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1 Introduction

Boundary layer flow of electrically conducting fluids finds applications in several
industrial and technological fields such as, for example, chemical, aerospace and

nuclear engineering. As a result, several theoretical investigations have been
carried out in the last four decades or so to primarily analyze the influence of

externally applied magnetic fields on a variety of flows fields. In particular, a
number of hydromagnetic flow problems have been reported in the literature to

consider the individual as well as the combined effects of magnetic, buoyancy
and viscous forces under certain simplifying assumptions.
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It is well known that the partial differential equations which govern the flow

of electrically conducting fluids under the action of the magnetic and buoyancy
forces are highly nonlinear and coupled. However, when the flow takes place

near flat plates, the quadratic convection term in the momentum equation can
drop out, and the system thus becomes linear. It is therefore possible to obtain

exact closed form solutions of the linearized problem in a number of practically
important situations – for instance, when a stationary or moving bounding
plate is subject to heating, cooling or heat flux conditions [1–5]. While the

majority of the relevant works reported in literature has emphasized the effects
of magnetic field and buoyancy force on specifically chosen liquid and gaseous

media, the detailed analysis of the underlying real fluid properties characterized
by the Prandtl numbers of the fluids has not received much attention. Our

main objective in this study is thus to present exact analytical solutions for the
transient hydromagnetic impulsive flow of fluids of different Prandtl numbers

when the flow takes place near a moving infinite vertical plate subject to uniform
heat flux. We have shown in our analysis that one needs to consider two separate
solutions – one for Pr �= 1 and the other for Pr = 1, Pr being the Prandtl

number of the fluid under consideration. The explicit forms of these solutions
have been presented in a unified form for both the cases of the magnetic field

being fixed to the fluid and to the plate. The variation of the boundary layer
velocity profiles with the Prandtl number has been shown for a combination of

Grashoff and Hartmann numbers.

2 Governing Equations

Consider the unsteady flow of an infinite extent of an electrically conducting
incompressible fluid past a moving infinite vertical flat plate. With respect to

the rectangular cartesian coordinate system Oxyz, the axis Oz is taken along
the wall in the upward direction and the axis Oy is taken perpendicular to it
into the fluid. The flow is assumed to take place under the influence of an

external magnetic field. The usual equations of motion of the fluid, neglecting
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viscous dissipation and Ohmic heating, are

∇ · V = 0 (1)

ρ
dV

dt
= −∇p + µ∇2V + gβ(T − T∞)k + J × B (2)

ρcp
dT

dt
= k∇2T (3)

J = σ(V −U) ×B (4)

where V = (Vx, Vy, Vz) is the fluid velocity, U is the bounding plate velocity,
ρ the density, p the pressure, T the temperature, B the magnetic field, J the

current density, µ the fluid viscosity, g the acceleration due to gravity, β the
volumetric coefficient of thermal expansion, k the thermal conductivity of the
fluid, σ the electrical conductivity and cp is the specific heat of the fluid at

constant pressure. In equations (2) and (3), d/dt is the convective derivative
operator.

For the two-dimensional motion considered here, at times t ≤ 0, the plate
and the fluid medium are assumed to be at rest and at the constant temperature

T∞. At time t > 0, the plate is set into motion in its own plane with a
velocity proportional to tn, and simultaneously, heat is also supplied to the

plate at a constant rate. A uniform magnetic field of strength By is applied
in the y direction. We consider two different flow situations with respect to

the magnetic field: (i) the magnetic lines of force are fixed relative to the
fluid, and (ii) the magnetic lines of force are fixed relative to the boundary.

These two cases will, however, be incorporated into a single momentum equation
so as to obtain a unified solution. As is common in Stokes problems of flow
near flat boundaries, we assume that the effects of the convective and pressure

gradient terms in the momentum and energy equations are negligible. The
density of the liquid is assumed to be constant; however, in the case of free

convection flow, it is considered variable in forming the buoyancy force. We also
assume that the magnetic Reynolds number is very small so that the induced

magnetic field produced by the motion of the electrically conducting fluid is
negligible in comparison with the applied one. As a result of the boundary layer
approximations, the physical variables become functions of the time variable

t and the space variable y only. Moreover, the only non-zero component of
velocity occurring in the analysis will be Vz which we shall hereafter denote by

u(y, t). Under these assumptions, the boundary layer momentum equation can
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be written in the form [6]

∂u

∂t
= ν

∂2u

∂y2 + gβ(T − T∞) − σB2
y

ρ
(u − Kλtn) (5)

where ν is the kinematic viscosity, λ a constant and

K =

{
0, if By is fixed relative to the fluid

1, if By is fixed relative to the plate.

The boundary layer energy equation is

∂T

∂t
=

k

ρcp

∂2T

∂y2 (6)

The initial and boundary conditions relevant to the fluid flow subject to a

power-law velocity of the bounding plate then become

u = 0, T = T∞, for y ≥ 0 and t ≤ 0

u = λtn,
∂T

∂y
= −q

k
at y = 0 for t > 0

u → 0, T → T∞ as y → ∞ for t > 0 (7)

where q is the heat flux per unit area at the plate and λ is a non-zero constant.

3 Impulsive Motion

For impulsively moving vertical plate, we take the plate velocity as λ, which
corresponds to n = 0. We shall solve the boundary layer equations in dimen-

sionless forms. Using a characteristic length scale L = ν/λ, we introduce the
non-dimensional quantities

ȳ = y/L, t̄ = λt/L, ū = u/λ, T̄ = k(T − T∞)/(qL)

Pr = ρνcp/k, G = qgβL2/(kλ2), m = σLB2
y/(ρλ) (8)

In the above, the dimensionless parameters Pr, G, and m denote the Prandtl

number of the fluid, Grashof number and the square of Hartmann number,
respectively.
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Using equation (8), equations (5) and (6) can be expressed in the dimen-

sionless forms (dropping the bar, for convenience)

∂u

∂t
=

∂2u

∂y2 − m(u − K) + GT (9)

∂T

∂t
=

1

Pr

∂2T

∂y2 (10)

The initial and boundary conditions become

u = 0, T = 0 for y ≥ 0 and t ≤ 0

u = 1, ∂T/∂y = −1 at y = 0 for t > 0

u → 0, T → 0 as y → ∞ for t > 0 (11)

We observe that the energy equation (10) is uncoupled from the momen-

tum equation (9). We can therefore solve for the temperature variable T (y, t)
whereupon u(y, t) can be obtained by solving equation (9). Taking Laplace

transforms of equations (9) and (10) with respect to the t-variable will result
in a set of (ordinary) differential equations for the transformed functions in

the independent variable y. The resulting solutions of temperature and veloc-
ity variables in the ys-plane can be inverted using standard inverses combined

with convolution [7, 8]. The solutions in the physical yt-plane can be written
in the form

T (y, t) = 2

√
t

π Pr
exp

(
−Pr y2

4t

)
− y erfc

(√
Pr y

2
√

t

)
(12)

u(y, t) = K

[
1 − exp(−mt) + exp(−mt) erfc

(
y

2
√

t

)]

+
1 − K

2

[
exp(−y

√
m) erfc

(
y

2
√

t
−√

mt

)

+ exp(y
√

m) erfc

(
y

2
√

t
+
√

mt

)]

− α

[∫ t

0
{ϕ1(y, ξ) + ϕ2(y, ξ)}

√
t − ξ dξ

−
∫ t

0
{ϕ3(y, ξ) + ϕ4(y, ξ)}

√
t − ξ dξ

]
(13)
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where

ϕ1,2(y, t) =
1

2
exp(−bt ∓ iy

√
b Pr) erfc

(
y

2
√

t
∓ i

√
b Pr t

)

ϕ3,4(y, t) =
1

2
exp(−bt ∓ iy

√
b Pr) erfc

(
y
√

Pr

2
√

t
∓ i

√
bt

)

α =
2G√

π Pr(1 − Pr)
, b =

m

1 − Pr

and erfc(x) is the complementary error function defined by

erfc(x) = 1 − erf(x), erf(x) =
2√
π

∫ x

0
exp

(−η2) dη

In the above definitions of ϕi,j(y, t), (i = 1, 3; j = 2, 4), the upper sign goes

with i and the lower sign with j.

In the non-magnetic case, m = 0, it can be shown that

u(y, t) = erfc

(
y

2
√

t

)
+

α

12

[√
πy(y2 + 6t)erfc

(
y

2
√

t

)

−
√

π Pry(Pr y2 + 6t)erfc

(
y

2

√
Pr

t

)

−√
t(y2 + 8t) exp

(
−y2

4t

)

+
√

t(Pr y2 + 8t) exp

(
−Pr y2

4t

)]
(14)

It may be noted that the general velocity expression for the hydromagnetic flow,
as given in equation (13), is not valid when Pr = 1. The solution for this case
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is [9]

u(y, t) = K

[
1 − exp(−mt) + exp(−mt) erfc

(
y

2
√

t

)]

+
1 − K

2

[
exp(−y

√
m) erfc

(
y

2
√

t
−√

mt

)

+ exp(y
√

m) erfc

(
y

2
√

t
+
√

mt

)]

+
2G

m

[√
t

π
exp

(
−y2

4t

)
− y erfc

(
y

2
√

t

)]

− G

2
√

πm

∫ t

0

[
exp(−y

√
m) erfc

(
y

2
√

ξ
−
√

mξ

)

+ exp(y
√

m) erfc

(
y

2
√

ξ
+
√

mξ

)]
(t − ξ)−1/2 dξ (15)

The above solutions correspond to the special case n = 0 of the power law

velocity assumption λtn. However, the flow problems involving non-uniformly
accelerated motion of the vertical plate, (n �= 0, 1), may also become impor-
tant in certain applications. Solutions of equation (5) for such cases will be

investigated separately.

4 Discussion of Results

As mentioned earlier, our main objective in this work is to analyze the variation
of the boundary layer velocity u(y, t) with the Prandtl number. In Figures 1–3,

we have shown the velocity profiles for a set of combinations of the Grashoff
number G and the magnetic parameter m for 0.1 ≤ Pr ≤ 10.0 in the early

stages of the onset of motion (t = 0.1). The Figure 1 shows the velocity profiles
close to the boundary (y = 0.1) while the Figure 2 depicts the profiles further

away from the bounding plate (y = 0.5). The velocity profiles have been plotted
for the case of the applied magnetic field, By, being fixed relative to the fluid.
In general, velocity in the boundary layer is seen to decrease with Pr. The

decrease in the velocity is, however, more pronounced for those fluids whose
Prandtl numbers are less than unity (e.g., air). It is also to be noted that

velocity variations are far more sensitive to the changes in the parameters G
or m when Pr is less than unity, as can be seen from the profiles in Figures

1 and 2. In other words, one may conclude that the effects of the applied
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magnetic field or the buoyancy forces are dominant mainly for fluids whose

Prandtl numbers are less than unity. Furthermore, in order to analyze the
response of the boundary layer velocity to the mode of application (K) of the

magnetic field, we have plotted in Figure 3 the velocity profiles for a fixed value
of the magnetic parameter m. It can be seen that the fluid velocity variations

indeed depend upon whether the applied magnetic field is fixed relative to the
plate (K = 1) or to the fluid (K = 0); the velocity in the former case is higher
than the one in the latter case for all values of the Prandtl number considered

in this study. This observation holds good for both low and moderate values of
the buoyancy parameter G.

Figure 1: Variation of velocity with Prandtl number. K = 0, y = 0.1
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Figure 2: Variation of velocity with Prandtl number. K = 0, y = 0.5
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Figure 3: Variation of velocity with Prandtl number. K = 0.1, y = 0.5
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