

DIFFERENTIAL EQUATIONS AND CONTROL PROCESSES N 1, 2000 Electronic Journal, reg. N P23275 at 07.03.97

http://www.neva.ru/journal e-mail: diff@osipenko.stu.neva.ru

Dynamical systems in medicine, biology, ecology, and chemistry

# KINK-ANTIKINK SOLUTIONS OF A NERVE CONDUCTION EQUATION

E.V.KRISHNAN

Department of Mathematics and Statistics Sultan Qaboos University P.O.Box 36, Al-Khod 123, Muscat, Sultanate of Oman e-mail: krish@squ.edu.om

R.P.JAJU

Computer Science DepartmentUNISWA P/B 4, Kwaluseni, Swaziland e-mail: jajurp@science.uniswa.sz

G.OSIPENKO

Department of Mathematics St.Petersburg State Technical University 195251 St. Petersburg, Russia e-mail: math@math.hop.stu.neva.ru

#### Abstract

We have solved a nerve conduction equation in terms of hyperbolic functions and found the restrictions on the coefficients of the governing equation and the solution parameters for the kink-antikink solutions to exist.

#### 1. Introduction

The governing equation for wave front propagation in non-uniform axon cables is

$$u_{xx} + r(x) u_x - u_t - p(u) = 0, \qquad (1.1)$$

where r(x) is a real function of cable diameter, and

$$p(u) = q_0 + q_1 u + q_2 u^2 + q_3 u^3, \quad q_i \in R.$$
(1.2)

The infinitesimal operators of the symmetry group of the partial differential equation (1.1) have already been found [1, 2] using Sophus Lie's theory of symmetry groups [3]. The equation (1.1) has a wide literature and applications [4, 5, 6, 7].

The aim of this paper is to derive kink-antikink solutions of equation (1.1) with r(x) = constant, using a direct method [4,5] using the properties of hyperbolic functions. The method is to balance the highest nonlinear term and the derivative term for some combination of hyperbolic functions and then to equate the like powers of the functions on both sides. For example, our solution will be of the form

$$u(z) = \sum_{i=0}^{m} a_i \tanh^i \mu z, \qquad (1.3)$$

where the expansion coefficient  $\{a_i\}_0^m$ , order of expansion m, and wave number  $\mu$  are to be determined. It is easy to note that a derivative term  $u_{nz}$  of  $n^{th}$  order has highest power in  $tanh \mu z$  of m + n. Therefore, for equations in u possessing a highest derivative term of order d and highest nonlinear term  $u^h$ , we have,

$$m = \frac{d}{h-1} \tag{1.4}$$

#### 2. Nerve Conduction Equation

We consider the equation

$$u_{xx} + A u_x - u_t - (q_0 + q_1 u + q_2 u^2 + q_3 u^3) = 0, \quad q_i \in \mathbb{R},$$
 (2.1)

where, A is a constant, which is a model equation for wavefront propagation in uniform axon cables. A change of variable  $u = u^* + \alpha$ , where  $\alpha$  is a constant,

transverse the equation (2.1) to the form

$$u_{xx}^* + Au_x^* - u_t^* - (q_1^* u^* + q_2^* u^{*2} + q_3^* u^{*3}) + P_3(\alpha) = 0,$$

where  $q_1^*, q_2^*, q_3^*$  are the constant depending on  $\alpha$  and  $P_3(\alpha)$  is a polynom of degree 3. If  $\alpha$  is a root of the polynom we get an equation of the form (2.1) with  $q_0 = 0$ . So without losss of generality we can put  $q_0 = 0$  in (2.1). We look for travelling wave solutions of equation (2.1) in the form

$$u(z) = u(x - vt),$$
 (2.2)

where, v is the wave velocity.

Using (2.2) in (2.1) and rearranging the terms, we get

$$u_{zz} = (v - A) u_z + (q_1 u + q_2 u^2 + q_3 u^3).$$
(2.3)

Equation (2.3) is an ordinary differential equation of second order involving a third degree polynomial in u. Consistent with equation (1.4), we assume a solution of (2.3) in the form

$$u(z) = a_0 + a_1 \tanh \mu z,$$
 (2.4)

where,  $a_0$ ,  $a_1$  and  $\mu$  are parameters to be determined. Substituting (2.4) into (2.3) and equating like powers of  $tanh \mu z$  on both sides, we get the following equations:

$$2 a_1 \mu^2 = a_1^3 q_3, (2.5)$$

$$0 = (A - v) a_1 \mu + q_2 a_1^2 + 3 a_0 a_1^2 q_3, \qquad (2.6)$$

$$-2a_1\mu^2 = q_1a_1 + 2a_0a_1q_2 + 3a_0^2a_1q_3, \qquad (2.7)$$

$$0 = (v - A) a_1 \mu + q_1 a_0 + q_2 a_0^2 + q_3 a_0^3.$$
 (2.8)

Equations (2.5) to (2.7) give rise to

$$\mu = \pm \sqrt{\frac{q_3}{2}} a_1, \tag{2.9}$$

$$a_0 = \frac{1}{3q_3} \left\{ \pm \sqrt{\frac{q_3}{2}} \left( v - A \right) - q_2 \right\}, \qquad (2.10)$$

Electronic Journal. http://www.neva.ru/journal 20

$$a_1^2 = \frac{1}{3q_3^2} \left\{ q_2^2 - \frac{q_3}{2} \left( v - A \right)^2 \right\} - \frac{q_1}{q_3}.$$
 (2.11)

Equation (2.8) gives a constraint equation involving the parameters  $a_0, a_1$  and  $\mu$ . It is quite clear that solution in the form (2.4) is possible only when  $q_3$  is positive.

We set

$$q_1 = \frac{q_2^2 - 3\,q_3}{3\,q_3} \tag{2.12}$$

so that

$$a_1^2 = \frac{6 - (v - A)^2}{6 q_3},\tag{2.13}$$

which restrict the solution to be valid only when

$$|v - A| < \sqrt{6}. \tag{2.14}$$

Since we are looking for kink-antikink solutions, we put  $a_1 = sa_0$ , where s is a real number. Using expressions (2.10) and (2.13), we get

$$a_0 = \frac{-3q_2 \pm \sqrt{(27+9s^2)q_3 - 3s^2q_2^2}}{2(9+3s^2)q_3}.$$
 (2.15)

Since  $q_3$  is always positive, we take the positive sign in (2.15) when  $q_2$  is positive and the negative sign when  $q_2$  is negative. Therefore, for  $a_0$  to be positive,  $q_2$ should be less than  $\sqrt{3q_3}$  when it is positive and  $q_2$  should be greater than  $-\sqrt{3q_3}$  when it is negative. From (2.12) it follows that for  $a_0$  to be positive,  $q_1$ should be negative for a positive  $q_2$  and  $q_1$  should be positive for a negative  $q_2$ . With  $a_1 = sa_0$ , our solution u(z) can be written in the form

$$u(z) = a_0 (1 + s \tanh \mu z).$$
(2.16)

Case 1.  $s > 0, \ \mu > 0$ 

In this case, if  $a_0$  is positive,  $a_1$  will be positive and so  $\mu = \sqrt{\frac{q_3}{2}} a_1$  which gives rise to a kink solution. If  $a_0$  is negative,  $a_1$  becomes negative and then  $\mu = -\sqrt{\frac{q_3}{2}} a_1$  which leads to an anti-kink solution. These solutions are shown in Fig.1 and Fig.4.

### Case 2. $s < 0, \mu > 0$

Here, if  $a_0$  is positive,  $a_1$  has negative sign and so  $\mu = -\sqrt{\frac{q_3}{2}}a_1$  which is the case of an anti-kink solution. If  $a_0$  is negative,  $a_1$  becomes positive and so  $\mu = \sqrt{\frac{q_3}{2}}a_1$  which gives rise to a kink solution. These solutions are represented by Fig.2 and Fig.3.

#### Case 3. $s > 0, \ \mu < 0$

In this case, if  $a_0$  is positive,  $a_1$  will be positive and so,  $\mu = -\sqrt{\frac{q_3}{2}}a_1$  which leads to an anti-kink solution. If  $a_0$  is negative,  $a_1$  becomes negative and then  $\mu = \sqrt{\frac{q_3}{2}}a_1$  which is the case of a kink solution. These solutions are again shown in Fig.2 and Fig.3.

Case 4.  $s < 0, \ \mu < 0$ 

Here, if  $a_0$  is positive,  $a_1$  will be negative and so,  $\mu = \sqrt{\frac{q_3}{2}} a_1$  which gives rise to a kink solution. If  $a_0$  is negative,  $a_1$  becomes positive and  $\mu = -\sqrt{\frac{q_3}{2}} a_1$ which leads to an anti-kink solution. These solutions are again represented by Fig.1 and Fig.4.

Thus when s and  $\mu$  have same signs, (2.16) is a kink solution when  $a_0$  is positive, that is, when  $q_1 < 0$  for positive  $q_2$  and  $q_1 > 0$  for negative  $q_2$ . (2.16) is an anti-kink solution when  $a_0$  is negative.

When s and  $\mu$  have opposite signs, (2.16) is a kink solution when  $a_0$  is negative, that is, when  $q_1 > 0$  for positive  $q_2$  and  $q_1 < 0$  for negative  $q_2$ . (2.16) is an anti-kink solution for positive  $a_0$ .

### 3. Conclusion

We have derived kink-antikink solutions of a nerve conduction equation explicitly in terms of hyperbolic functions. It is quite interesting to note that by this direct method we could obtain certain conditions involving the constant coefficients of the governing equation and the solution parameters for such solutions to exist. We could find that for a solution in the form (2.16) to exist the coefficients of the highest nonlinear term must be strictly positive and (2.12) should be satisfied.

This is only a preliminary mathematical study of the nerve conduction equations. An investigation about the stability of the solutions and its biological relevance will be done in the future. Solutions of these equations using other methods and comparison of solutions is also a matter of future research.



Fig 1.



Fig 2.



## References

- 1. I. Villmann and A. Schierwagen, The symmetries of a nerve conduction equation, Appl. Math. Lett., 4,33-36, 1991.
- 2. E.V. Krishnan and B.S. Bhatt, Group invariant solutions of a nerve conduction equation, Il Nuovo Cimento, **110B**, 1177-1182, 1995.
- 3. F. Schwarz, Symmetries of differential equations: From Sophus Lie to computer-algebra, SIAM Rev., **30**, 450-481, 1988.
- L. Huibin and W. Kelin, Exact solutions for two nonlinear equations, J.Phys.A, 23, 3923-3928, 1990.
- E.V. Krishnan, Travelling wave solutions of density dependent diffusion equations, Acta. Phys. Hungarica, 72, 193-202, 1992.
- A. N. Kolmogorov, N.G. Petrovsky, N.S. Piskunov, Investigation of diffusion equation, Questions in Cybernetics, N12, 3-30, 1975.
- 7. J.D. Murray, Lectures on Nonlinear Differential Equation Models in Biology, Oxford, 1977.