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1 Introduction

The structural stability was originated by A.A.Andronov and L.S.Pontryagin
1937 [2].

Let f : M → M be a diffeomorphism of a compact Remannian manifold M,
and ρ(∗, ∗) be the distance on M. We suppose that the manifold M is in Rn. The
space of diffeomorphisms has the following topology. The C0-distance between
f and g is ρ(f, g) = maxx∈M ρ(f(x), g(x)). The differential Df : TM → TM
has a norm

‖Df‖ = max
x∈M

|Df(x)| = max
x∈M

max
|v|=1

|Df(x)v| .

The C1-distance ρ1(f, g) = ρ(f, g) + ‖Df −Dg‖ .
1The research was supported by the Scientific and Technical Council of Turkey (NATO-CP).
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Definition 1 The diffeomorphism f is structurally stable if for each ε > 0
there is δ > 0 that from the inequality ρ1(f, g) < δ it follows the existence a
homeomorphism h : M → M such that fh = hg and C0-distance ρ(h, id) < ε,

where id is the identity mapping on M.

Let x be a point of M and TM(x) be the tangent space at x. The stable
and unstable subspaces at x is defined as

S(x) = {v ∈ TM(x) : |Dfn(x)v| → 0 as n → +∞},
U(x) = {v ∈ TM(x) : |Dfn(x)v| → 0 as n → −∞},

respectively.

Definition 2 The transversality condition holds on the manifold M if

TM(x) = S(x) + U(x)

at each point x ∈ M.

By summing results by J.Robin [26], C.Robinson [27] and R.Mane [16, 17]
we can formulate the following theorem.

Theorem 1 In order to the diffeomorphism f be structurally stable it is neces-
sary and sufficient that the transversality condition holds on the manifold M .

Thus Theorem 1 solves the problem of structural stability. However appli-
cation of this result is limited by difficulties of verification of the transversality
condition [19]. Even an application of the classical result by A.A.Andronov
and L.S.Pontryagin requires to recognize a structure of dynamics governed by
the system of differential equations. In this paper we describe equivalent nec-
essary and sufficient conditions for the structural stability and prove that these
conditions can be test by a finite algorithm.

2 Needed results

2.1 Linear extension.

Let (E, M, π) be a vector bundle over M , E be a total space, and π be a
projector from E onto the base M . Assume that for each x ∈ M a fiber
E(x) = π−1(x) is d-dimension linear space isomorphic to Rd.
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Definition 3 A homeomorphism F of the total space E is said to be a linear
extension of f , if F takes fibers to fibers: f ◦ π = π ◦ F and the restriction
F |E(x) : E(x) → E(f(x)) on each fiber E(x) is a linear isomorphism.

As an example of a linear extension we will keep in mind a diffeomorphism
f : M → M and its differential Df = F on the tangent bundle TM = E. The
vector bundle E is associated with a projective bundle P, in this process the
linear extension F : E → E induces a mapping PF : P → P . For a nonzero
vector v we denote by [v] = y a point from P corresponding to the space spanned
over v. Let (P, M,Pπ) be a bundle over M such that each fiber (Pπ)−1(x) is a
projective manifold P d−1(x) associated with the fiber E(x) of E. The bundle
(P, M,Pπ) is called the projective bundle associated with the linear bundle
(E, M, π). We use the following coordinates: (x, v) or (x, y, l) on E and (x, y)
on P, where x ∈ M, v ∈ E(x), y ∈ P d−1(x), l ∈ L(y). In this coordinates the
linear extension F : E → E of f is of the form F (x, v) = (f(x), A(x)v). The
mapping F induces the mapping PF : P → P on the projective bundle that
the diagram

E
F→ E

↓L ↓L

P
PF→ P

↓Pπ ↓Pπ

M
f→ M

commutes.

2.2 Dual differential.

The adjoint of an operator T : E → E is the operator T ∗ : E → E defined by
the equality 〈Tv, u〉 = 〈v, T ∗u〉, where 〈v, u〉 is an inner produc. As mention
above the differential Df : TM → TM of diffeomorphism f is an example of
linear extension of f. The differential Df takes the tangent space TM(x) at
point x onto TM(f(x)) at point f(x). Let us consider a cascade conjugate to
the differential, which defined as

D̂f(x) = ((Df(x))∗)−1 : TM(x) → TM(f(x)).

By the definition, the conjugate cascade covers the diffeomorphism f . We can
consider the mapping D̂f : TM → TM as the dual differential. The main
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property of the conjugate cascade is〈
Dfv, D̂fu

〉
= 〈v, u〉 ,

i.e. the inner product does not change under the actions of the differential and
the dual differential [6]. Let Z = {...− 2,−1, 0, 1, 2, ...} be the set of integers.

Definition 4 [6, 32] The dual differential is said to have only trivial bounded
trajectory, if any trajectory {(xn+1, vn+1) = (f(xn), D̂f(xn)vn, n ∈ Z} that is
bounded, is the zero trajectory, i.e., vn = 0.

Theorem 2 [5] The transversality condition holds if and only if the dual dif-
ferential has only trivial bounded trajectory.

2.3 Chain recurrent set

Definition 5 [3] Let ε > 0 be given. An infinite in both direction sequence
{xk, k ∈ Z} is named an ε-trajectory if for any k the distance

ρ(f(xk), xk+1) < ε. (2.1)

If the squence {xk} is periodic, the points are called ε-periodic.

Denote the set of ε-periodic points by Q(ε).

Definition 6 [9] A point x is called chain recurrent if x is ε-periodic for each
positive ε, i.e., there exists a periodic ε-trajectory passing through x. A chain
recurrent set, denoted Q, is the set of all the chain recurrent points.

It should be remarked that if a chain recurrent point is not periodic then
there exists as small as one likes perturbation of f in C0-topology for which
this point is periodic [25]. One may say that a chain recurrent point generates
periodic trajectory by C0-perturbation [33].

From the definition of the chain recurrent set it follows immediately that

Q = lim
ε→0

Q(ε) =
⋂
ε>0

Q(ε).

Thus the family of open sets {Q(ε), ε > 0} forms a fundamental system of
neighborhoods of the chain recurrent set.
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2.4 Hyperbolicity.

The diffeomorphism f is said to be hyperbolic on Λ ⊂ M if there are invariant
subspaces Es, Eu ⊂ TM |Λ and positive d and α such that

TM |Λ = Es ⊕ Eu,

|Dfn(x)v| ≤ d |v| exp(−αn), x ∈ Λ, v ∈ Es(x) n > 0,∣∣Df−n(x)v
∣∣ ≤ d |v| exp(−αn), x ∈ Λ, v ∈ Eu(x) n > 0.

The condition TM |Λ = Es⊕Eu is equivalent TM |Λ = Es+Eu and Es∩Eu = ∅.
The invariance of subbundle E∗ means Df(x)E∗(x) = E∗(f(x)).

Theorem 3 [6, 16] If the transversality condition holds, then

i) the set Λ = {x ∈ M : TM(x) = S(x)⊕ U(x)} is closed and invariant,

ii) the diffeomorphism f is hyperbolic on Λ, and S(x) = Es(x), U(x) =
Eu(x), x ∈ Λ,

iii) the chain recurrent set Q ⊂ Λ.

2.5 Morse spectrum.

Let us consider the linear extension F : E → E and the mapping PF : P → P

on the projective bundle associated with F . If ξ = {(x0, y0), ..., (xp, yp) =
(x0, y0)} is a periodic ε-trajectory of a period p, then the Lyapunov exponent
of ξ

λ(ξ) =
1

p

p−1∑
i=0

ln |A(xi)e(yi)|,

where |e(yi)| = 1.

Definition 7 The Morse spectrum of F is

Σ(F ) = {λ ∈ R : there are εk → 0 and periodic

εk − trajectories ξk with λ(ξk) → λ as k →∞}.

Thus, the Morse spectrum is the limit set of Lyapunov exponents of ε-
periodic trajectories under ε → 0.
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2.6 Attractor and repeller.

A subset Ω is called a component of the chain-recurrent set if Ω is a maximal set
such that each two points from Ω can be connected by a periodic ε-trajectory
for any ε > 0. Recall that a closed invariant asymptotically stable by Lyapunov
set is called an attractor. An attractor of the inverse mapping f−1 is called a
repeller of f . An intersection of an attractor and a repeller is called a Morse
set.

Proposition 1 An invariant set Λ is an attractor of f if and only if there is a
neighborhood U of Λ such that

f(cl U) ⊂ U, Λ =
⋂
n>0

fn(U),

where cl· stands for the closure.

The described set U is called a fundamental neighborhood of an attractor
Λ, and the set W s(Λ) =

⋃
n<0 fn(U) is called an attraction domain of Λ. The

closed set Λ∗ = M\W s(Λ) is a repeller which is named the dual repeller to Λ.

3 Theorems

Theorem 4 The following conditions are equivalent

(i) f is hyperbolic on the chain recurrent set Q,

(ii) the dual differential is hyperbolic on the chain recurrent set Q,

(iii) the Morse spectrum of the differential does not contain 0,

(iv) the Morse spectrum of the dual differential does not contain 0,

Suppose that one of the conditions of the previous Theorem holds. Then
the Morse spectrum of the dual differential consists of two separated parts
positive Σ+ and negative Σ−. The chain recurrent set CR ⊂ P is divided on
two separated parts CR+ and CR− such that CR++CR− = CR and the Morse
spectrum Σ(D̂f |CR+) = Σ+ of the restriction D̂f |CR+ is positive and the Morse
spectrum Σ(D̂f |CR−) = Σ− is negative. Let W u(CR+) be the unstable manifold
of CR+ and W s(CR−) be the stable manifold of CR− for the projective mapping
PD̂f .
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Figure 1: Construction of a Symbolic Image.

Theorem 5 The diffeomorphism f is structurally stable if and only if the
Morse spectrum of the dual differential does not contain 0, the unstable manifold
W u(CR+) is an attractor and the stable manifold W s(CR−) is its dual repeller.

4 Symbolic Image

In this section we describe a finite algorithm for verification of Theorem 5
conditions by applied symbolic dynamics methods. The verification consists
of two main parts: a calculation of Morse spectrum of D̂f and a construction
of the attractor W u(CR+) and its dual repeller W s(CR−). A finite algorithm
for calculation of Morse spectrum is available in [24], and a finite algorithm
for construction of an attractor, its domain of attraction and dual repeller is
given in [23]. Let f : M → M be a homeomorphism of manifold M and
C = {M(1), · · · ,M(s)} be a finite covering of M by closed sets. The sets M(i)
are called cells of the covering.

Definition 8 [18] Let G be a directed graph having s vertices where each vertex
i corresponds to the cell M(i). The vertices i and j are connected by a directed
edge i → j if and only if M(j)∩ f(M(i)) 6= ∅. The graph G is called a symbolic
image of f with respect to the covering C.

Denote by V er the set of vertices of G. The graph G can be considered as
a correspondence G : V er → V er between the vertices. Graph G is uniquely
determined by its s × s matrix of transitions Π = (πij): πij = 1 if and only
if there is the directed edge i → j, otherwise πij = 0. Let d be the largest
diameter of the cells M(i) of the covering C.
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Definition 9 A sequence {zk} of vertices of the graph G is called an admissible
path or simply a path if for each k the graph G contains the edge zk → zk+1. If
the sequence {zk} is periodic, then {zk} is called a periodic (admissible) path.

There is a natural connection between admissible paths on the symbolic
image G and ε-trajectories of the homeomorphism f .

Definition 10 A vertex of the symbolic image is called recurrent if there is a
periodic path passing through it. The set of recurrent vertices is denoted by RV.
A pair of recurrent vertices i, j are called equivalent if there is a periodic path
through i and j.

By Definition 10, the set of recurrent vertices RV decomposes into several
classes {Hk} of equivalent recurrent vertices.

Consider a linear bundle (E, M.π) and a linear extension F (x, v) = (f(x),
A(x)v). Let us apply the symbolic image construction to the projective mapping
PF. Let G(f) be a symbolic image of f to a covering C(M) = {m(1), · · · , m(q)}.
To construct a symbolic image of the induced mapping PF : P → P it is
convenient to choose a covering C(P ) = {M(z)} of the projective bundle P
agreed with the covering C(M) such that the projection of each cell is a cell:
Pπ(M(z)) = m(j). The agreed covering generates a natural mapping h from
G(PF ) onto G(f) taking the vertices z on the vertex j: h(z) = j. Since
PF (M(z1))∩M(z2) 6= ∅ and Pπ(M(z1,2)) = m(j1,2) implies f(m(j1))∩m(j2) 6=
∅, the directed edge z1 → z2 on G(PF ) is mapped by h on the directed edge
j1 → j2 on G(f). Hence, the mapping h takes the directed graph G(PF ) on
the directed graph G(f) so that the diagram

V er
G(PF )→ V er

↓h ↓h

ver
G(f)→ ver

commutes, where V er and ver are the vertices of G(PF ) and G(f), respectively.

4.1 Spectrum of symbolic image.

Let F : E → E be a linear extension of f , PF : P → P be the associated
projective mapping and G(PF ) be the symbolic image of PF . The existence
of an edge i → j on G(PF ) guarantees the existence of a point (x, y) in the cell
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M(i) such that the image PF (x, y) is in the cell M(j). Obviously, such point is
not unique. By setting a[ji] = |A(x)e(y)|, |e| = 1 we fix a framing of the edge
i → j. The value a[ji] is a change coefficient of a vector length. The structure
consisting of the symbolic image G(PF ) and the values {a[ji], i → j} is said
to be the framed symbolic image G(PF ).

Each periodic path ω = {z0, z1, ..., zp = z0} on G(PF ) of period p induces
the Lyapunov exponent

λ(ω) =
1

p

p∑
k=1

ln a[zkzk−1].

Definition 11 The spectrum of the symbolic image on the set of recurrent ver-
tices RV is

Σ(G(PF )) =

{λ ∈ R : there are periodic paths ωk with λ(ωk) → λ as k →∞}.

4.2 Computation of spectrum.

Let us consider some class H of equivalent recurrent vertices. A periodic path
ω = {z1, ..., zp = z0} is called simple if the vertices z1, ..., zp are different, i.e.,
zi 6= zj as i 6= j; i, j = 1, ..., p. Since a symbolic image has a finite number of
vertices, the number of simple period paths is finite. For a class H let φ1, ..., φq

be the all simple periodic paths of periods p1, ..., pq, respectively. Let

λ(φj) =
1

pj

pj∑
k=1

ln a[zj
kz

j
k−1]

be the characteristic exponent of periodic path φj = {zj
1, ..., z

j
pj
}. Let

λmin(H) = min{λ(φj), j = 1, ..., q},
λmax(H) = max{λ(φj), j = 1, ..., q}

be the minimum and the maximum of characteristic exponents of simple peri-
odic paths of the class H.

Theorem 6 [24] The spectrum of the symbolic image consists of the intervals
[λmin(Hk), λmax(Hk)], where {Hk} is the full family of classes of equivalent re-
current vertices of the symbolic image G(PF ).

Electronic Journal. http://www.neva.ru/journal 9
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Since M is compact, the mapping A(x) has a modulus of continuity ηA(ρ)
on x. Set

η(ρ) = ηA(ρ) + max
x∈M

|A(x)|ρ,

θ = ( min
x∈M, |e|=1

|A(x)e|)−1 = max
x∈M

|A−1(x)|.

Theorem 7 [24] The Morse spectrum Σ(F ) of the linear extension F is in the
union ⋃

k

[λmin(Hk)− θη(d), λmax(Hk) + θη(d)],

where {Hk} is the full family of classes of equivalent recurrent vertices on sym-
bolic image G(PF ), d is a maximal diameter of cells of covering C(P ).

Thus Theorem 7 lets to estimate the Morse spectrum.

4.3 Localization of the chain recurrent set.

Denote by RV (d) the union of cells M(i) for which the vertices i are recurrent

RV (d) = {
⋃

M(i) : i is recurrent},

where d is the largest diameter of the cells M(i). It should be noted that in fact
the constructed set RV (d) depends on the covering C(P ). However, in what
follows we need only to consider the dependence of RV (d) on d.

Theorem 8 [20, 21]

1. The set RV (d) is a closed neighborhood of the chain recurrent set CR,
i.e.,

CR ⊂ RV (d).

2. The chain recurrent set CR coincides with the intersection of the sets
RV (d) for all positive d:

CR =
⋂
d>0

RV (d).

Theorem 8 makes possible to localize the chain recurrent set without pre-
liminary information on a dynamical system. The subdivision is a main step of
the localizing algorithm.

Electronic Journal. http://www.neva.ru/journal 10
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4.4 Subdivision process.

Let C = {M(i)} be a covering of M and G be the symbolic image to C. Suppose
a new covering NC is a subdivision of C. It is a convenience to designate the cells
of the new covering as m(i, k). This means that each cell M(i) is subdivided
such that new cells m(i, k), k = 1, 2, ... , form a subdivision of the cell M(i)⋃

k

m(i, k) = M(i).

Denote by NG the symbolic image to the new covering NC. In this case
the vertices of the new symbolic image are designed as (i, k). The described
subdivision generates a natural mapping h∗ from NG onto G which takes the
vertices (i, k) onto the vertex i. Since from f(m(i, k)) ∩ m(j, l) 6= ∅ it follows
that f(M(i)) ∩ M(j) 6= ∅, the directed edge (i, k) → (j, l) is mapped onto the
directed edge i → j. Hence, the mapping h∗ takes the directed graph NG on
the directed graph G. From this it follows that every path on the new graph
NG is transformed on some path on the graph G.

4.5 Localizing algorithm.

We apply the process of adoptive subdivision. Here the adaptive subdivision
means that some cells are excluded from consideration, but other are subdi-
vided. An algorithm localizing the chain recurrent set CR is available in [20, 21].
It consists of the following steps:

1. Starting with an initial covering C, the symbolic image G of the map PF
is found. The cells of the initial covering may have arbitrary diameter d0 .

2. The recurrent vertices {ik} of the graph G are recognized. Using the
recurrent vertices, a closed neighborhood V = {∪M(ik) : ik is recurrent}
of the chain recurrent set CR is found.

3. The classes {Hm} of equivalent recurrent vertices are found, and the family
of simple periodic paths {φm

j } is recognized for each class Hm.

4. The intervals Im = [λmin(Hm) − θη(d), λmax(Hm) + θη(d)] are determined
by the families {φm

j }.

5. The cells corresponding to recurrent vertices {M(ik) : ik is recurrent} are
subdivided. The new covering is defined.

Electronic Journal. http://www.neva.ru/journal 11
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6. The symbolic image G is constructed for the new covering. It should
be noted that the new symbolic image may be constructed on the set
V = {∪M(ik) : ik is recurrent}. In other words, the cells corresponding
to non recurrent vertices do not participate in the construction of the new
covering and the new symbolic image.

7. Then one goes back to the second step.

Repeating this subdivision process we obtain we obtain

1) a sequence of neighborhoods {Vk} of the chain recurrent set,

2) a sequence of the largest diameters of cells {dk},
3) a sequence of families of intervals Σk = {Ik

m}. The following theorem
substantiates the described algorithm.

Theorem 9 [20, 21] The sequence of sets V0, V1, V2, ... offers the following
properties:
(i) the neighborhoods Vk are imbedded one inside the other, i.e.,

V0 ⊃ V1 ⊃ V2 ⊃ ... ⊃ CR,

(ii) each set Σk = ∪mIk
m contains the Morse spectrum of F,

(ii) if dk → 0 as k becomes infinite then

lim
k→∞

Vk =
⋂
k

Vk = CR.

lim
k→∞

Σk = Σ(F ).

Corollary 1 If the diffeomorphism is hyperbolic on the chain recurrent set then
a finite steps is enough to verify that 0 is not in the Morse spectrum.

4.6 Attractor on symbolic image.

Consider a symbolic image G of the homeomorphism f . A set of vertices L is
invariant if for each vertex i ∈ L there exist the edges j → i and i → k such
that j, k ∈ L. Let L be an invariant set of vertices on the symbolic image G.
The set of vertices

En(L) = {j ∈ L : there exists an edge i → j, i /∈ L}

Electronic Journal. http://www.neva.ru/journal 12
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is called the entrance of L. The set of vertices

Ex(L) = {i ∈ L, there exists an edge i → j, j /∈ L}

is called the exit of L.

Definition 12 • An invariant set L ⊂ V er is an attractor if Ex(L) = ∅.

• An invariant set L ⊂ V er is a repeller if En(L) = ∅.

Let L be an attractor. A basin or domain of attraction is the set of vertices

D(L) = {j : each path through j finishes in L},

i.e., for each admissible path {..., j, ..., ik, ...} there exists a number k∗ such that
the vertices ik with k > k∗, belongs to L.

If L ⊂ V er is an attractor, the repeller L∗ = V er \D(L) is named as dual
for the attractor L. As one would expect, there is a natural correlation between
the attractors of a dynamical system and the attractors of its symbolic image.

Theorem 10 [23] If L and D(L) are an attractor and its domain of attraction
on a symbolic image G, then there are an attractor Λ of the homeomorphism f
and its basin W s(Λ) such that

(i) the set

U = int{
⋃

M(i), i ∈ L},

where int· denotes the interior, is a fundamental neighborhood of Λ,

(ii) the set W = {
⋃

M(j), j ∈ D(L)} is in the basin W s(Λ),

(iii) the set V = int{
⋃

M(k), k ∈ L∗} is a neighborhood of the dual repeller
Λ∗.

The following theorem shows that an attractor of a dynamical system and
its domain of attraction can be defined as precisely as one likes by employing a
symbolic image with covering cells of small enough diameter.

Theorem 11 [23] Let Λ ⊂ M be an attractor, V1 be its arbitrarily small neigh-
borhood, and V2 be an arbitrarily large neighborhood such that

Λ ⊂ V1 ⊂ V2 ⊂ clV2 ⊂ W s(Λ).
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Then there exists d0 > 0 such that each symbolic image G, with the maximal di-
ameter of covering cells d < d0, has an attractor L and its domain of attraction
D(L) such that

Λ ⊂ {∪M(i), i ∈ L} ⊂ V1 ⊂ V2 ⊂ {∪M(j), j ∈ D(L)} ⊂ W s(Λ).

Thus the construction of a dynamic system attractor and its domain of
attraction is reduced by Theorem 11 to the same task on symbolic image.
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