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1 Introduction

Let us consider an evolution system of the following type
Uy = U3 + F(u27 U2,U1,V1,U, U)a Uy = G(u17 U1, U, U)? (1)

where F' and G are arbitrary functions, u; = 'u/dz', i = 1,2,3, u; = Ou/0t.
The symmetry classification of integrable systems of the type (1) was given in
the article [1]. We folowed there to ideas of the article [2]. But the canonical
conserved densities were obtained by the Chinese algorithm [3]. The list of
integrable systems that was presented in [1] consists of 15 systems. But some
of the systems are connected by the several contact transformations. We write
here the independent integrable systems from the article [1] for completeness:
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up = Wy + b6cpe’u; — 1/2w3 + cqw + couy, W =u —v,

vy = SCoe“u% + degetvy + cpev? — 2cpciet 4 ey, ¢ £ 0.

Uy = Uz + U0 + uvy, v = uq. (3)
wy = ug + 3uiv + 2uvy + Vv + v — 20701, v = Uy + V. (4)
up = ug + 2uv + uvy, v = 2cuuy, ¢ # 0. (5)
B Uy 3ugly 3ulv% w?uy
Up = U3 — — + 5+
o 2v 2v v (6)
1U1
+% + 2e90%uy + 3couvvy, vy = 2uu.
2 2
B u1v2  3ugvy;  duvy  3ciuvy
Ut = Uz — — B B
v 2v 2v 2v
w?uy upvy +uvy — vt Guvy (7)
—C -+ — ClU1 — CaU,
v v 2v

v = 2uuq + 2c1u? — 2c9v.
up = ug + 3uug + 2civv1, v = uvy +uw, ¢ # 0. (8)

Let us mention, that the systems (3), (5) are known as the Drinfeld-Sokolov
systems [4], [5].

We investigate the system (8) in this article.

2 Zero curvature representation

If we perform the dilatation v — v/|ci|"/?, then the system (8) takes more
simple form

Ut = Ugzy + UL, + 2600, vy = (UV)y, 9)

where € = ¢;/|c1| = £1. Now we consider the zero curvature representation for
the system (9)

U,—V,+[U, V] =0. (10)

If we adopt that the matrix U depend on u, v, and the matrix V depend on
u, v, Uy, uz, then performing the differentiation in (10) one can easyly obtain
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the U and V matrices
U= A + Asu + Azv®,
V = Ag(uy + ev?) + Aguy + Aguv® + %[AQ, Ay u® + ;AQUQ + [A1, A4 u+ As,
where A; are constant matrices satisfying the following algebra
[As, A3] =0, [Aq, A5] =0, [A3, As] = —cAy, [Az, Ay = —As,
(A1, [Ar, Ag]] + [Ag, As] =0, [Ag, [Ar, As]] =0, [Ay, Ag] = Ay, (11)
[A1, [As, A4]] = —Ay, [Ag, [As, Ay]] = 0.
Follow to the ideas of the article [6] we set

[Al, A4] = AG; and Ag = £A2,
M

where 1 is a parameter. Then exploiting the Jacobi identity we found the
following 5-dimensional Lie algebra L:

[Ala A5] = 07 [A17 AQ] - A47 [A17 AG] - HA47 [A27 A4] - _A27
[Ab A4] = AG) [A27 A5] - _MA47 [A27 A6] = _A47 (12)
[Ay, Ag] = —Ag + pAs, [As, As] = —pAs, [As, Ag] = p° Ay

Algebra (12) possesses two dimensional center Z = {A5 — nAy, Ay + Ay — Agl.
Therefore setting As = pA;, and Ag = A1 + Az we obtain three dimensional
algebra

[Ala AZ] — A47 [A27 A4] = _A27 [Ala A4] - Al + :uA27 (13)

isomorphic to the factor algebra L\Z. This algebra is sl(2) obviously. Then
constructing a representation of the algebra (13), we found the following explicit
form of the matrices U and V:

0 u+ (e/p)v?—iu

U<1 CLEEIAY

3 0

v ( S uy +ev? + (e/p)uv? + u? + Lu(u — p) )
—5(u+ p) —3U

(14)
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3 Recursion operator and Lie-Backlund symmetries

The recursion operator maps Lie-Backlund algebra of an evolution system into
itself. As we found the matrices (21) that satisfy the equation (10) then we used
the direct algorithm suggested in [10] and developed in [11] for constructing a
recursion operator. The recursion operator of the system (9) takes the following
form

D?>+2u+wu D' 2¢cw
A= . (15)

Dy D! 0

If we denote oy = {uy, v1}, 01 = K = {ug+3uu; +2cvwvy, uvy +ugv} then
the following formula Aoy = o1 can be easily checked. One can find the higher
symmetries by the recusrsion formula 0,1 = Ao,. For example,

oY = us+ H5uug+ 10usuy + 6evgvy +2cvv3 + 15/2uy u?+
+3u18v2—|—6u5vv1, (16)

oY =vuz+3vuus + 3ev? vy + vy us + 3/2 v Ut

The direct calculation shows that the system (9) also admits another sym-
metries:

<3t(U3—|—3uu1—|—25vvl)—|—2u—|—wu1 )
T — ,

3t(uw +uvy) +2v+ v an)

2 —cv 2y
w1 = .
v3(v3 — 6v lwgwg + 6020 + 2uv — vuy)
Here 7 corresponds to the point symmetry with the following infinitesimal
operator

0 0 0 0

But w; is nonclassic Lie-Backlund symmetry. 7; creates the infinite sequence
of Lie-Béacklund symmetries according to the formula 7,1 = A7,. It can be
checked that 79 is nonlocal symmetry:

Ty = xugz + 4us + 3ruu; + uju_q + du? + 25(21}2 + xvv)+

+3t(us + duus + 10u; ug + 260 v3 + 6vy Vo + 1—25u2 u1 + 3ev? uy + 6euvvy), (18)

Ty :3t(vu;;—|—v1uz—|—36112v1—|—3vuu1—|—%v1u2)—|—xvu1—|—2uv—|—

+rxuv + v u_r,
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where u_; = D~ 'u. The other symmetries 7; are nonlocal too obviously.

It is easy to check that Aw; = 0, but A~'w; = wy is the local Sth-order
Lie-Backlund symmetry:

( 0 Dv'D™! )
A= : (19)
e/(2v) —/(2v)(D*+2uD +u)v D!

wd = —1/2(2v3v? — 14vyv9v + 1503 — 2uy v3 + 6 uvyv?) /05,

w8 =1/4e(2usv* — 30v1v40v° — 50va v3 0% + 10v3uv* — 2uzv°+
+225 v} v3 0% + 20 uy vy v 4+ 18 vy up vt — 1050 v vy v + 63007+ (20)
—|—150v§u112 —|—300v11)§v2 — 100 v vo uv® — 6uug v’ + 4ev v0—
—75u1 v? v® + 12 u? vy vt) /o0

Hence our system admits the third sequence of Lie-Backlund symmetries: w, 1 =
A lw,. ws is a local vector function and the other vector functions w; will be
local probably.

Let us consider the evolution system (u;, v;) = wy. If we set v = 1/w then
this system takes the following simple form

w = 2ew;, w, = w(wz + uw + 2uw). (21)
The second equation can be rewritten as the conservation law (1/w); = (—w wo+
w?/2 — uw?),. Hence the following transformation (¢, z, u, w) — (7, y, v/, 2)
=t dy=wrldz+ (—wwy+w?/2 —uw?)dt,
u (' y) =ult, x), wt, x)=exp(z(t, y)/2).
is possible for (21). Performing it we obtain the following new integrable system

1 1 2 2 3 z z
w=guwn - tmeuten, a=3-g2 +2efu +3euz, (23)

(22)

where u; = 9'u /0y’
Let us mention in conclusion that the operators (15) and (19) are hereditary
operators.
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4 Conserved densities and Noether operators

The pair of functions (p, ) is called the conserved current of a partial dif-
fetential system with two independent variables ¢, x and dependent variables
u, a=1,2,...,m,if Dip(t,x,u) = DO(t,z,u) for any solution of the system.
The function p is said to be the conserved density and 6 be the density current.
If we consider the evolution system u; = K (u) then gradient of any conserved

density v = E p:
S (-Dy dp
70é - (_D) aua

n n

solves the following equation
(Dt + K/+)7 =0,

where K'" is the adjoint for K’ operator (see [7], [8] or [9]).
Operator © satisfying the equation

(D — K'Y© =O(D, — K'") (24)

is called the Noether operator [12].

According to this definition Noether operator of an evolution system maps
the set of gradients of conserved densities into the set of Lie-Backlund symme-
tries of the system.

We solved the equation (24) and found two following Noether operators for
the system (9):

<D3+Du—|—uD UD> (D 0 )
0, = . Oy = . (25)
Dwv 0 0 (¢/2)D

The direct check shows that ©; and O, are implectic and compatible (see [12],
[13]). In other words ©; and O, is the Hamiltonian pair. The recursion operator
(15) takes the form A = ©;0;! as it can be checked. This formula implies that
A and A~! are hereditary operators.

Solving the equation D;p = D 6 one can easyly find the following simplest
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conserved currents jr = [pr, Okl:
. 3 '
j1 = [u, U2+§u2+602], Jo = [v, uvl.

1 1
Js = [§u2—|—51)2, U Uy — §u%—|—u3—|—25uv2],

1 1
j4:[—§u%—|—§u3+su1)2, —u1U3—|—§u2u2—|—
2 12 a2 9 4 D 9 o0 1y
+eviug + —us —2evviu; —3uul + —u + =ev u’ + =v,
2 8 2 2
: L 30 1 -1 L 3 9 ~1,2
]5:[50 vy U U, U u2+§7} viu—v ut—2ew.

The corresponding gradients v = [dpy/du, dpy/dv] take the following form
m=1[1,0], %2=1[0,1], 73 =1[u,2ev], v4=[us+ qu +ev? 2euv),
v = [—v !, —v vy + gv_4 v? +uv .

Using these expressions we found that

171 ={uw1, n} =09, O172=0, O1y3 =01, O1y =09, O17 =0,

(26)
O =072 =0, O3 =00, Oy =01, Oy =wi/(2¢).
Hence, the system (9) is the bi-Hamiltonian one:
w = O1ELp3 = O2Lpy. (27)

Here u = {u, v}.
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