

(∫ T2

T1

‖z(t)‖2
Zj
dt

)1/2

. (66)

Let W(T1, T2;Z1, Z−1) be the space of functions z such that z ∈ L2(T1, T2;Z1)
and ż ∈ L2(T1, T2;Z−1), equipped with the norm

‖z‖W(T1,T2;Z1,Z−1) :=
(
‖z‖2

2,−1 + ‖ż‖2
2,−1

)1/2
. (67)

Let us introduce the following assumptions (A1) – (A6) about the operator
A0 ∈ L(V1,V−1), the vectors b0 ∈ V−1 and c0 ∈ V0, and the functions φ and g.
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Note that (A1) – (A6) for (64) are related to the assumptions (H1) – (H6)
for (65).

(A1) For any T > 0 and any f = (f1, f2) ∈ L2(0, T ;V−1 × R) the problem

ν̇ = A0ν + f1(t) , (68)

ẇ = (c0, ν)V0 + f2(t) , (ν(0), w(0)) = (ν0, w0)

is well-posed, i.e. for arbitrary (ν0, w0) ∈ Z0, (f1, f2) ∈ L2(0, T ;V−1 × R) there
exists a unique solution (ν, w) ∈ W(0, T ;Z1, Z−1) satisfying (68) in a variational
sense and depending continuously on the initial data, i.e.

‖(ν, w)‖2
W(0,T ;Z1,Z−1) ≤ k13‖(ν0, w0)‖2

V0×R + k14‖(f1, f2)‖2
2,−1 , (69)

where k13 > 0 and k14 > 0 are some constants .

(A2) There is a λ > 0 such that A0 + λI is a Hurwitz operator .

(A3) For any T > 0, (ν0, w0) ∈ Z1 × R, (ν̃0, w̃0) ∈ Z1 × R and (f1, f2) ∈
L2(0, T ;V1 ×R) the solution of the direct problem (68) and the solution of the
adjoint problem

˙̃ν = −(A+
0 + λ I)ν̃ + f1(t),

˙̃w = −C+
0 w̃ − λ w̃ + f2(t), (70)

are strongly continuous in t in the norm of V1 × R .

(A4) The pair (A0, b0) is L2-controllable, i.e. for arbitrary ν0 ∈ V0 there exists
a control α (·) ∈ L2(0,∞;R) such that the problem

ν̇ = A0ν + b0α , ν(0) = ν0

is well-posed in the variational sense on (0,∞) .

Introduce by

χ(p) =
(
cc0, (A

c
0 − pIc)−1 bc0

)
Z0
, p ∈ ρ(Ac

0)

the transfer function of the triple (Ac
0, b

c
0, c

c
0) .

(A5) Suppose λ > 0 and κ1 > 0 are parameters, where λ is from (A2). Then:

a) λd0 +Re (−iω−λ)χ(iω−λ)+κ1 |χ(iω−λ)−d0 |2 ≤ 0 , ∀ω ≥ 0 . (71)
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(A6) The function φ : R×R→ R is continuous and φ(t, 0) = 0, ∀ t ∈ R. The
function g : R → R belongs to L2

loc(R ;R). There are numbers κ1 > 0 (from
(A5), 0 ≤ κ2 < κ3 < +∞, q1 < q2 and ζ2 < ζ1 such that:

a) q1 < g(t) < q2 , (72)

for a.a. t from an arbitrary compact time interval ;

b) (φ(t, w) + qi)(w − ζi) ≤ κ1(w − ζi)2, i = 1, 2 (73)

∀ t ∈ R, ∀w ∈ [ζ2, ζ1] ;

c) κ2(w1 − w2)
2 ≤ (φ(t, w1)− φ(t, w2))(w1 − w2) ≤ κ3(w1 − w2)

2 , (74)

∀ t ∈ R, ∀w1, w2 ∈ [ζ2, ζ1] .

We assume in the next theorem that the solutions of (2) are for every T > 0
elements of the spaceW(0, T ;Z1, Z−1). Then we show the existence of solutions
with initial states from a certain set.

Theorem 6 Assume that for system (64) the hypotheses (A1) – (A7) are
satisfied. Then there exists a closed, positively invariant and convex set G such
that

{(ν, w) ∈ V1 × R | ν = 0, w ∈ [ζ2, ζ1]} ⊂ G ⊂ {(ν, w) ∈ V1 × R |w ∈ [ζ2, ζ1]} .
(75)

In order to prove this theorem we need some auxilary results.

Suppose that Y1 ⊂ Y0 ⊂ Y−1 is a Gelfand rigging of Y0, ‖ · ‖j, (·, ·)j are
the corresponding norms and scalar products, respectively, and (·, ·)−1,1 is the
pairing between Y−1 and Y1. Consider the linear system

ẏ = Ay , w = (c, y)0 , (76)

where A ∈ L(Y1, Y−1) and c ∈ Y0.

Assume that for each y0 ∈ Y0 there exists a unique solution y(·, y0) of
(76) in W(0,∞) satisfying y(0, y0) = y0. In the sequel we need the following
assumption.

(A7) The space Y0 can be decomposed as Y0 = Y +
0 ⊕Y −0 such that the following

holds:
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a) For each y0 ∈ Y +
0 we have lim

t→∞
y(t, y0) = 0. For each y0 ∈ Y −0 there exists

a unique solution y−(t) = y(t, y0) of (76), defined on (−∞, 0), such that
lim
t→−∞

y−(t) = 0 and (c, y(t, y0))0 = 0, ∀ t ≥ 0 , if and only if y0 = 0.

b) For each y0 ∈ Y +
0 the equality (c, y(t, y0))0 = 0, ∀ t ≤ 0, holds if and only

if y0 = 0 . For each y0 ∈ Y −0 the equality (c, y(t, y0))0 = 0, ∀ t ≤ 0, holds if
and only if y0 = 0 .

Remark 1 Assumption (A7) a) means that we assume for the linear system
(76) the decomposition of Y0 in y = 0 into a stable subspace Es ≡ Y +

0 and an
unstable subspace Eu ≡ Y −0 . Assumption (A7) b) characterizes the identifia-
bility in the sense of Kalman of the pair (A, c) on Y +

0 and Y −0 , respectively.

In the following L ≥ 0 for a linear operator L ∈ L(Z), Z a Hilbert space,
means that L is positive, i.e. (z, Lz)Z > 0, ∀ z ∈ Z\{0}; L ≤ 0 means that
−L is positive.

Lemma 4 Suppose that system (76) satisfies (A7) and there exists a linear
continuous operator P : Y0 → Y0, P

∗ = P , such that for any s ≤ t and any
solution y(·, y0) of (76) we have with V (y) := (y, Py)0, y ∈ Y0,

V (y(t, y0))− V (y(s, y0)) ≤ −
∫ t

s

(c, y(τ, y0))
2
0 dτ . (77)

Then P|Y +
0
≥ 0 , i.e. , (y, Py)0 > 0 for all y ∈ Y +

0 \{0} (78)

and P|Y −0 ≤ 0 , i.e. , (y, Py)0 < 0 for all y ∈ Y −0 \{0} . (79)

Proof. Let y0 ∈ Y +
0 \{0}. Then by (A7) a) we have limt→∞ y(t, y0) = 0 and,

due to the boundedness of P , limt→∞ V (y(t, y0)) = 0. It follows from (77) for
s = 0 and t→∞ that

−V (y0) ≤ −
∫ ∞

0

(c, y(τ, y0))
2
0 dτ . (80)

Using again (A7) a), we conclude from (80) that

V (y0) ≥
∫ ∞

0

(c, y(τ, y0))
2
0 dτ > 0 .

Thus (78) is shown.
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Let now y0 ∈ Y −0 \{0}. Then by (A7) b) we have limt→−∞ y(t, y0) = 0 and,
consequently, limt→−∞ V (y(t, y0)) = 0. If we take in (77) s → −∞ and t → 0,
we receive

V (y0) ≤ −
∫ 0

−∞
(c, y(τ, y0))

2
0 dτ . (81)

Assumption (A1) b) implies that
∫ 0

−∞(c, y(τ, y0))
2
0 dτ > 0. Thus we conclude

from (81) that V (y0) < 0. This proves (79). �

The next lemma is concerned with the separation of quadratic cones by
special functionals. Let us recall some definitions. Assume that H is a Hilbert
space with scalar product (·, ·). A cone in H is a set C ⊂ H, C 6= ∅, such that
u ∈ C, ζ ∈ R+ imply that ζu ∈ C. It is easy to see that a cone C in H is convex
if and only if u, v ∈ C imply that u+ v ∈ C.

Suppose that P ∈ L(H), P = P ∗. Then the set C := {u ∈ H | (u, Pu) ≤ 0}
is a cone which is called by us quadratic.

Assume that there is a decomposition H = H+ ⊕ H− such that P|H+ ≥ 0
and P|H− ≤ 0. Then the quadratic cone {u ∈ H | (u, Pu) ≤ 0} is called by us
quadratic cone of dimension dimH−.

Lemma 5 Suppose that:

1) Y1 ⊂ Y0 ⊂ Y−1 is a Gelfand rigging of the Hilbert space Y0 with scalar
products (·, ·)i, corresponding norms ‖ · ‖i, i = 1, 0,−1, and pairing (·, ·)−1,
between Y−1 and Y1;

2) There is an operator P ∈ L(Y−1, Y0) ∩ L(Y0, Y1), self-adjoint and positive
in Y0 such that

C := {y ∈ Y0 | (y, Py)0 ≤ 0} is an 1-dimensional quadratic cone;

3) There are vectors h ∈ Y−1 and r ∈ Y0 such that

2 (h, Py)−1,1 = (r, y)0 , ∀ y ∈ Y1 (82)

and (h, r)−1,1 < 0 .
(83)

Then we have

int C ∩ {y ∈ Y1 | (y, r)0 = 0} = ∅ . (84)
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Proof. Suppose that (83) is not true, i.e., assume that there is a y0 ∈ Y1,
y0 6= 0, such that

(y0, Py0)0 < 0 and (y0, r)0 = 0 . (85)

Since C is a cone, we have ξy0 ∈ C, ∀ ξ ∈ R, and

span{y0}\{0} ⊂ int C . (86)

Since the inclusions Y1 ⊂ Y0 ⊂ Y−1 are dense, there exists a sequence {hn}∞n=1,
hn ∈ Y1 (n = 1, 2, . . .) such that hn → h for n→∞ in the norm of Y−1.

Because of (82) we have

2 (hn, Phn)0 → (r, hn)0 for n→∞ . (87)

Since (·, ·)−1,1 is the unique extension by continuity of the scalar product (·, ·)0

defined on Y0 × Y1, it follows from (83) that there are numbers ε0 > 0 and
n0 ∈ N such that

(r, hn)0 ≤ −ε0 < 0 , ∀n ≥ n0 . (88)

Thus for each ε1 ∈ (0, ε0) there is an n1 ∈ N such that

4 (hn, Phn)0 ≤ −ε′1 , ∀n ≥ n1 , (89)

where ε′1 := ν − ε1 .

From (82) we conclude that 2 (hn, Py0)0 → (r, y0)0 = 0 for n → ∞. Thus
we have for each ε2 > 0 a number n2 ∈ N such that

2 | (hn, Py0)0 | < ε2 , ∀n ≥ n2 . (90)

Take now n̄ := max{n0, n1, n2}. Then the properties (87) – (90) are satisfied
for n ≥ n̄. By (85) and the inequality (ε0 − ε1) > 0, we can choose the number
ε2 in (90) so small that

−(y0, Py0)0 (ε0 − ε1)− ε2
2 > 0 . (91)

Let us show now that the plane Π := {ξy0 + ς 2hn̄ | ξ, ς ∈ R}, with exception of
the point 0, is contained in int C. This will be a contradiction to assumption 2)
of the theorem if we show that dim Π = 2. Suppose that this is not the case.
This means that there is a ξ0 6= 0 such that

ξ0y0 = hn̄ . (92)

Electronic Journal. http://www.math.spbu.ru/diffjournal 59



Differential Equations and Control Processes, N 4, 2012

It follows from (88) and (92) that (r, hn̄)0 < 0, and from (85) and (93) that
(r, hn̄)0 = 0. This contradiction shows that dim Π = 2. It remains to demon-
strate that Π\ {0} ⊂ int C. Consider for arbitrary ξ, ς ∈ R with ξ2+ ς2> 0 the
expression (

ξy0 + ς 2hn̄, P (ξy0 + ς 2hn̄)
)

0

= ξ2(y0, Py0)0 + 4 ξς (hn̄, Py0)0 + ς 24(hn̄, Phn̄)0 . (93)

Under our conditions the quadratic form (93) is negative definite. Really, from
(85) we have (y0, Py0)0 < 0 and from (89) 4 (h n̄, Ph n̄)0 < 0. Thus by the Routh
criterion the negative definiteness of the form is shown if the determinant D,
associated to this form, is positive. The straight forward computation of D and
the use of (89) – (91) gives the estimates

D = (y0, P y0)0 4 (h n̄, Ph n̄)0 − (4h n̄, Py0)
2
0

≥ −(y0, Py0)0(ε0 − ε1)− ε2
2 > 0 .

�

Remark 2 Lemma 5 can be considered as generalized lemma about the
separation of cones ([2, 5, 7, 13]). Really, in the finite-dimensional case we have
Y1 = Y0 = Y−1 = Rn, (·, ·)−1,1 = (·, ·)0 = (·, ·) the Euclidean inner product and
P = P ∗, detP 6= 0, a regular symmetric n × n matrix. Assumption (82) in
Lemma 5 states that there are vectors h, r ∈ Rn such that

2 (h, Py) = (r, y) , ∀ y ∈ Rn . (94)

It follows from (94) that
2h = P−1r . (95)

Equation (95) shows that assumption (83) of Lemma 5 takes the form

(r, P−1r) < 0 . (96)

If (96) is satisfied, it follows from Lemma 5 for the 1-dimensional quadratic
cone C = {y ∈ Rn|(y, Py) ≤ 0} that

int C ∩ {y ∈ Rn | (y, r) = 0} = ∅ . (97)

But this is exactly the sufficient part of the statement in [5].

The following lemma from [2] will be used in the proof of Theorem 6.
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Lemma 6 Suppose that t0 ≥ 0, k(·), R(·), Vi(·), Ui(·) : [t0,∞)→ R,
i = 1, 2, are continuous functions and κ1 > κ2 are numbers such that the
following conditions are satisfied:

1) In some neighborhood of the set

T1 := {t ∈ (t0,∞) |R(t) = κ1 , Vi(t) ≤ 0 , i = 1, 2 , U1(t) ≤ 0}

the function R is non-increasing, and in some neighborhood of the set

T2 := {t ∈ (t0,∞) |R(t) = κ2 , Vi(t) ≤ 0 , i = 1, 2 , U2(t) ≥ 0}

the function R is non-decreasing.

2) In some neighborhood of the set

T3 := {t ∈ (t0,∞) |κ2 ≤ R(t) ≤ κ1 , Vi(t) ≤ 0 , i = 1, 2 , U1(t) = 0}

the function U1 is non-increasing, and in some neighborhood of the set

T4 := {t ∈ (t0,∞) |κ2 ≤ R(t) ≤ κ1 , Vi(t) ≤ 0 , i = 1, 2 , U2(t) = 0}

the function U2 is non-decreasing.

3) On the set {t ∈ (t0,∞) |κ2 ≤ R(t) ≤ κ1} the function k(·) is non-negative
and the functions t 7→ Vi(t) +

∫ t
0 k(τ)Vi(τ)dτ, i = 1, 2, are non-increasing.

4) R(t0) ∈ [κ2,κ1], Vi(t0) ≤ 0, i = 1, 2, U1(t0) ≤ 0 , U2(t0) ≥ 0.

Then for all t ≥ t0 it holds R(t) ∈ [κ2,κ1], Vi(t) ≤ 0, U1(t) ≤ 0, U2(t) ≥ 0.

Proof.[Proof of Theorem 6] Let us consider system (64) in the form (2).
The hypotheses (A1), (A3), (A4), (A6) ensure ([8]) that there exists a linear
continuous operator P̂ ∈ L(Z−1, Z0)∩L(Z0, Z1), selfadjoint in Z0, such that the
quadratic form in Z1 × R

W (z, ξ) := 2 ((Â+ λI)z + b̂ ξ, P̂ z)Z−1,Z1
+ (κ1(ĉ, z)Z0

− ξ) (ĉ, z)Z0

satisfies the inequality

W (z, ξ) ≤ 0 , ∀ z ∈ Z1, ∀ ξ ∈ R . (98)

Putting ξ = 0 in (98), we deduce

2 ((Â+ λI)z, P̂ z)Z−1,Z1
≤ −κ1(ĉ, z)

2
Z0
, ∀ z ∈ Z1 . (99)

Electronic Journal. http://www.math.spbu.ru/diffjournal 61



Differential Equations and Control Processes, N 4, 2012

By (A2), there exists a splitting Z0 = Z+
0 ⊕ Z−0 with dimZ−0 = 1 such that

(A7) is satisfied for Yj = Zj, j = 1, 0,−1, A = Â+ λI and c = ĉ. From (99) it
follows that for any z0 ∈ Z0 the solution z(·) of

ż = (Â+ λI)z , z(0) = z0 (100)

satisfies inequality (77) with V (z) = (z, P̂ z)Z0
and c = ĉ. By Lemma 4 we

conclude that
P̂|Z+

0
≥ 0 and P̂|Z−0 ≤ 0 . (101)

Thus the set K̂ := {z ∈ Z0 | (z, P̂ z)Z0
≤ 0} is a 1-dimensional quadratic

cone. It follows also from (98) that

2 (b̂, P̂ z)Z−1,Z1
= (ĉ, z)Z0

, ∀ z ∈ Z1 . (102)

Clearly, that in the pairing (·, ·)Z−1,Z1
we have

(b̂, ĉ)Z−1,Z1
= κ1 < 0 . (103)

By (101) – (103) all hypotheses of Lemma 5 are satisfied with respect to the
rigging Z1 ⊂ Z0 ⊂ Z−1, the vector r = ĉ and the generalized vector h = b̂. Thus
we have from this lemma the relation

int K̂ ∩ {z ∈ Z1 | (ĉ, z)Z0
= 0} = ∅ . (104)

Take now the points z1, z2 ∈ V1 × R as z1 = (0, ζ1) and z2 := (0, ζ2). It is clear
that

(ĉ, z1)Z0
= ζ1 , Âz1 = 0 , (ĉ, z2)Z0

= ζ2 , Âz2 = 0 . (105)

Define along an arbitrary solution z(·) of (2) the functions

V̂i(t) := (z(t)− zi , P̂ (z(t)− zi))Z0
,

Ûi(t) := (ĉ, z(t)− zi)Z0
, i = 1, 2 ,

and introduce the set

G := {z ∈ Z1 | (z − zi, P̂ (z − zi))Z0
≤ 0 , i = 1, 2 , (ĉ, z)Z0

∈ [ζ2, ζ1]} . (106)

It follows from P̂ ≥ 0, (101) and (104) that the set G is convex and bounded.
Let us show that G is positively invariant for the solutions of (2). For this
we applicate Lemma 4 for a given time interval [t0,∞), the functions k(t) ≡
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2λ, Vi(t) = V̂i(t), Ui(t) = Ûi(t) and the numbers κ1 = w1,κ2 = w2. From (98) it
follows that for i = 1, 2, t0 ≤ s ≤ t, along the solution z(t) and w(t) = (ĉ, z(t))Z0

V̂i(τ) |ts + 2λ

∫ t

s

V̂i(τ)dτ

≤ −
∫ t

s

[κ1(w(τ)− ζi)− (φ(τ, w(τ)) + qi)] (w(τ)− ζi)dτ

+

∫ t

s

(g(τ)− qi)(w(τ)− ζi)dτ . (107)

From (A6) we conclude that for i = 1, 2 and all t ≥ s ≥ t0 such that

w(τ) ∈ [ζ2, ζ1], τ ∈ [s, t],∫ t

s

[κ1(w(τ)− ζi)− (φ(τ, w(τ)) + qi)](w(τ)− ζi) dτ ≥ 0

and

∫ t

s

(g(τ)− qi) (w(τ)− ζi) dτ ≤ 0 . (108)

Thus (107) and (108) imply that for i = 1, 2 and such t ≥ s ≥ t0 we have

V̂i(τ) |ts + 2λ

∫ t

s

V̂i(τ)dτ ≤ 0 ,

i.e., the functions t 7→ V̂i(t) + 2λ
∫ t

0 V̂i(τ) dτ are non-increasing. That is, condi-
tion 3) of Lemma 4 is satisfied. Since z(t0) ∈ G, condition 4) of this lemma is
also satisfied.

In the following Ti, i = 1, 2, 3, 4, are the sets which are defined in Lemma 6.
It follows from (104) that if t ∈ T1 then z(t) = z1. Thus we have by (64) and
(3.9a) that

ẇ(t) = d0[φ(t, w(t)) + g(t)] < 0 . (109)

In the same way one shows that w(t) is non-decreasing in a neighborhood of
T2.

From (104) and the inequality d0 = (b̂, ĉ)Z−1,Z1
< 0 it follows that for t ∈ T3

we have z(t) = z1 and this by (106) and (A6)

˙̂
1U(t) =(ż(t), ĉ)Z−1,Z1

= (Âz(t) + b̂ [φ(t, w(t)) + g(t)], ĉ)Z−1,Z1

=(b̂, ĉ)Z−1,Z1
[φ(t, w1) + g(t)] < 0 .

Similarly one can show that Û2(t) is non-decreasing near T4.

Electronic Journal. http://www.math.spbu.ru/diffjournal 63



Differential Equations and Control Processes, N 4, 2012

Thus we have verified all hypotheses of Lemma 6. By this lemma it follows
that G is positively invariant. It remains to show the inclusion (75). Let z =
(0, w) ∈ V1×R with w ∈ [w2, w1]. Since (ĉ, z)Z0

= w, the inclusion (75) is shown
if

(z − zi , P̂ (z − zi))Z0
≤ 0 , i = 1, 2 . (110)

From (104) and (105) it follows that for (110) it is sufficient that Âz = 0 implies
that (z, P̂ z)Z0

≤ 0. But the last inequality results from (99) since

2λ(z, P̂ z)Z0
≤ −κ1(ĉ, z)

2
Z0
≤ 0 .

�

Now we prove for (64) the existence of solutions inW(0, T ;V1×R,V−1×R)
and the existence of at least one solution in Cb(R;V0 × R) ∩ BS2(R ;V1 × R).
We need for this the a priori inclusion given by Theorem 6 and two additional
assumptions.

(A8) The imbedding V1 ⊂ V0 is compact.

(A9) The family of operators {Â(t)}t∈R, Â(t) : Z1 → Z−1, given by
Â(t)z := −Âz − B̂φ(t, Ĉz),∀t ∈ R,∀z ∈ Z1, is monotone on the segment
{z ∈ Z1 | Ĉz ∈ [ζ2, ζ1]}, i.e. for any t ∈ R we have

(Â(t)η − Â(t)ϑ, η − ϑ)Z1,Z−1 ≥ 0 , ∀ η, ϑ ∈ Z1 ,

such that Ĉη, Ĉϑ ∈ [ζ2, ζ1] . (111)

There exists a continuous function φ̃ : R × R such that φ̃|R×[ζ2,ζ1] = φ and

(111) with φ̃ instead of φ is satisfied for all η, ϑ ∈ Z1.

Remark 3 If φ has the form φ(t, w) = φ1(t)φ2(w) with φ1 and φ2 continuous,
it is clear that such a monotone extension exists.

Theorem 7 Assume that for system (64) the assumptions (A1) – (A9) are
satisfied. Then it holds:

a) For any g ∈ BS2(R;R) and any (ν0, w0) ∈ G, where G is the associated
positively invariant set, there exists a solution (ν, w) ∈ W(0,∞;V1×R,V−1×R)
of (64) such that (ν(0), w(0)) = (ν0, w0).

b) For any g ∈ BS2(R;R) there exists for (64) a solution

(ν∗, w∗) ∈ Cb(R ;V0 × R) ∩BS2(R;V1 × R) . (112)
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Proof. Consider system (64) written in the form (65). Introduce the new
nonlinearity φ̃ : R × R → R given by assumption (A9). Thus we have the
auxiliary system

ż = Âz + B̂[φ̃(t, w) + g(t)], w = Ĉz (113)

on the Gelfand triple V1×R ⊂ V0×R ⊂ V−1×R. It follows from (A8) that the
embedding V1 × R ⊂ V0 × R is compact. Under these conditions it was shown
in [11] (Theorem 4.3, Ch. 3) that the above statements a) and b) are true for
system (112) for all (ν0, w0) ∈ V0 × R. Thus the positive invariance of G for
(64) implies that solutions of (112) with initial states from G are also solutions
of (64). The forward solutions of (64) in G can be used to construct for any
g ∈ BS2(R;R) a bounded solution of (64) which satisfies (112). �

(A10) Any continuous function φ which satisfies (3.9a) and (3.9b) has a con-

tinuous extension to a function ˜̃φ : R×R→ R which satisfies (3.9a) and (3.9b)
for all (t, w) ∈ R× R.

Theorem 8 Assume that for system (64) the assumptions (A1) – (A9) are
satisfied and in addition to this the following holds:

(i) The operator

[
A0 κ2B0

C0 κ2d0

]
from L(Z1, Z−1) is Hurwitz ;

(ii)
1

κ3 − κ2
+ Re

χ(iω)− d0

iω + κ2(χ(iω)− d0)
> 0, ∀ω ∈ R . (114)

Then we have:

a) For any g ∈ BS2(R;R) system (64) has a unique solution (ν∗, w∗) inside
G which satisfies (112) and this solution is exponentially stable inside G.

b) Let the families of functions {φ(·, w) |w ∈ [ζ2, ζ1]} and {φ̃(·, w) |w ∈ S},
where φ̃ is from (A9) and S ⊂ R is an arbitrary bounded interval, be uniformly
Bohr a.p. . Then for any S2-a.p. forcing function g the unique in G bounded
and exponentially stable solution (ν∗, w∗) is Bohr a.p. .

Proof. Consider in the Gelfand rigging structure Z1 ⊂ Z0 ⊂ Z−1 the system

ż = Âz + B̂ [ ˜̃φ(t, w) + g(t)] , w = Ĉz , (115)
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where ˜̃φ is the monotone extension of φ given by assumption (A10). Introduce
the new nonlinearity

φ(t, w) := ˜̃φ(t, w)− κ2w , t ∈ R, w ∈ R . (116)

Then system (115) can be written with w = Ĉz and f̂(t) := B̂g(t) as

ż = (Â+ κ2Ĉ)z + B̂φ(t, w) + f̂(t) . (117)

Note that φ satisfies the inequality

0 ≤ (φ(t, w1)− φ(t, w2))(w1 − w2) ≤ (κ3 − κ2)(w1 − w2)
2 , ∀ t, w1, w2 ∈ R .

(118)
For system (117) with a nonlinearity of the type (118) we can apply Theorems
4 and 5. According to Theorem 4 there exists a Gelfand rigged chain

Z1 ⊂ Z0,P ⊂ Z−1,P (119)

with the property: For any f̂ ∈ BS2(R;Z−1) there is for (117) an exponentially
stable in the whole solution z∗∗ ∈ Cb(R;Z0,P ) ∩ BS2(R, Z1). Theorem 5 says
that for Bohr a.p. f̂ and uniformly S2-a.p. functions φ this solution is Bohr
a.p. .

From Theorem 7 it follows that equation (117) has a bounded solution
z∗ = (ν∗, w∗) w.r.t. the rigging Z1 ⊂ Z0 ⊂ Z−1. But z∗ is also a solution w.r.t.
the rigging Z1 ⊂ Z0,P ⊂ Z−1,P . By uniqueness we have z∗ = z∗∗. Thus

Ĉz∗∗(t) ∈ [ζ2, ζ1] , ∀ t ∈ R . (120)

Inclusion (120) implies that z∗∗ is also a solution of (64) and this solution is
exponentially stable inside G. �
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