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1 Introduction

Let us consider an evolution system of the following type

ut = u3 + F (u2, v2, u1, v1, u, v), vt = G(u1, v1, u, v), (1)

where F and G are arbitrary functions, ui = ∂iu/∂xi, i = 1, 2, 3, ut = ∂u/∂t.

The symmetry classification of integrable systems of the type (1) was given in
the article [1]. We folowed there to ideas of the article [2]. But the canonical

conserved densities were obtained by the Chinese algorithm [3]. The list of
integrable systems that was presented in [1] consists of 15 systems. But some
of the systems are connected by the several contact transformations. We write

here the independent integrable systems from the article [1] for completeness:
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ut = w2 + 6c0e
uu1 − 1/2w3 + c1w + c2u1, w = u1 − v,

vt = 3c0e
uu2

1 + 4c0e
uv1 + c0e

uv2 − 2c0c1e
u + c2v1, c0 6= 0.

(2)

ut = u3 + u1v + uv1, vt = u1. (3)

ut = u3 + 3u1v + 2uv1 + v1v2 + c1v1 − 2v2v1, vt = u1 + vv1. (4)

ut = u3 + 2u1v + uv1, vt = 2cuu1, c 6= 0. (5)

ut = u3 −
u1v2

v
−

3u2v1

2v
+

3u1v
2
1

2v2
+

u2u1

v
+

+
c1u1

2v
+ 2c2v

2u1 + 3c2uvv1, vt = 2uu1.
(6)

ut = u3 −
u1v2

v
−

3u2v1

2v
+

3u1v
2
1

2v2
+

3c1uv2
1

2v2
+

+
u2u1

v
− c1

u1v1 + uv2 − u3

v
+

c2
1uv1

2v
− c2

1u1 − c2u,

vt = 2uu1 + 2c1u
2 − 2c2v.

(7)

ut = u3 + 3uu1 + 2c1vv1, vt = uv1 + u1v, c1 6= 0. (8)

Let us mention, that the systems (3), (5) are known as the Drinfeld-Sokolov
systems [4], [5].

We investigate the system (8) in this article.

2 Zero curvature representation

If we perform the dilatation v → v/|c1|
1/2, then the system (8) takes more

simple form

ut = uxxx + 3uux + 2εvvx, vt = (uv)x, (9)

where ε = c1/|c1| = ±1. Now we consider the zero curvature representation for
the system (9)

Ut − Vx + [U, V ] = 0. (10)

If we adopt that the matrix U depend on u, v, and the matrix V depend on

u, v, u1, u2, then performing the differentiation in (10) one can easyly obtain

Electronic Journal. http://www.neva.ru/journal 51



Differential Equations and Control Processes, N 2, 2000

the U and V matrices

U = A1 + A2u + A3v
2,

V = A2(u2 + εv2) + A4u1 + A3uv2 +
1

2
[A2, A4] u

2 +
3

2
A2u

2 + [A1, A4] u + A5,

where Ai are constant matrices satisfying the following algebra

[A2, A3] = 0, [A1, A5] = 0, [A3, A5] = −εA4, [A3, A4] = −A3,

[A1, [A1, A4]] + [A2, A5] = 0, [A4, [A1, A3]] = 0, [A1, A2] = A4, (11)

[A1, [A2, A4]] = −A4, [A2, [A2, A4]] = 0.

Follow to the ideas of the article [6] we set

[A1, A4] = A6, and A3 =
ε

µ
A2,

where µ is a parameter. Then exploiting the Jacobi identity we found the

following 5-dimensional Lie algebra L:

[A1, A5] = 0, [A1, A2] = A4, [A1, A6] = µA4, [A2, A4] = −A2,

[A1, A4] = A6, [A2, A5] = −µA4, [A2, A6] = −A4, (12)

[A4, A6] = −A6 + µA2, [A4, A5] = −µA6, [A5, A6] = µ2A4

Algebra (12) possesses two dimensional center Z = {A5−µA1, A1 +µA2−A6}.

Therefore setting A5 = µA1, and A6 = A1 + µA2 we obtain three dimensional
algebra

[A1, A2] = A4, [A2, A4] = −A2, [A1, A4] = A1 + µA2, (13)

isomorphic to the factor algebra L\Z. This algebra is sl(2) obviously. Then

constructing a representation of the algebra (13), we found the following explicit
form of the matrices U and V :

U =

(

0 u + (ε/µ)v2 − 1

2
µ

−1

2
0

)

,

V =

(

1

2
u1 u2 + εv2 + (ε/µ)u v2 + u2 + 1

2
µ(u − µ)

−1

2
(u + µ) −1

2
u1

)

.

(14)
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3 Recursion operator and Lie-Bäcklund symmetries

The recursion operator maps Lie-Bäcklund algebra of an evolution system into

itself. As we found the matrices (21) that satisfy the equation (10) then we used
the direct algorithm suggested in [10] and developed in [11] for constructing a

recursion operator. The recursion operator of the system (9) takes the following
form

Λ =

(

D2 + 2 u + u1D
−1 2 ε v

D v D−1 0

)

. (15)

If we denote σ0 = {u1, v1}, σ1 ≡ K = {u3 + 3 u u1 + 2 ε v v1, u v1 + u1 v} then

the following formula Λσ0 = σ1 can be easily checked. One can find the higher
symmetries by the recusrsion formula σn+1 = Λσn. For example,

σu
2 = u5 + 5 u u3 + 10 u2 u1 + 6 ε v2 v1 + 2 ε v v3 + 15/2 u1 u2+

+ 3 u1 ε v2 + 6 u ε v v1,

σv
2 = v u3 + 3 v u u1 + 3 ε v2 v1 + v1 u2 + 3/2 v1 u2.

(16)

The direct calculation shows that the system (9) also admits another sym-
metries:

τ1 =

(

3 t (u3 + 3 u u1 + 2 ε v v1) + 2 u + x u1

3 t (u1v + u v1) + 2 v + x v1

)

,

ω1 =

(

2 − ε v−2v1

v−3(v3 − 6 v−1v1v2 + 6 v−2v3
1 + 2 u v1 − v u1)

)

.

(17)

Here τ1 corresponds to the point symmetry with the following infinitesimal

operator

X = 3 t
∂

∂t
+ x

∂

∂x
− 2 u

∂

∂u
− 2 v

∂

∂v
.

But ω1 is nonclassic Lie-Bäcklund symmetry. τ1 creates the infinite sequence
of Lie-Bäcklund symmetries according to the formula τn+1 = Λτn. It can be
checked that τ2 is nonlocal symmetry:

τu
2 = xu3 + 4u2 + 3xuu1 + u1u−1 + 4u2 + 2ε(2v2 + xvv1)+

+3t(u5 + 5u u3 + 10u1 u2 + 2εv v3 + 6εv1 v2 + 15

2
u2 u1 + 3εv2 u1 + 6εu v v1),

τ v
2 = 3t( v u3 + v1 u2 + 3 ε v2 v1 + 3 v u u1 + 3

2
v1 u2) + x v u1 + 2 u v+

+ x u v1 + v1 u−1,

(18)
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where u−1 = D−1u. The other symmetries τi are nonlocal too obviously.

It is easy to check that Λω1 = 0, but Λ−1ω1 ≡ ω2 is the local 5th-order
Lie-Bäcklund symmetry:

Λ−1 =

(

0 D v−1D−1

ε/(2 v) −ε/(2 v)(D3 + 2 u D + u1) v−1D−1

)

, (19)

ωu
2 = −1/2 (2 v3 v2 − 14 v1 v2 v + 15 v3

1 − 2 u1 v3 + 6 u v1v
2)/v6,

ωv
2 = 1/4 ε (2 v5 v4 − 30 v1 v4 v3 − 50 v2 v3 v3 + 10 v3 u v4 − 2 u3 v5+

+225 v2
1 v3 v2 + 20 u1 v2 v4 + 18 v1 u2 v4 − 1050 v3

1 v2 v + 630 v5
1+

+150 v3
1 u v2 + 300 v1 v2

2 v2 − 100 v1 v2 u v3 − 6 u u1 v5 + 4 ε v1 v6−

−75 u1 v2
1 v3 + 12 u2 v1 v4)/v9

(20)

Hence our system admits the third sequence of Lie-Bäcklund symmetries: ωn+1 =
Λ−1ωn. ω3 is a local vector function and the other vector functions ωi will be

local probably.

Let us consider the evolution system (ut, vt) = ω1. If we set v = 1/w then

this system takes the following simple form

ut = 2 ε w1, wt = w3(w3 + u1w + 2 u w1). (21)

The second equation can be rewritten as the conservation law (1/w)t = (−w w2+
w2

1/2 − u w2)x. Hence the following transformation (t, x, u, w) → (τ, y, u′, z)

t′ = t, dy = w−1 dx + (−w w2 + w2
1/2 − u w2) dt,

u′(t′, y) = u(t, x), w(t, x) = exp(z(t′, y)/2).
(22)

is possible for (21). Performing it we obtain the following new integrable system

ut =
1

2
u1 z2 −

1

8
u1 z2

1 + u1 ezu + ε z1, zt = z3 −
1

8
z3

1 + 2 ezu1 + 3 ezu z1, (23)

where ui = ∂iu/∂yi.

Let us mention in conclusion that the operators (15) and (19) are hereditary
operators.
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4 Conserved densities and Noether operators

The pair of functions (ρ, θ) is called the conserved current of a partial dif-

fetential system with two independent variables t, x and dependent variables
uα, α = 1, 2, . . . , m, if Dtρ(t, x, u) = D θ(t, x, u) for any solution of the system.

The function ρ is said to be the conserved density and θ be the density current.
If we consider the evolution system ut = K(u) then gradient of any conserved

density γ = E ρ:

γα =
∑

n

(−D)n ∂ρ

∂uα
n

solves the following equation

(Dt + K ′+)γ = 0,

where K ′+ is the adjoint for K ′ operator (see [7], [8] or [9]).

Operator Θ satisfying the equation

(Dt − K ′)Θ = Θ(Dt − K ′+) (24)

is called the Noether operator [12].

According to this definition Noether operator of an evolution system maps

the set of gradients of conserved densities into the set of Lie-Bäcklund symme-
tries of the system.

We solved the equation (24) and found two following Noether operators for
the system (9):

Θ1 =

(

D3 + D u + u D v D

D v 0

)

, Θ2 =

(

D 0

0 (ε/2) D

)

. (25)

The direct check shows that Θ1 and Θ2 are implectic and compatible (see [12],
[13]). In other words Θ1 and Θ2 is the Hamiltonian pair. The recursion operator
(15) takes the form Λ = Θ1Θ

−1

2
as it can be checked. This formula implies that

Λ and Λ−1 are hereditary operators.

Solving the equation Dtρ = D θ one can easyly find the following simplest
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conserved currents jk = [ρk, θk]:

j1 = [u, u2 +
3

2
u2 + ε v2], j2 = [v, u v].

j3 = [
1

2
u2 + ε v2, u u2 −

1

2
u2

1 + u3 + 2 ε u v2],

j4 = [−
1

2
u2

1 +
1

2
u3 + ε u v2, −u1 u3 +

3

2
u2 u2+

+ε v2 u2 +
1

2
u2

2 − 2 ε v v1 u1 − 3 u u2

1 +
9

8
u4 +

5

2
ε v2 u2 +

1

2
v4],

j5 = [
1

2
v−3 v2

1 − v−1 u, −v−1 u2 +
1

2
v−3 v2

1 u − v−1 u2 − 2 ε v].

The corresponding gradients γk = [δρk/δu, δρk/δv] take the following form

γ1 = [1, 0], γ2 = [0, 1], γ3 = [u, 2 ε v], γ4 = [u2 +
3

2
u2 + ε v2, 2 ε u v],

γ5 = [−v−1,−v−3 v2 +
3

2
v−4 v2

1 + u v−2].

Using these expressions we found that

Θ1γ1 = {u1, v1} ≡ σ0, Θ1γ2 = 0, Θ1γ3 = σ1, Θ1γ4 = σ2, Θ1γ5 = 0,

Θ2γ1 = Θ2γ2 = 0, Θ2γ3 = σ0, Θ2γ4 = σ1, Θ2γ5 = ω1/(2 ε).
(26)

Hence, the system (9) is the bi-Hamiltonian one:

ut = Θ1Eρ3 = Θ2Eρ4. (27)

Here u = {u, v}.
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