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Abstract

In this paper, two concepts of directional waves: directional, nearly monochro-

matic waves and directional, nearly bi-chromatic waves are presented. Di-
rectional, nearly monochromatic waves are propagation-direction-based nearly

monochromatic waves, whose energy is almost concentrated in a single prop-
agation direction. Directional, nearly bi-chromatic waves are the ones whose
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energy is almost concentrated in two wave propagation directions and the ap-

proach of these directions is very close. We show that the modified Schrödinger
equation, which is modified from the Schrödinger equation, governs the envelope

created by nearly bi-chromatic waves and also the modified Schrödinger-Nohara
equation modified from the Schrödinger-Nohara equation governs the envelope

surface created by directional, nearly bi-chromatic waves.

1. INTRODUCTION

In the course of studying the physical characteristics of group waves (wave
packets)[1][2] in the water, the Schrödinger equation has played an important

role in the mathematical and physical analysis. The envelope, which is cre-
ated by group waves, has been considered to model them. We can consider

two types of model of group waves as nearly monochromatic waves and nearly
bi-chromatic waves. In the former waves, the energy is almost concentrated in
a single wavenumber (Definition 1). Whereas in the latter waves, the energy is

almost concentrated in two wavenumbers and the approach of these wavenum-
bers is very close (Definition 3). The Schrödinger equation basically governs

the envelope created by nearly monochromatic waves [3]. The past studies of
modeling of group waves almost focused on nearly monochromatic waves [4][5].

This paper deals with nearly bi-chromatic waves in the model of group waves.
We present two concepts of directional waves: directional, nearly monochro-

matic waves and directional, nearly bi-chromatic waves. Directional, nearly

monochromatic waves are propagation-direction-based nearly monochromatic
waves, whose energy is almost concentrated in a single propagation direction

(Definition 2). The Schrödinger-Nohara equation governs the envelope surface
created by directional, nearly monochromatic waves [6][7]. Directional, nearly

bi-chromatic waves are the ones whose energy is almost concentrated in two
wave propagation directions and the approach of these directions is very close

(Definition 4).
We show that the modified Schrödinger equation, which is modified from

the Schrödinger equation, governs the envelope created by nearly bi-chromatic

waves and also the modified Schrödinger-Nohara equation modified from the
Schrödinger-Nohara equation governs the envelope surface created by direc-

tional, nearly bi-chromatic waves in this paper.
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The following section presents preliminaries of the envelope equations of

nearly monochromatic waves (the Schrödinger equation) and directional, nearly
monochromatic waves (the Schrödinger-Nohara equation) as well. The third

section defines nearly bi-chromatic waves and directional, nearly bi-chromatic
waves and then presents main results.

2. Preliminaries

Definition 1 Nearly monochromatic waves u(x, t) [3] are defined by the waves
whose energy is almost concentrated in one wavenumber as follows [10]:

u(x, t) =

∫

k

S1(k)ei{kx−ω(k)t}dk. (1)

Here k, t, x, ω and S1 denote wavenumber, time, space, angular frequency

of dispersive characteristics with respect to wavenumber and spectrum of nearly
monochromatic waves, respectively. The profile of the spectrum of nearly monochro-

matic waves has a peak at k = k0 and spreads εk (sufficiently small) around k0.

Remark 1 Nearly monochromatic waves create an envelope and we can see it
as swell in ocean.

Theorem 1 The envelope created by nearly monochromatic waves satisfies the

following linear Schrödinger equation.[3][6]

i

(

∂A(x, t)

∂t
+ ω

′

(k0)
∂A(x, t)

∂x

)

+
1

2!
ω

′′

(k0)
∂2A(x, t)

∂x2
= 0 (2)

Remark 2 Here A(x, t) is the amplitude of nearly monochromatic waves of the

function of space x and time t. A(x, t) acts as the envelope of traveling waves.
ω(n)(k) means the n-th derivative of ω with respect to k.

proof We consider plane traveling waves u(x, t) with dispersive characteristics

of the form:
u(x, t) = A(x, t)ei{k0x−ω(k0)t} (3)

as an approximation of the class of u(x, t) in Equation (1). This is based on
the assumption that most of the energy is concentrated in one wavenumber k0
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(nearly monochromatic waves) and the amplitude A(x, t) is not constant but

varies slowly in space and time. So, A(x, t) is derived from Equations (1) and
(3) as follows:

A(x, t) =

∫

k

S1(k)eiP1(x,k,t)dk, (4)

where
P1(x, k, t) = (k − k0)x − {ω(k) − ω(k0)}t. (5)

The time derivative of A(x, t) is

∂A(x, t)

∂t
=

∫

k

(−i) {ω(k) − ω(k0)}S1(k)eiP1(x,k,t)dk. (6)

Moreover, the spatial derivative of A(x, t) is obtained as follows:

∂nA(x, t)

∂xn
=

∫

k

in(k − k0)
nS1(k)eiP1(x,k,t)dk, n = 1, 2, 3, · · · . (7)

Equation (7) shows the spatial derivative of the envelope equals an envelope of

the modified spectrum S
(n)
1,m(k), i.e.,

∂nA(x, t)

∂xn
=

∫

k

S
(n)
1,m(k)eiP1(x,k,t)dk, (8)

where

S
(n)
1,m(k) = in(k − k0)

nS1(k). (9)

On the other hand, the dispersion relation of ω(k) can be written as the
following Taylor expansion based on the profile of the spectrum defined by

Definition 1:

ω(k) = ω(k0)+ω′(k0)(k−k0)+
1

2!
ω′′(k0)(k−k0)

2+
1

3!
ω′′′(k0)(k−k0)

3+· · · . (10)

Substituting the relations of Equations (7) and (10) into Equation (6) leads to
the following:

∂A(x, t)

∂t
=

∞
∑

n=1

(−1)nin−1ω
(n)(k0)

n!

∂nA(x, t)

∂xn
. (11)
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Equation (11) represents the higher order governing equation that governs the

amplitude of nearly monochromatic waves, namely, the equation that the enve-
lope of nearly monochromatic waves satisfies. Neglecting the third and higher

order of spatial derivatives in Equation (11), we obtain the linear Schrödinger
equation of Theorem 1. qed

Theorem 2 The envelope surface created by two-dimensional nearly monochro-
matic waves with a propagation direction (θ0) satisfies the following Schrödinger

equation.[6][7]

i

{

∂Af(x, y, t)

∂t
+ ω

′

(k0)

(

cos θ0
∂Af(x, y, t)

∂x
+ sin θ0

∂Af(x, y, t)

∂y

)}

+
1

2!
ω

′′

(k0)

(

∂2Af(x, y, t)

∂x2
+

∂2Af(x, y, t)

∂y2

)

= 0 (12)

Remark 3 Here Af(x, y, t) is the amplitude of two-dimensional nearly monochro-
matic waves of the function of two dimensional spaces x, y and time t. Af(x, y, t)
acts as the envelope surface of traveling waves. Equation (12) has the robustness

about the propagation direction; namely, the small variation of the propagation
direction makes no change of the original equation [8].

proof Simple expansion from Theorem 1 [6]. qed

Definition 2 Directional, nearly monochromatic waves u(x, y, t) are defined by
the waves whose energy is almost concentrated in one propagation direction of

waves as follows [6]:

u(x, y, t) =

∫

θ

G1(θ)e
i{k0x cos θ+k0y sin θ−ω(k0)t}dθ, (13)

where G1(θ) denotes the directional spectrum of waves considered here. The
profile of the directional spectrum of waves has a peak at θ = θ0 and spreads εθ

(sufficiently small) around θ0.

Remark 4 Directional, nearly monochromatic waves also create an envelope
surface.

Theorem 3 The envelope surface created by directional, nearly monochromatic
waves satisfies the following Schrödinger-Nohara equation. [6][7]

cos θ0
∂Aθ(x, y)

∂x
+ sin θ0

∂Aθ(x, y)

∂y
=

i

2k0

(

∂2Aθ(x, y)

∂x2
+

∂2Aθ(x, y)

∂y2

)

(14)
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Remark 5 Here Aθ(x, y) is the amplitude of directional, nearly monochromatic
waves of the function of two dimensional spaces x and y. Aθ(x, y) acts as the

time-invariant envelope surface of traveling waves. θ0 denotes an almost con-
centrated wave propagation direction. The Schrödinger-Nohara equation shows

the steady state of Equation (12). Therefore, the envelope surface created by
directional, nearly monochromatic waves equals the steady state of the enve-
lope surface created by two-dimensional wavenumber-based nearly monochro-

matic waves.

proof Directional, nearly monochromatic waves have the fixed wavenumber k0

but spread over small propagating directions εθ around the direction θ0, so most
of the wave energy is concentrated in one propagating direction θ0. We then

can assume that two-dimensional plane traveling waves u(x, y, t) have the form
as:

u(x, y, t) = Aθ(x, y, t)ei{k0x cos θ0+k0y sin θ0−ω(k0)t}. (15)

HereCAθ(x, y, t) indicates the amplitude of nearly monochromatic waves in
terms of the directionality. Aθ(x, y, t) is immediately obtained from Equations

(13) and (15) as follows:

Aθ(x, y, t) =

∫

θ

G1(θ)e
iP θ

1 (x,y,θ)dθ

= Aθ(x, y), (16)

P θ
1 (x, y, θ) = k0x(cos θ − cos θ0) + k0y(sin θ − sin θ0). (17)

We can find that Aθ(x, y, t) becomes time-invariant, i.e., Aθ(x, y) from Equa-
tions (16) and (17).

The partial derivatives of Aθ(x, y) with respect to x and y are as follows:

∂Aθ(x, y)

∂x
= −ik0 cos θ0A

θ(x, y) + ik0

∫

θ

cos θG1(θ)e
iP θ

1 (x,y,θ)dθ, (18)

∂Aθ(x, y)

∂y
= −ik0 sin θ0A

θ(x, y) + ik0

∫

θ

sin θG1(θ)e
iP θ

1 (x,y,θ)dθ. (19)

In general, we obtain the following relations.
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∫

θ

cosn θG1(θ)e
iP θ

1 (x,y,θ)dθ =

(

cosn θ0 nC1 cosn−1 θ0(− i
k0

) nC2 cosn−2 θ0(− i
k0

)2 · · · (− i
k0

)n
)

(20)

×
(

Aθ(x, y) ∂Aθ(x,y)
∂x

∂2Aθ(x,y)
∂x2 · · · ∂nAθ(x,y)

∂xn

)T

∫

θ

sinn θG1(θ)e
iP θ

1 (x,y,θ)dθ =

(

sinn θ0 nC1 sinn−1 θ0(− i
k0

) nC2 sinn−2 θ0(− i
k0

)2 · · · −( i
k0

)n
)

(22)

×
(

Aθ(x, y) ∂Aθ(x,y)
∂y

∂2Aθ(x,y)
∂y2 · · · ∂nAθ(x,y)

∂yn

)T

where the superscript of T means the transpose of vectors. The Schrödinger-
Nohara equation is obtained by n = 2 in Equations (20) and (21). qed

3. Main Results

Definition 3 Nearly bi-chromatic waves u(x, t) are defined by the waves whose
energy is almost concentrated in two wavenumbers and the approach of these
wavenumbers is very close as follows:

u(x, t) =

∫

k

S2(k)ei{kx−ω(k)t}dk. (24)

Here S2 denotes the spectrum of nearly bi-chromatic waves. The profile of the

spectrum of nearly bi-chromatic waves has two peaks at k = k0 and k = k1 and
spreads εk (sufficiently small) around k0 and k1. Moreover, k0 and k1 are very
closely approached with each other as follows:

k1 = k0 + ∆k (∆k/k0 � 1). (25)

Remark 6 Nearly bi-chromatic waves create an envelope and we can see it as
beat in ocean.

Theorem 4 The envelope created by nearly bi-chromatic waves satisfies the
following modified Schrödinger equation.
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i

{

∂A(x, t)

∂t
+

(

ω
′

(k0) +
∆ke

ig(x,t)

1 + eig(x,t)
ω

′′

(k0)

)

∂A(x, t)

∂x

}

+
1

2!

(

ω
′′

(k0) +
∆ke

ig(x,t)

1 + eig(x,t)
ω

′′′

(k0)

)

∂2A(x, t)

∂x2
= 0, (26)

where

g(x, t) = ∆k

(

x − ω(k0)

2k0
t

)

= ∆k(x − ω
′

(k0)t).
1 (27)

Remark 7 The modified Schrödinger equation becomes the Schrödinger equa-

tion of Theorem 1 when ∆k = 0; namely, ∆k = 0 means that nearly bi-chromatic
waves change to nearly monochromatic waves.

proof The following equation can be assumed by the definition of nearly bi-
chromatic waves.

u(x, t) = A(x, t)
{

ei(k0x−ω(k0)t) + ei(k1x−ω(k1)t)
}

(28)

This is based on the assumption that most of the energy is concentrated in two

wavenumbers k0 and k1, which are very closely approached with each other as
described Definition 3. ω(k1) is also written by

ω(k1) = ω(k0) + ∆ω, (29)

where

∆ω = ω
′

(k0)∆k.
2 (30)

A(x, t) is derived from Equations (22) and (26) using Equations (23) and (27)

as follows:

A(x, t) =
1

1 + eig(x,t)

∫

k

S2(k)eiP2(x,k,t)dk. (31)

where P2(x, k, t) = P1(x, k, t).
The time derivative of A(x, t) is

∂A(x, t)

∂t
= ω

′

(k0)
i∆ke

ig(x,t)

(1 + eig(x,t))2

∫

k

S2(k)eiP2(x,k,t)dk

+
1

1 + eig(x,t)

∫

k

(−i)(ω(k)− ω(k0))S2(k)eiP2(x,k,t)dk. (32)

1The dispersion relation of ω(k) is presented by ω(k) =
√

gk tanh(hk) in water waves [9]. Here g and h denote
acceleration due to gravity and uniform water depth, respectively. If hk � 1 (deep water), then ω(k) =

√
gk.

So, ω
′

(k0) = 1
2

√

g
k0

= ω(k0)
2k0

.

2ω(k1) =
√

gk1 =
√

g(k0 + ∆k) =
√

gk0

√

1 + ∆k

k0

∼= ω(k0)(1 + ∆k

2k0

). So, ∆ω = ω(k0)
2k0

∆k = ω
′

(k0)∆k .
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Moreover, the spatial derivative of A(x, t) is obtained by neglecting the second

and higher order of ∆k as follows:

∂nA(x, t)

∂xn
∼= −in∆ke

ig(x,t)

(1 + eig(x,t))2

∫

k

in−1(k − k0)
n−1S2(k)eiP2(x,k,t)dk

+
1

1 + eig(x,t)

∫

k

in(k − k0)
nS2(k)eiP2(x,k,t)dk, n = 1, 2, 3, · · · .(33)

Substituting the relations of Equations (10) and (31) into Equation (30) leads
to the following:

∂A(x, t)

∂t
=

∞
∑

n=1

(−1)nin−1ω
(n)(k0)

n!

∂nA(x, t)

∂xn

+
∆ke

ig(x,t)

1 + eig(x,t)

∞
∑

n=1

(−i)n+1ω
(n+1)(k0)

n!

∂nA(x, t)

∂xn
(34)

Equation (32) represents the higher order governing equation, which governs
the amplitude of nearly bi-chromatic waves; namely, the equation that the
envelope of nearly bi-chromatic waves satisfies. Neglecting the third and higher

order of spatial derivatives in Equation (32), we obtain the modified Schrödinger
equation of Theorem 4. qed

Remark 8 Equation (32) becomes to be identical with Equation (11) when
∆k = 0 (namely, when nearly bi-chromatic waves change to nearly monochro-

matic waves).

Definition 4 Directional, nearly bi-chromatic waves u(x, y, t) are defined by

the waves whose energy is almost concentrated in two wave propagation direc-
tions and the approach of these directions is very close as follows:

u(x, y, t) =

∫

θ

G2(θ)e
i{k0x cos θ+k0y sin θ−ω(k0)t}dθ. (35)

Here the directional spectrum G2 has two peaks at θ = θ0 and θ = θ1 and spreads

εθ (sufficiently small) around θ0 and θ1. Moreover, θ0 and θ1 are very closely
approached with each other as follows:

θ1 = θ0 + ∆θ (∆θ/θ0 � 1). (36)

Theorem 5 The envelope created by directional, nearly bi-chromatic waves sat-
isfies the following modified Schrödinger-Nohara equation.
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(

1 −∆θe
−i∆θh(x,y)

1+e−i∆θh(x,y)

)

(

cos θ0 sin θ0

sin θ0 − cos θ0

)(

∂Aθ(x,y)
∂x

∂Aθ(x,y)
∂y

)

=
i

2k0

(

∂2Aθ(x, y)

∂x2
+

∂2Aθ(x, y)

∂y2

)

, (37)

where

h(x, y) = k0x sin θ0 − k0y cos θ0. (38)

Remark 9 The modified Schrödinger-Nohara equation becomes to be identi-
cal with the Schrödinger-Nohara equation of Theorem 3 when ∆θ = 0 (namely,
when directional, nearly bi-chromatic waves change to directional, nearly monochro-

matic waves).

proof The following equation can be assumed by the definition of directional,
nearly bi-chromatic waves.

u(x, y, t) = Aθ(x, y, t)
{

ei(k0x cos θ0+k0y sin θ0−ω(k0)t) + ei(k0x cos θ1+k0y sin θ1−ω(k0)t)
}

(39)
HereCAθ(x, y, t) indicates the amplitude of nearly bi-chromatic waves in terms

of the directionality. This is based on the assumption that most of the energy is
concentrated in two wave propagation directions θ0 and θ1 as described Defini-

tion 4. Then Aθ(x, y, t) is immediately obtained from Equations (33) and (37)
using Equation (34) as follows:

Aθ(x, y, t) =
1

1 + e−i∆θh(x,y)

∫

θ

G2(θ)e
iP θ

2 (x,y,θ)dθ

= Aθ(x, y) (40)

where P θ
2 (x, y, θ) = P θ

1 (x, y, θ). Aθ(x, y, t) becomes to be a time-invariant form

of Aθ(x, y) same as Equation (16). Here we obtain the first order partial deriva-
tives of Aθ(x, y) with respect to x and y as follows:

∂Aθ(x, y)

∂x
= −

(

ik0 cos θ0 −
i∆θk0 sin θ0e

−i∆θh(x,y)

1 + e−i∆θh(x,y)

)

Aθ(x, y)

+
ik0

1 + e−i∆θh(x,y)

∫

θ

cos θG2(θ)e
iP θ

2 (x,y,θ)dθ, (41)

∂Aθ(x, y)

∂y
= −

(

ik0 sin θ0 +
i∆θk0 cos θ0e

−i∆θh(x,y)

1 + e−i∆θh(x,y)

)

Aθ(x, y)

+
ik0

1 + e−i∆θh(x,y)

∫

θ

sin θG2(θ)e
iP θ

2 (x,y,θ)dθ. (42)
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Moreover, the second order derivatives of Aθ(x, y) are obtained through the
neglection of the second and higher order of ∆θ as follows:

∂2Aθ(x, y)

∂x2
= −

(

k2
0 cos2 θ0 −

∆θk
2
0 sin 2θ0e

−i∆θh(x,y)

1 + e−i∆θh(x,y)

)

Aθ(x, y)

+

(

2k2
0 cos θ0

1 + e−i∆θh(x,y)
− 2∆θk

2
0 sin θ0e

−i∆θh(x,y)

(1 + e−i∆θh(x,y))2

)

×
∫

θ

cos θG2(θ)e
iP θ

2 (x,y,θ)dθ (43)

− k2
0

1 + e−i∆θh(x,y)

∫

θ

cos2 θG2(θ)e
iP θ

2 (x,y,θ)dθ,

∂2Aθ(x, y)

∂y2
= −

(

k2
0 sin2 θ0 +

∆θk
2
0 sin 2θ0e

−i∆θh(x,y)

1 + e−i∆θh(x,y)

)

Aθ(x, y)

+

(

2k2
0 sin θ0

1 + e−i∆θh(x,y)
+

2∆θk
2
0 cos θ0e

−i∆θh(x,y)

(1 + e−i∆θh(x,y))2

)

×
∫

θ

sin θG2(θ)e
iP θ

2 (x,y,θ)dθ (44)

− k2
0

1 + e−i∆θh(x,y)

∫

θ

sin2 θG2(θ)e
iP θ

2 (x,y,θ)dθ.

From Equations (39) and (40) the following relations are obtained.

cos θ0
∂Aθ(x, y)

∂x
+ sin θ0

∂Aθ(x, y)

∂y
=

−ik0A
θ(x, y) +

ik0

1 + e−i∆θh(x,y)

∫

θ

cos(θ − θ0)G2(θ)e
iP θ

2 (x,y,θ)dθ (45)

sin θ0
∂Aθ(x, y)

∂x
− cos θ0

∂Aθ(x, y)

∂y
=

i∆θk0e
−i∆θh(x,y)

1 + e−i∆θh(x,y)
Aθ(x, y) − ik0

1 + e−i∆θh(x,y)

∫

θ

sin(θ − θ0)G2(θ)e
iP θ

2 (x,y,θ)dθ (46)

We also obtain the following relation from Equations (41) and (42).

∂2Aθ(x, y)

∂x2
+

∂2Aθ(x, y)

∂y2
=

−2k2
0A

θ(x, y) +
2k2

0

1 + e−i∆θh(x,y)

∫

θ

cos(θ − θ0)G2(θ)e
iP θ

2 (x,y,θ)dθ (47)

+
2∆θk

2
0e

−i∆θh(x,y)

(1 + e−i∆θh(x,y))2

∫

θ

sin(θ − θ0)G2(θ)e
iP θ

2 (x,y,θ)dθ
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The modified Schrödinger-Nohara equation is obtained from Equations (43),

(44) and (45). qed
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