

ON INTEGRABILITY OF ONE EVOLUTION SYSTEM

Meshkov A.G., Mishin S.N.
Oryol State University
302015, Oryol, Komsomolskaia, 95
e-mail: meshkov@esc.private.oryol.su

1 Introduction

Let us consider an evolution system of the following type

$$
\begin{equation*}
u_{t}=u_{3}+F\left(u_{2}, v_{2}, u_{1}, v_{1}, u, v\right), \quad v_{t}=G\left(u_{1}, v_{1}, u, v\right), \tag{1}
\end{equation*}
$$

where F and G are arbitrary functions, $u_{i}=\partial^{i} u / \partial x^{i}, i=1,2,3, u_{t}=\partial u / \partial t$. The symmetry classification of integrable systems of the type (1) was given in the article [1]. We folowed there to ideas of the article [2]. But the canonical conserved densities were obtained by the Chinese algorithm [3]. The list of integrable systems that was presented in [1] consists of 15 systems. But some of the systems are connected by the several contact transformations. We write here the independent integrable systems from the article [1] for completeness:

$$
\begin{align*}
u_{t}= & w_{2}+6 c_{0} \mathrm{e}^{u} u_{1}-1 / 2 w^{3}+c_{1} w+c_{2} u_{1}, \quad w=u_{1}-v, \tag{2}\\
v_{t}= & 3 c_{0} \mathrm{e}^{u} u_{1}^{2}+4 c_{0} \mathrm{e}^{u} v_{1}+c_{0} \mathrm{e}^{u} v^{2}-2 c_{0} c_{1} \mathrm{e}^{u}+c_{2} v_{1}, \quad c_{0} \neq 0 . \\
u_{t}= & u_{3}+u_{1} v+u v_{1}, \quad v_{t}=u_{1} . \tag{3}\\
u_{t}= & u_{3}+3 u_{1} v+2 u v_{1}+v_{1} v_{2}+c_{1} v_{1}-2 v^{2} v_{1}, \quad v_{t}=u_{1}+v v_{1} . \tag{4}\\
u_{t}= & u_{3}+2 u_{1} v+u v_{1}, \quad v_{t}=2 c u u_{1}, \quad c \neq 0 . \tag{5}\\
u_{t}= & u_{3}-\frac{u_{1} v_{2}}{v}-\frac{3 u_{2} v_{1}}{2 v}+\frac{3 u_{1} v_{1}^{2}}{2 v^{2}}+\frac{u^{2} u_{1}}{v}+ \tag{6}\\
& +\frac{c_{1} u_{1}}{2 v}+2 c_{2} v^{2} u_{1}+3 c_{2} u v v_{1}, \quad v_{t}=2 u u_{1} . \\
u_{t}= & u_{3}-\frac{u_{1} v_{2}}{v}-\frac{3 u_{2} v_{1}}{2 v}+\frac{3 u_{1} v_{1}^{2}}{2 v^{2}}+\frac{3 c_{1} u v_{1}^{2}}{2 v^{2}}+ \\
& +\frac{u^{2} u_{1}}{v}-c_{1} \frac{u_{1} v_{1}+u v_{2}-u^{3}}{v}+\frac{c_{1}^{2} u v_{1}}{2 v}-c_{1}^{2} u_{1}-c_{2} u, \tag{7}\\
v_{t}= & 2 u u_{1}+2 c_{1} u^{2}-2 c_{2} v . \\
u_{t}= & u_{3}+3 u u_{1}+2 c_{1} v v_{1}, \quad v_{t}=u v_{1}+u_{1} v, \quad c_{1} \neq 0 . \tag{8}
\end{align*}
$$

Let us mention, that the systems (3), (5) are known as the Drinfeld-Sokolov systems [4], [5].

We investigate the system (8) in this article.

2 Zero curvature representation

If we perform the dilatation $v \rightarrow v /\left|c_{1}\right|^{1 / 2}$, then the system (8) takes more simple form

$$
\begin{equation*}
u_{t}=u_{x x x}+3 u u_{x}+2 \varepsilon v v_{x}, \quad v_{t}=(u v)_{x} \tag{9}
\end{equation*}
$$

where $\varepsilon=c_{1} /\left|c_{1}\right|= \pm 1$. Now we consider the zero curvature representation for the system (9)

$$
\begin{equation*}
U_{t}-V_{x}+[U, V]=0 \tag{10}
\end{equation*}
$$

If we adopt that the matrix U depend on u, v, and the matrix V depend on u, v, u_{1}, u_{2}, then performing the differentiation in (10) one can easyly obtain
the U and V matrices

$$
\begin{aligned}
& U=A_{1}+A_{2} u+A_{3} v^{2} \\
& V=A_{2}\left(u_{2}+\varepsilon v^{2}\right)+A_{4} u_{1}+A_{3} u v^{2}+\frac{1}{2}\left[A_{2}, A_{4}\right] u^{2}+\frac{3}{2} A_{2} u^{2}+\left[A_{1}, A_{4}\right] u+A_{5},
\end{aligned}
$$

where A_{i} are constant matrices satisfying the following algebra

$$
\begin{align*}
& {\left[A_{2}, A_{3}\right]=0, \quad\left[A_{1}, A_{5}\right]=0, \quad\left[A_{3}, A_{5}\right]=-\varepsilon A_{4}, \quad\left[A_{3}, A_{4}\right]=-A_{3},} \\
& {\left[A_{1},\left[A_{1}, A_{4}\right]\right]+\left[A_{2}, A_{5}\right]=0, \quad\left[A_{4},\left[A_{1}, A_{3}\right]\right]=0, \quad\left[A_{1}, A_{2}\right]=A_{4},} \tag{11}\\
& {\left[A_{1},\left[A_{2}, A_{4}\right]\right]=-A_{4}, \quad\left[A_{2},\left[A_{2}, A_{4}\right]\right]=0 .}
\end{align*}
$$

Follow to the ideas of the article [6] we set

$$
\left[A_{1}, A_{4}\right]=A_{6}, \quad \text { and } A_{3}=\frac{\varepsilon}{\mu} A_{2}
$$

where μ is a parameter. Then exploiting the Jacobi identity we found the following 5-dimensional Lie algebra L :

$$
\begin{align*}
& {\left[A_{1}, A_{5}\right]=0, \quad\left[A_{1}, A_{2}\right]=A_{4}, \quad\left[A_{1}, A_{6}\right]=\mu A_{4}, \quad\left[A_{2}, A_{4}\right]=-A_{2},} \\
& {\left[A_{1}, A_{4}\right]=A_{6}, \quad\left[A_{2}, A_{5}\right]=-\mu A_{4}, \quad\left[A_{2}, A_{6}\right]=-A_{4},} \tag{12}\\
& {\left[A_{4}, A_{6}\right]=-A_{6}+\mu A_{2}, \quad\left[A_{4}, A_{5}\right]=-\mu A_{6}, \quad\left[A_{5}, A_{6}\right]=\mu^{2} A_{4}}
\end{align*}
$$

Algebra (12) possesses two dimensional center $Z=\left\{A_{5}-\mu A_{1}, A_{1}+\mu A_{2}-A_{6}\right\}$. Therefore setting $A_{5}=\mu A_{1}$, and $A_{6}=A_{1}+\mu A_{2}$ we obtain three dimensional algebra

$$
\begin{equation*}
\left[A_{1}, A_{2}\right]=A_{4}, \quad\left[A_{2}, A_{4}\right]=-A_{2}, \quad\left[A_{1}, A_{4}\right]=A_{1}+\mu A_{2} \tag{13}
\end{equation*}
$$

isomorphic to the factor algebra $L \backslash Z$. This algebra is $s l(2)$ obviously. Then constructing a representation of the algebra (13), we found the following explicit form of the matrices U and V :

$$
\begin{align*}
U & =\left(\begin{array}{cc}
0 & u+(\varepsilon / \mu) v^{2}-\frac{1}{2} \mu \\
-\frac{1}{2} & 0
\end{array}\right), \tag{14}\\
V & =\left(\begin{array}{cc}
\frac{1}{2} u_{1} & u_{2}+\varepsilon v^{2}+(\varepsilon / \mu) u v^{2}+u^{2}+\frac{1}{2} \mu(u-\mu) \\
-\frac{1}{2}(u+\mu) & -\frac{1}{2} u_{1}
\end{array}\right) .
\end{align*}
$$

3 Recursion operator and Lie-Bäcklund symmetries

The recursion operator maps Lie-Bäcklund algebra of an evolution system into itself. As we found the matrices (21) that satisfy the equation (10) then we used the direct algorithm suggested in [10] and developed in [11] for constructing a recursion operator. The recursion operator of the system (9) takes the following form

$$
\Lambda=\left(\begin{array}{cc}
D^{2}+2 u+u_{1} D^{-1} & 2 \varepsilon v \tag{15}\\
D v D^{-1} & 0
\end{array}\right)
$$

If we denote $\sigma_{0}=\left\{u_{1}, v_{1}\right\}, \sigma_{1} \equiv K=\left\{u_{3}+3 u u_{1}+2 \varepsilon v v_{1}, u v_{1}+u_{1} v\right\}$ then the following formula $\Lambda \sigma_{0}=\sigma_{1}$ can be easily checked. One can find the higher symmetries by the recusrsion formula $\sigma_{n+1}=\Lambda \sigma_{n}$. For example,

$$
\begin{align*}
& \sigma_{2}^{u}=u_{5}+5 u u_{3}+10 u_{2} u_{1}+6 \varepsilon v_{2} v_{1}+2 \varepsilon v v_{3}+15 / 2 u_{1} u^{2}+ \\
&+3 u_{1} \varepsilon v^{2}+6 u \varepsilon v v_{1} \tag{16}\\
& \sigma_{2}^{v}=v u_{3}+3 v u u_{1}+3 \varepsilon v^{2} v_{1}+v_{1} u_{2}+3 / 2 v_{1} u^{2}
\end{align*}
$$

The direct calculation shows that the system (9) also admits another symmetries:

$$
\begin{align*}
& \tau_{1}=\binom{3 t\left(u_{3}+3 u u_{1}+2 \varepsilon v v_{1}\right)+2 u+x u_{1}}{3 t\left(u_{1} v+u v_{1}\right)+2 v+x v_{1}} \\
& \omega_{1}=\binom{2-\varepsilon v^{-2} v_{1}}{v^{-3}\left(v_{3}-6 v^{-1} v_{1} v_{2}+6 v^{-2} v_{1}^{3}+2 u v_{1}-v u_{1}\right)} \tag{17}
\end{align*}
$$

Here τ_{1} corresponds to the point symmetry with the following infinitesimal operator

$$
X=3 t \frac{\partial}{\partial t}+x \frac{\partial}{\partial x}-2 u \frac{\partial}{\partial u}-2 v \frac{\partial}{\partial v}
$$

But ω_{1} is nonclassic Lie-Bäcklund symmetry. τ_{1} creates the infinite sequence of Lie-Bäcklund symmetries according to the formula $\tau_{n+1}=\Lambda \tau_{n}$. It can be checked that τ_{2} is nonlocal symmetry:

$$
\begin{align*}
& \tau_{2}^{u}=x u_{3}+4 u_{2}+3 x u u_{1}+u_{1} u_{-1}+4 u^{2}+2 \varepsilon\left(2 v^{2}+x v v_{1}\right)+ \\
& +3 t\left(u_{5}+5 u u_{3}+10 u_{1} u_{2}+2 \varepsilon v v_{3}+6 \varepsilon v_{1} v_{2}+\frac{15}{2} u^{2} u_{1}+3 \varepsilon v^{2} u_{1}+6 \varepsilon u v v_{1}\right) \tag{18}\\
& \begin{aligned}
\tau_{2}^{v}=3 t\left(v u_{3}+v_{1} u_{2}+3 \varepsilon v^{2} v_{1}+3 v u u_{1}+\frac{3}{2} v_{1} u^{2}\right)+x v & u_{1}+2 u v+ \\
& +x u v_{1}+v_{1} u_{-1}
\end{aligned}
\end{align*}
$$

where $u_{-1}=D^{-1} u$. The other symmetries τ_{i} are nonlocal too obviously.
It is easy to check that $\Lambda \omega_{1}=0$, but $\Lambda^{-1} \omega_{1} \equiv \omega_{2}$ is the local 5 th-order Lie-Bäcklund symmetry:

$$
\begin{align*}
& \Lambda^{-1}=\left(\begin{array}{cc}
0 & D v^{-1} D^{-1} \\
\varepsilon /(2 v) & -\varepsilon /(2 v)\left(D^{3}+2 u D+u_{1}\right) v^{-1} D^{-1}
\end{array}\right), \tag{19}\\
& \omega_{2}^{u}=-1 / 2\left(2 v_{3} v^{2}-14 v_{1} v_{2} v+15 v_{1}^{3}-2 u_{1} v^{3}+6 u v_{1} v^{2}\right) / v^{6}, \\
& \omega_{2}^{v}= 1 / 4 \varepsilon\left(2 v_{5} v^{4}-30 v_{1} v_{4} v^{3}-50 v_{2} v_{3} v^{3}+10 v_{3} u v^{4}-2 u_{3} v^{5}+\right. \\
&+225 v_{1}^{2} v_{3} v^{2}+20 u_{1} v_{2} v^{4}+18 v_{1} u_{2} v^{4}-1050 v_{1}^{3} v_{2} v+630 v_{1}^{5}+ \tag{20}\\
&+150 v_{1}^{3} u v^{2}+300 v_{1} v_{2}^{2} v^{2}-100 v_{1} v_{2} u v^{3}-6 u u_{1} v^{5}+4 \varepsilon v_{1} v^{6}- \\
&\left.-75 u_{1} v_{1}^{2} v^{3}+12 u^{2} v_{1} v^{4}\right) / v^{9}
\end{align*}
$$

Hence our system admits the third sequence of Lie-Bäcklund symmetries: $\omega_{n+1}=$ $\Lambda^{-1} \omega_{n} . \omega_{3}$ is a local vector function and the other vector functions ω_{i} will be local probably.

Let us consider the evolution system $\left(u_{t}, v_{t}\right)=\omega_{1}$. If we set $v=1 / w$ then this system takes the following simple form

$$
\begin{equation*}
u_{t}=2 \varepsilon w_{1}, \quad w_{t}=w^{3}\left(w_{3}+u_{1} w+2 u w_{1}\right) . \tag{21}
\end{equation*}
$$

The second equation can be rewritten as the conservation law $(1 / w)_{t}=\left(-w w_{2}+\right.$ $\left.w_{1}^{2} / 2-u w^{2}\right)_{x}$. Hence the following transformation $(t, x, u, w) \rightarrow\left(\tau, y, u^{\prime}, z\right)$

$$
\begin{align*}
& t^{\prime}=t, \quad d y=w^{-1} d x+\left(-w w_{2}+w_{1}^{2} / 2-u w^{2}\right) d t \\
& u^{\prime}\left(t^{\prime}, y\right)=u(t, x), \quad w(t, x)=\exp \left(z\left(t^{\prime}, y\right) / 2\right) . \tag{22}
\end{align*}
$$

is possible for (21). Performing it we obtain the following new integrable system

$$
\begin{equation*}
u_{t}=\frac{1}{2} u_{1} z_{2}-\frac{1}{8} u_{1} z_{1}^{2}+u_{1} e^{z} u+\varepsilon z_{1}, \quad z_{t}=z_{3}-\frac{1}{8} z_{1}^{3}+2 e^{z} u_{1}+3 e^{z} u z_{1} \tag{23}
\end{equation*}
$$

where $u_{i}=\partial^{i} u / \partial y^{i}$.
Let us mention in conclusion that the operators (15) and (19) are hereditary operators.

4 Conserved densities and Noether operators

The pair of functions (ρ, θ) is called the conserved current of a partial diffetential system with two independent variables t, x and dependent variables $u^{\alpha}, \alpha=1,2, \ldots, m$, if $D_{t} \rho(t, x, u)=D \theta(t, x, u)$ for any solution of the system. The function ρ is said to be the conserved density and θ be the density current. If we consider the evolution system $u_{t}=K(u)$ then gradient of any conserved density $\gamma=E \rho$:

$$
\gamma_{\alpha}=\sum_{n}(-D)^{n} \frac{\partial \rho}{\partial u_{n}^{\alpha}}
$$

solves the following equation

$$
\left(D_{t}+K^{\prime+}\right) \gamma=0,
$$

where $K^{\prime+}$ is the adjoint for K^{\prime} operator (see [7], [8] or [9]).
Operator Θ satisfying the equation

$$
\begin{equation*}
\left(D_{t}-K^{\prime}\right) \Theta=\Theta\left(D_{t}-K^{\prime+}\right) \tag{24}
\end{equation*}
$$

is called the Noether operator [12].
According to this definition Noether operator of an evolution system maps the set of gradients of conserved densities into the set of Lie-Bäcklund symmetries of the system.

We solved the equation (24) and found two following Noether operators for the system (9):

$$
\Theta_{1}=\left(\begin{array}{cc}
D^{3}+D u+u D & v D \tag{25}\\
D v & 0
\end{array}\right), \quad \Theta_{2}=\left(\begin{array}{cc}
D & 0 \\
0 & (\varepsilon / 2) D
\end{array}\right) .
$$

The direct check shows that Θ_{1} and Θ_{2} are implectic and compatible (see [12], [13]). In other words Θ_{1} and Θ_{2} is the Hamiltonian pair. The recursion operator (15) takes the form $\Lambda=\Theta_{1} \Theta_{2}^{-1}$ as it can be checked. This formula implies that Λ and Λ^{-1} are hereditary operators.

Solving the equation $D_{t} \rho=D \theta$ one can easyly find the following simplest
conserved currents $j_{k}=\left[\rho_{k}, \theta_{k}\right]$:

$$
\begin{aligned}
j_{1}= & {\left[u, u_{2}+\frac{3}{2} u^{2}+\varepsilon v^{2}\right], \quad j_{2}=[v, u v] } \\
j_{3}= & {\left[\frac{1}{2} u^{2}+\varepsilon v^{2}, u u_{2}-\frac{1}{2} u_{1}^{2}+u^{3}+2 \varepsilon u v^{2}\right] } \\
j_{4}= & {\left[-\frac{1}{2} u_{1}^{2}+\frac{1}{2} u^{3}+\varepsilon u v^{2},-u_{1} u_{3}+\frac{3}{2} u^{2} u_{2}+\right.} \\
& \left.+\varepsilon v^{2} u_{2}+\frac{1}{2} u_{2}^{2}-2 \varepsilon v v_{1} u_{1}-3 u u_{1}^{2}+\frac{9}{8} u^{4}+\frac{5}{2} \varepsilon v^{2} u^{2}+\frac{1}{2} v^{4}\right] \\
j_{5}= & {\left[\frac{1}{2} v^{-3} v_{1}^{2}-v^{-1} u,-v^{-1} u_{2}+\frac{1}{2} v^{-3} v_{1}^{2} u-v^{-1} u^{2}-2 \varepsilon v\right] }
\end{aligned}
$$

The corresponding gradients $\gamma_{k}=\left[\delta \rho_{k} / \delta u, \delta \rho_{k} / \delta v\right]$ take the following form

$$
\begin{aligned}
& \gamma_{1}=[1,0], \quad \gamma_{2}=[0,1], \quad \gamma_{3}=[u, 2 \varepsilon v], \quad \gamma_{4}=\left[u_{2}+\frac{3}{2} u^{2}+\varepsilon v^{2}, 2 \varepsilon u v\right] \\
& \gamma_{5}=\left[-v^{-1},-v^{-3} v_{2}+\frac{3}{2} v^{-4} v_{1}^{2}+u v^{-2}\right]
\end{aligned}
$$

Using these expressions we found that

$$
\begin{align*}
& \Theta_{1} \gamma_{1}=\left\{u_{1}, v_{1}\right\} \equiv \sigma_{0}, \quad \Theta_{1} \gamma_{2}=0, \quad \Theta_{1} \gamma_{3}=\sigma_{1}, \quad \Theta_{1} \gamma_{4}=\sigma_{2}, \quad \Theta_{1} \gamma_{5}=0, \tag{26}\\
& \Theta_{2} \gamma_{1}=\Theta_{2} \gamma_{2}=0, \quad \Theta_{2} \gamma_{3}=\sigma_{0}, \quad \Theta_{2} \gamma_{4}=\sigma_{1}, \quad \Theta_{2} \gamma_{5}=\omega_{1} /(2 \varepsilon)
\end{align*}
$$

Hence, the system (9) is the bi-Hamiltonian one:

$$
\begin{equation*}
\mathbf{u}_{t}=\Theta_{1} E \rho_{3}=\Theta_{2} E \rho_{4} . \tag{27}
\end{equation*}
$$

Here $\mathbf{u}=\{u, v\}$.

References

[1] Kulemin I.V., Meshkov A.G. To the Classification of Integrable Systems in 1+1 Dimensions. In Symmetry in Nonlinear Mathematical Physics. Proc. 2nd Int. Conf., Kiev. 1977, V.1, 115-121.
[2] Sokolov V.V. and Shabat A.B. Classification of integrable evolution equatios. Soviet Scientific Revies, Section C., 1984, V.4, 221-280.
[3] Chen H.H., Lee Y.C., Liu C.S. Integrability of nonlinear Hamiltonian systems by inverse scattering transform. Phys. scr., 1979, V.20, N 3, 490-492.
[4] Drinfeld V.G., Sokolov V.V. J. Sov. Math., 1985, V.30, 1975.
[5] Drinfeld V.G., Sokolov V.V. Proceedings of S. L. Sobolev Seminar, Novosibirsk, 1981, V.2, p.5.
[6] Wahlquist H.D., Estabrook F.B. Prolongation structures of nonlinear evolution equations. J. Math. Phys., 1975, V.16, 1-7.
[7] Ibragimov N.H. Transformation Groups in Mathematical Physics. Nauka, Moskow, 1983.
[8] Olver P.J. Applications of Lie Groups to Differential Equations. Mir, Moskow, 1989.
[9] CRC Handbook of Lie Group Analysis of differential equations. Ed. Ibragimov N.H. CRC Press, London, Tokio, 1994, 1995, etc.
[10] Fokas A.S., Anderson R.L. On the use of isospectral eiganvalue problems for obtaining hereditary symmetries for Hamiltonian systems. J. Math. Phys., 1982, V.23, N 6, 1066-1073.
[11] Meshkov A.G. Symmetries and Conservation Laws for Evolution Equations. VINITI, N 1511-85, Moskow, 1985.
[12] Focas A.S., Fuchssteiner B. Lett. Nuovo Cimento, 1980, v.28, 299.
[13] Fuchssteiner B., Focas A.S. Physica, 1981, D4, 47.

