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Abstract

We have solved a nerve conduction equation in terms of hyperbolic functions
and found the restrictions on the coefficients of the governing equation and the

solution parameters for the kink-antikink solutions to exist.
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1. Introduction

The governing equation for wave front propagation in non-uniform axon cables
is

uxx + r(x) ux − ut − p(u) = 0, (1.1)

where r(x) is a real function of cable diameter, and

p(u) = q0 + q1 u + q2 u2 + q3 u3, qi ∈ R. (1.2)

The infinitesimal operators of the symmetry group of the partial differential
equation (1.1) have already been found [1, 2] using Sophus Lie’s theory of

symmetry groups [3]. The equation (1.1) has a wide literature and applications
[4, 5, 6, 7].

The aim of this paper is to derive kink-antikink solutions of equation (1.1) with
r(x) = constant, using a direct method [4,5] using the properties of hyperbolic

functions. The method is to balance the highest nonlinear term and the deriva-
tive term for some combination of hyperbolic functions and then to equate the

like powers of the functions on both sides. For example, our solution will be of
the form

u(z) =
m

∑

i=0

ai tanhi µz, (1.3)

where the expansion coefficient {ai}m
0
, order of expansion m, and wave number

µ are to be determined. It is easy to note that a derivative term unz of nth order

has highest power in tanh µz of m+n. Therefore, for equations in u possessing
a highest derivative term of order d and highest nonlinear term uh, we have,

m =
d

h − 1
(1.4)

2. Nerve Conduction Equation

We consider the equation

uxx + A ux − ut − (q0 + q1 u + q2 u2 + q3 u3) = 0, qi ∈ R, (2.1)

where, A is a constant, which is a model equation for wavefront propagation in
uniform axon cables. A change of variable u = u∗ + α, where α is a constant,
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transvfers the equation (2.1) to the form

u∗
xx + Au∗

x − u∗
t − (q∗

1
u∗ + q∗

2
u∗2 + q∗

3
u∗3) + P3(α) = 0,

where q∗
1
, q∗

2
, q∗

3
are the constant depending on α and P3(α) is a polynom of

degree 3. If α is a root of the polynom we get an equation of the form (2.1)
with q0 = 0. So without losss of generality we can put q0 = 0 in (2.1). We look

for travelling wave solutions of equation (2.1) in the form

u(z) = u(x − vt), (2.2)

where, v is the wave velocity.

Using (2.2) in (2.1) and rearranging the terms, we get

uzz = (v − A) uz + (q1 u + q2 u2 + q3 u3). (2.3)

Equation (2.3) is an ordinary differential equation of second order involving

a third degree polynomial in u. Consistent with equation (1.4), we assume a
solution of (2.3) in the form

u(z) = a0 + a1 tanh µz, (2.4)

where, a0, a1 and µ are parameters to be determined. Substituting (2.4) into

(2.3) and equating like powers of tanh µz on both sides, we get the following
equations:

2 a1 µ2 = a3

1
q3, (2.5)

0 = (A − v) a1 µ + q2 a2

1
+ 3 a0 a2

1
q3, (2.6)

−2 a1 µ2 = q1 a1 + 2 a0 a1 q2 + 3 a2

0
a1 q3, (2.7)

0 = (v − A) a1 µ + q1 a0 + q2 a2

0
+ q3 a3

0
. (2.8)

Equations (2.5) to (2.7) give rise to

µ = ±
√

q3

2
a1, (2.9)

a0 =
1

3q3

{

±
√

q3

2
(v − A) − q2

}

, (2.10)
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a2

1
=

1

3q2

3

{

q2

2
− q3

2
(v − A)2

}

− q1

q3

. (2.11)

Equation (2.8) gives a constraint equation involving the parameters a0, a1 and

µ. It is quite clear that solution in the form (2.4) is possible only when q3 is
positive.

We set

q1 =
q2

2
− 3 q3

3 q3

(2.12)

so that

a2

1
=

6 − (v − A)2

6 q3

, (2.13)

which restrict the solution to be valid only when

|v − A| <
√

6. (2.14)

Since we are looking for kink-antikink solutions, we put a1 = sa0, where s is a
real number. Using expressions (2.10) and (2.13), we get

a0 =
−3 q2 ±

√

(27 + 9s2)q3 − 3s2q2

2

2(9 + 3s2)q3

. (2.15)

Since q3 is always positive, we take the positive sign in (2.15) when q2 is positive
and the negative sign when q2 is negative. Therefore, for a0 to be positive, q2

should be less than
√

3q3 when it is positive and q2 should be greater than
−√

3q3 when it is negative. From (2.12) it follows that for a0 to be positive, q1

should be negative for a positive q2 and q1 should be positive for a negative q2.

With a1 = sa0, our solution u(z) can be written in the form

u(z) = a0 (1 + s tanh µz). (2.16)

Case 1. s > 0, µ > 0

In this case, if a0 is positive, a1 will be positive and so µ =

√

q3

2
a1 which

gives rise to a kink solution. If a0 is negative, a1 becomes negative and then

µ = −
√

q3

2
a1 which leads to an anti-kink solution. These solutions are shown

in Fig.1 and Fig.4.
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Case 2. s < 0, µ > 0

Here, if a0 is positive, a1 has negative sign and so µ = −
√

q3

2
a1 which is

the case of an anti-kink solution. If a0 is negative, a1 becomes positive and so

µ =

√

q3

2
a1 which gives rise to a kink solution. These solutions are represented

by Fig.2 and Fig.3.

Case 3. s > 0, µ < 0

In this case, if a0 is positive, a1 will be positive and so, µ = −
√

q3

2
a1 which

leads to an anti-kink solution. If a0 is negative, a1 becomes negative and then

µ =

√

q3

2
a1 which is the case of a kink solution. These solutions are again

shown in Fig.2 and Fig.3.

Case 4. s < 0, µ < 0

Here, if a0 is positive, a1 will be negative and so, µ =

√

q3

2
a1 which gives rise

to a kink solution. If a0 is negative, a1 becomes positive and µ = −
√

q3

2
a1

which leads to an anti-kink solution. These solutions are again represented by

Fig.1 and Fig.4.

Thus when s and µ have same signs, (2.16) is a kink solution when a0 is positive,

that is, when q1 < 0 for positive q2 and q1 > 0 for negative q2. (2.16) is an
anti-kink solution when a0 is negative.

When s and µ have opposite signs, (2.16) is a kink solution when a0 is negative,
that is, when q1 > 0 for positive q2 and q1 < 0 for negative q2. (2.16) is an

anti-kink solution for positive a0.

3. Conclusion

We have derived kink-antikink solutions of a nerve conduction equation explic-

itly in terms of hyperbolic functions. It is quite interesting to note that by
this direct method we could obtain certain conditions involving the constant

coefficients of the governing equation and the solution parameters for such so-
lutions to exist. We could find that for a solution in the form (2.16) to exist the
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coefficients of the highest nonlinear term must be strictly positive and (2.12)

should be satisfied.

This is only a preliminary mathematical study of the nerve conduction equa-

tions. An investigation about the stability of the solutions and its biological
relevance will be done in the future. Solutions of these equations using other

methods and comparison of solutions is also a matter of future research.
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