

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ПРОЦЕССЫ УПРАВЛЕНИЯ N 2, 1999 Электронный журнал, per. N П23275 от 07.03.97

> http://www.neva.ru/journal e-mail: diff@osipenko.stu.neva.ru

Теория нелинейных колебаний

УДК 517.938

 $A. B. Eropoe^1$

ЛОКАЛЬНЫЙ АНАЛИЗ ПАРЫ СВЯЗАННЫХ ОТОБРАЖЕНИЙ ХЕНОНА В СИММЕТРИЧНОМ СЛУЧАЕ

Введение

Проблема синхронизации связанных осцилляторов занимает важное место в теории дискретных динамических систем. Системы связанных отображений изучались при различных предположениях и интерпретациях (см., например, [2–4]). Предметом анализа настоящей статьи выбрана структура, которая разбиралась в работе [4]:

$$z_{n+1} = (1-k)h_1(z_n) + kh_2(w_n) , \qquad 0 < k < 1/2,$$

$$w_{n+1} = kh_1(z_n) + (1-k)h_2(w_n) , \qquad 0 < k < 1/2,$$

при этом изучается симметричный случай, т.е. $h_1 = h_2 = h$.

В предлагаемом исследовании описываются свойства пары связанных осцилляторов хеноновского типа, т.е. рассматривается отображение вида:

$$H: \begin{cases} z_1 = (1-k)h(z) + kh(w), \\ w_1 = kh(z) + (1-k)h(w), \end{cases}$$
(1)

где $z = (x, y) \in \mathbb{R}^2, w = (u, v) \in \mathbb{R}^2, 0 < k < 1/2, h$ — отображение Хенона:

$$h: \begin{cases} x_1 = a - by - x^2, \\ y_1 = x, \end{cases}$$
(2)

¹ Санкт-Петербургский государственный университет: 198904, Санкт-Петербург, Петродворец, Библиотечная пл., д. 2. СПбГУ. Математико-механический факультет. Кафедра дифференциальных уравнений.

с произвольными действительными коэффициентами а, b.

З а м е ч а н и е. Далее в тексте пару связанных отображений H вида (1) будем называть полным отображением, а под классическим или стандартным будем понимать отображение Хенона h, записанное в виде (2) (см., [5]).

Система уравнений (1) описывает преобразование четырехмерного пространства, однако при b=0 классическое отображение Хенона эквивалентно одномерному логистическому отображению (это утверждение, а также некоторые свойства логистического отображения, можно найти в работе [5]), а исходная задача синхронизации двух связанных отображений Хенона сводится к изучению эндоморфизмов двумерной плоскости. Кроме того, свойства полного отображения для 0 < |b| < 1 и для |b| > 1 имеют существенные различия.

В связи с вышесказанным возникают три возможных случая поведения системы (1) при различных значениях параметра *b*.

Пара связанных логистических отображений, которая соответствует полному отображению H при условии, что значение параметра b равно нулю, рассматривалась, например, в работах [2-4].

Локальный анализ, проведенный в данной работе, относится к ситуации, когда 0 < |b| < 1. Далее это условие предполагается выполненным.

1. Некоторые свойства отображения h

В этом разделе даются простые свойства классического отображения, описанные в работе [5], которые будем использовать в дальнейшем.

1.1. При $a < -s^2$, s = (b+1)/2, h(z) не имеет неподвижных точек.

1.2. При $a > -s^2$ у h(z) существуют две неподвижные точки M_1 и M_2 , с координатами (m_1, m_1) и (m_2, m_2) , соответственно, где $m_1 = -s - \sqrt{a + s^2}$, $m_2 = -s + \sqrt{a + s^2}$.

1.3. При $a > 3s^2$ существуют две неподвижные точки M_1 и M_2 и две двупериодические точки $N_1 = (n_1, n_2)$ и $N_2 = (n_2, n_1)$, где $n_1 = s - \sqrt{a - 3s^2}$, $n_2 = s + \sqrt{a - 3s^2}$.

1.4. При $a = -s^2$ происходит бифуркация "складка".

1.5. При $a = 3s^2$ происходит бифуркация "удвоение периода".

1.6. Собственные числа в точках M_1 и M_2 будут равны

$$\lambda_{1i} = -m_i + \sqrt{m_i^2 - b}, \ \lambda_{2i} = -m_i - \sqrt{m_i^2 - b}, \ i = 1, 2.$$

При этом для собственных чисел в неподвижных точках выполняются следующие условия: λ_{11} больше 1, а λ_{12} по абсолютной величине меньше 1, $|\lambda_{12}| < 1$, а λ_{22} находится в пределах от -1 до 1 при $a < 3s^2$ и λ_{22} меньше -1 при $a > a_2$.

2. Некоторые свойства полного отображения H

В этой части работы описываются простейшие свойства полного отображения *H*, связанные с его структурой.

О пределение 1. Для каждой точки M = (z, w) точку $M^* = (w, z)$ будем называть симметричной точке M. Соответственно, оператор $M \to M^*$ будем называть симметрией. Главной диагональю будем называть множество точек, инвариантное относительно симметрии (т.е. множество точек, определяемых равенством z = w).

Рассмотрим отображение H(z, w), записанное в координатной форме:

$$H: \begin{cases} x_1 = (1-k)(a - by - x^2) + k(a - bv - u^2), \\ y_1 = (1-k)x + ku, \\ u_1 = k(a - by - x^2) + (1-k)(a - bv - u^2), \\ v_1 = kx + (1-k)u, \end{cases} \quad 0 < k < 1/2, \quad (3)$$

и проведем линейную замену координат:

$$x \mapsto x + u, \quad y \mapsto y + rv, \quad u \mapsto x - u, \quad v \mapsto y - rv, \quad r = 1 - 2k$$

Тогда H(z, w) запишется в эквивалентной форме:

$$H: \begin{cases} x_1 = a - by - x^2 - u^2, \\ y_1 = x, \\ u_1 = -2rxu - br^2 v, \\ v_1 = u, \end{cases} \qquad 0 < r < 1.$$
(4)

После замены координат плоскость z = w переходит в плоскость, задаваемую равенствами u = v = 0. Следовательно, координаты точек главной диагонали примут вид (p, 0), а симметричными будут являться точки M = (p, q) и $M^* = (p, -q)$.

Первое свойство полного отображения непосредственно вытекает из формул (4): главная диагональ является строго инвариантным множеством.

Следующее утверждение подчеркивает свойство симметрии полного отображения *H*.

Предложение 1. Точки M = (p,q) и $M^* = (p,-q)$, симметричные относительно главной диагонали, имеют симметричные образы для любой итерации.

Доказательство. Пусть точки M = (p,q) и $M^* = (p,-q)$ симметричны, где p = (x,y), q = (u,v). Проведем индукцию по числу итераций. Для n = 1, используя формулы (4), имеем

$$H(M) = H(p,q) = H(x, y, u, v) = (x_1, y_1, u_1, v_1) = K_1,$$

 $H(M^*) = H(p, -q) = H(x, y, -u, -v) = (x_1, y_1, -u_1, -v_1) = K_1^*.$

Следовательно, для n = 1 утверждение верно. В предположении, что утверждение верно для степеней отображения меньших или равных n - 1, n > 1, обозначим $K_{n-1} = H^{n-1}(M) = H^{n-1}(p,q)$, $K_{n-1}^* = H^{n-1}(M^*) = H^{n-1}(p,-q)$. Тогда

$$H(K_{n-1}) = K_n, \quad H(K_{n-1}^*) = K_n^*.$$

Таким образом, если $H^n(M) = K_n$, то $H^n(M^*) = K_n^*$ для любых точек M, $M^*, n = 1, 2, \ldots$.

В дополнение укажем еще некоторые очевидные свойства полного отображения H(z, w) в симметричном случае.

 $Отображение \ H(z,w)$:

2.1. сохраняет ориентацию;

2.2. диссипативно;

2.3. сужение полного отображения на главную диагональ совпадает с классическим: $H^n(p,0) = (h^n(p),0), n = 0, 1, 2, ...;$

2.4. точка р является периодической для единичного отображения Xенона h(z), тогда и только тогда, когда точка (p, 0) является периодической с тем же периодом для полного отображения H(z, w).

Свойства 2.1 и 2.2 являются простым следствием того факта, что якобиан системы (4)

$$\det \begin{vmatrix} -2x & -b & -2u & 0\\ 1 & 0 & 0 & 0\\ -2ru & 0 & -2rx & -br^2\\ 0 & 0 & 1 & 0 \end{vmatrix} = b^2 r^2$$

является положительной константой, меньшей единицы. Свойства, указанные в предложении, непосредственно вытекают из соответствующих определений (см., [6]). Свойство 2.3 означает, что свойства классического отображения Хенона естественным образом переносятся на свойства полного отображения для точек главной диагонали.

Непосредственным следствием данного утверждения является свойство 2.4.

3. Неподвижные точки отображения Н

В этом разделе для полного отображения находятся точные координаты и количество неподвижных точек в зависимости от значений параметров, входящих в выражение для H(z, w).

Рассмотрим условие существования неподвижной точки отображения $H\colon$

$$x = a - by - x^{2} - u^{2},$$

$$y = x,$$

$$u = -2rxu - br^{2}v,$$

$$v = u.$$
(5)

Введем обозначения: $s = \frac{1}{2}(b+1), \quad p = \frac{1}{2r}(1+br^2).$

С учетом этих обозначений из (5) получаем систему уравнений для нахождения координат неподвижных точек:

$$(x+s)^{2} + u^{2} = a + s^{2},$$

 $y = x,$
 $u(x+p) = 0,$
 $v = u.$
(6)

Предложение 2. Отображение Н обладает следующими свойствами:

1) если $a < a_0 = -s^2$, то H не имеет неподвижных точек;

2) если $a_0 < a < a_1 = p^2 - 2sp$, то существуют две неподвижные точки M_1 и M_2 , лежащие на главной диагонали, с координатами $(m_1, m_1, 0, 0)$ и $(m_2, m_2, 0, 0)$ соответственно, где $m_1 = -s - \sqrt{a + s^2}$, $m_2 = -s + \sqrt{a + s^2}$; 3) если $a > a_1$, то существуют четыре неподвижные точки: M_1, M_2 , a также $M_3 = (-p, -p, m_3, m_3)$ и симметричная ей $M_3^* = (-p, -p, -m_3, -m_3)$, где $m_3 = \sqrt{a + 2sp - p^2}$.

Доказательство. 1) Очевидно, что первое равенство полученной системы (6) не имеет действительных корней при $a < a_0$. Следовательно, если $a < a_0$, то отображение H(z, w) не имеет неподвижных точек.

Обратим внимание на то, что условие $a < a_0$, при выполнении которого отсутствуют неподвижные точки, для полного и классического отображений совпадают (см. свойство 1.1).

2) Рассмотрим третье уравнение системы (6). Оно имеет два действительных решения: u = 0 и x = -p. Запишем равенство $(x+s)^2+u^2 = a+s^2$ в виде $x^2 + 2sx + u^2 = a$. Полученное уравнение не имеет действительных корней при x = -p и $a_0 < a < a_1$, потому что $p^2 - 2sp + u^2 - a > p^2 - 2sp - a = a_1 - a$. Иными словами, значение x = -p не удовлетворяет первому уравнению системы (6). Тогда координаты неподвижных точек находятся из равенств

$$x^2 + 2sx - a = 0, \quad y = x, \quad u = v = 0.$$

Следовательно, неподвижными являются только две точки M_1 и M_2 с координатами $(m_1, m_1, 0, 0)$ и $(m_2, m_2, 0, 0)$, соответственно, где $m_1 = -s - \sqrt{a + s^2}$, $m_2 = -s + \sqrt{a + s^2}$. Таким образом, при $a_0 < a < a_1$ отображение H(z, w) имеет две неподвижные точки, которые лежат на главной диагонали. Отметим, что это решение существует для любого $a > a_0$, в том числе и при $a > a_1$.

3) Если $a > a_1$, то при x = -p система (6) принимает вид:

$$y = x = -p$$
, $p^2 - 2sp + u^2 - a = 0$, $v = u$.

Из полученных равенств находим координаты неподвижных точек $M_3 = (-p, -p, m_3, m_3)$ и $M_3^* = (-p, -p, -m_3, -m_3)$, где $m_3 = \sqrt{a + 2sp - p^2} = \sqrt{a - a_1}$. При точки M_1 и M_2 остаются неподвижными. Таким образом, при $a > a_1$ существуют четыре неподвижные точки отображения H(z, w).

Условия, указанные в предложении 2, показаны на диаграмме (см. ниже):

I — отсутствие неподвижных точек,

II – VII — области существования неподвижных точек $M_1, M_2;$ III, V – VII — области существования неподвижных точек $M_3, M_3^*.$

4. Характер устойчивости неподвижных точек

В этой части работы исследуется характер устойчивости неподвижных точек полного отображения H(z, w).

О пределение 2. Неподвижная точка M называется *гиперболической*, если в этой точке ни одно собственное число не равно 1 по абсолютному значению.

О пределение 3. Будем говорить, что гиперболическая точка

M принадлежит классу $S_{i,j}$, если $\dim W^s(M) = i$, $\dim W^u(M) = j$, где $W^s(M), W^u(M)$ — устойчивое и неустойчивое многообразия точки M.

Отметим, что для стандартного отображения Хенона h(z) одна неподвижная точка всегда принадлежит классу $S_{1,1}$, а другая — классу $S_{2,0}$, если $a_0 < a < a_2$ и классу $S_{1,1}$, если $a > a_2$ (см., например, [5]).

Теорема 1. Для точек M_1 , M_2 при 0 < |b| < 1 выполняются следующие утверждения:

1) если $a_0 < a < a_1$, то $M_1 \in S_{3,1}$;

- 2) если $a > a_1$, то $M_1 \in S_{2,2}$;
- 3) если $a_0 < a < a_2$, то $M_2 \in S_{4,0}$;
- 4) если $a_2 < a < a_3$, то $M_2 \in S_{3,1}$;
- 5) если $a > a_3$, то $M_2 \in S_{2,2}$; $e \partial e \ a_0 = -s^2$, $a_1 = p^2 - 2sp$, $a_2 = 3s^2$, $a_3 = p^2 + 2sp$.

Доказательство . 1) Рассмотрим неподвижные точки M_1 и M_2 . Для них характеристическое уравнение запишется в виде

$$(\lambda^2 + 2m_i\lambda + b)(\lambda^2 + 2rm_i\lambda + br^2) = 0, \quad i = 1, 2.$$

Следовательно, собственные числа будут равны

$$\lambda_{1i} = -m_i + \sqrt{m_i^2 - b}, \quad \lambda_{3i} = r\lambda_{1i},$$
$$\lambda_{2i} = -m_i - \sqrt{m_i^2 - b}, \quad \lambda_{4i} = r\lambda_{2i},$$

где $i = 1, 2, m_1 = -s - \sqrt{a + s^2}, m_2 = -s + \sqrt{a + s^2}, s = \frac{1}{2}(b+1), 0 < r < 1.$ При этом $\lambda_{ji}, i, j = 1, 2$ совпадают с собственными числами неподвижных точек для единичного отображения. Заметим, что собственные числа как функции параметра *a* являются непрерывными. Тогда, используя свойства 1.6 и 2.3 (так как точки M_1 и M_2 лежат на главной диагонали), получаем следующие свойства:

1) $\lambda_{11}(a) > 1$ и монотонно возрастает с ростом параметра a,

2) $|\lambda_{21}(a)| < 1, |\lambda_{12}(a)| < 1,$

3) $|\lambda_{22}(a)| < 1$ при $a_0 < a < a_2 = 3s^2$ и $\lambda_{22}(a) < -1$ и монотонно убывает при возрастании $a > a_2$.

Следовательно,

1) $\lambda_{31}(a) = r\lambda_{11} > r$ и, монотонно возрастая с увеличением параметра a, становится больше 1 при $a > a_1$;

2)
$$|\lambda_{41}(a)| = r|\lambda_{21}(a)| < r < 1; |\lambda_{32}(a)| = r|\lambda_{12}(a)| < r < 1;$$

3) если $a_0 < a < a_2$, то $|\lambda_{42}(a)| = r|\lambda_{22}(a)| < r < 1;$

если $a > a_2$, то функция $\lambda_{42}(a)$ монотонно убывает и ее значение принадлежит интервалу (-1, -r) при $a_2 < a < a_3$ и становится меньше -1 при $a > a_3$. Таким образом,

1) при
$$a_0 < a < a_1$$

 $|\lambda_{11}(a)| > 1, |\lambda_{j1}(a)| < 1, j = 2, 3, 4 \Rightarrow M_1 \in S_{3,1};$

- 2) при $a > a_1$ $|\lambda_{j1}(a)| > 1, j = 1, 3, |\lambda_{j1}(a)| < 1, j = 2, 4 \Rightarrow M_1 \in S_{2,2};$
- 3) при $a_0 < a < a_2$ $|\lambda_{j2}(a)| < 1, j = 1, 2, 3, 4$ $\Rightarrow M_2 \in S_{4,0};$

4) при
$$a_2 < a < a_3$$

 $|\lambda_{j2}(a)| < 1, j = 1, 3, 4, |\lambda_{22}(a)| > 1 \qquad \Rightarrow M_2 \in S_{3,1};$

5) при $a > a_3$ $|\lambda_{j2}(a)| < 1, j = 1, 3, |\lambda_{j2}(a)| > 1, j = 2, 4 \implies M_2 \in S_{2,2}.$

Теорема доказана.

Теорема 2. Для точек M_3 , M_3^* при 0 < |b| < 1 выполняются следующие утверждения:

- 1) если $a_1 < a < a_4$, то $M_3, M_3^* \in S_{3,1}$,
- 2) если $a > a_4$, то $M_3, M_3^* \in S_{2,2}$, где $a_4 = 3s^2$.

Доказательство. Для неподвижных точек M_3 и M_3^* характеристическое уравнение задается равенством

$$(\lambda^2 - A\lambda + br)(\lambda^2 - B\lambda + br) = 0,$$

в котором

$$A = p(1+r) + \sqrt{(p^2 - b)(1 - r)^2 + 4rm_3^2},$$

$$B = p(1+r) - \sqrt{(p^2 - b)(1 - r)^2 + 4rm_3^2},$$

$$p = \frac{1}{2r}(1 + br^2), \quad m_3 = \sqrt{a + 2sp - p^2}.$$

Собственные числа для точек M_3 и M_3^* будут совпадать и иметь вид:

$$\lambda_{13} = \lambda_{14} = \mu_1(a), \qquad \lambda_{43} = \lambda_{44} = \mu_4(a),$$

где

$$\mu_1(a) = \frac{1}{2}(A + \sqrt{D^+}), \ \mu_4(a) = \frac{1}{2}(A - \sqrt{D^+}).$$
$$\lambda_{23} = \lambda_{24} = \mu_2(a), \quad \lambda_{33} = \lambda_{34} = \mu_3(a),$$
$$\mu_2(a) = \frac{1}{2}(B + \sqrt{D^-}), \ \mu_3(a) = \frac{1}{2}(B - \sqrt{D^-}),$$

при этом $D^+ = A^2 - 4br$, $D^- = B^2 - 4br$.

Сумма корней уравнения $\lambda^2 - A\lambda + br = 0$ равна A, положительна (так как p > 0) и возрастает при росте параметра a, а произведение остается постоянным и меньшим единицы по модулю. При этом очевидно, что возрастает $\mu_1(a)$, т.е. $\mu_1(a) > \mu_1(a_1) = 1/r$, а $\mu_4(a) \to 0$, при $a \to +\infty$.

Сумма корней уравнения $\lambda^2 - B\lambda + br = 0$, равная В, убывает при росте параметра a, а произведение остается постоянным и меньшим единицы по модулю.

Если собственные числа $\mu_2(a)$ и μ_3 комплексны (это возможно только при $a_1 < a < a_4$), то $|\mu_2(a)| = |\mu_3(a)| = |br| < 1$. Если они действительны, то при $a > a_4$ функция $\mu_2(a)$ монотонно убывает при $a \to +\infty$, а $\mu_3(a) \to 0$ с ростом параметра a. Следовательно,

1) при $a_1 < a < a_4$

$$|\mu_1(a)| > 1, \quad |\mu_i(a)| < 1 \ (i = 2, 3, 4) \Rightarrow M_3, \ M_3^* \in S_{3,1},$$

2) при $a > a_4$

 $|\mu_i(a)| > 1 \ (i = 1, 2) \ |\mu_i(a)| > 1 \ (i = 3, 4) \Rightarrow M_3, \ M_3^* \in S_{2,2}.$

Теорема доказана.

5. Характеристика первых бифуркаций неподвижных точек

Напомним, что в разделе 3 были введены следующие величины:

$$s = \frac{1}{2}(b+1)$$
 и $p = \frac{1}{2r}(1+br^2).$

Заметим, что p > s > 0.

Теорема 3. Первые бифуркации неподвижных точек полного отображения H(z,w) при 0 < |b| < 1 происходят при следующих значениях параметра a :

1) $a = a_0 = -s^2$ — "складка",

a = a₁ = p² - 2sp — "вилка",
 a₂ = 3s², a₃ = p² + 2sp, a₄ = 3p² — "удвоение периода".

З а м е ч а н и е. При выполнении условия $a_4 = 3p^2$ происходит бифуркация как для внедиагональных (симметричных) неподвижных точек, так и для одной из двупериодических орбит.

Доказательство. 1) Первое утверждение теоремы является простым следствием предложения 2 и свойств 1.4, 2.3, так как точки M_1 , M_2 лежат на главной диагонали.

2) По предложению 2 координаты неподвижных точек M_1 , M_3 , M_3^* равны: $M_1 = (m_1, m_1, 0, 0), m_1 = -s - \sqrt{a + s^2}, M_3 = (-p, -p, m_3, m_3), M_3^* = (-p, -p, -m_3, -m_3), m_3 = \sqrt{a - a_1}$ и, если выполняется условие $a_0 < a < a_1$, то неподвижных точек M_3, M_3^* нет. Когда $a = a_1$ точки M_1, M_3 и M_3^* совпадают, потому что $m_1 = -s - \sqrt{p^2 - 2sp + s^2} = -p$ и $m_3 = 0$. При этом $\lambda_{31}(a_1) = 1$. Предположим, что выполнено условие $a > a_1$. Следовательно, если $a \to a_1$, то $M_3 \to M_1$ и $M_3^* \to M_1$. Тогда, в точке M_1 при $a = a_1$ происходит бифуркация "вилка".

3) Запишем систему уравнений для нахождения координат двупериодических точек. Она имеет вид:

$$x = a - bx - y^{2} - v^{2},$$

$$y = a - by - x^{2} - u^{2},$$

$$u = -2ryv - br^{2}u,$$

$$v = -2rxu - br^{2}v.$$
(7)

Упрощая ее, получаем два возможных варианта:

$$\begin{aligned} x^2 + 2sy &= a, & (x^2 - p^2)(x^4 - (a - p^2)x^2 + p^4) &= 0, \\ y &= 1 - x, & xy &= p^2, \\ u &= 0, & u^2 &= a - 2sy - x^2, \\ v &= 0 & pv &= -xu. \end{aligned}$$

а) Пусть u = v = 0, $a > a_2$. Это соответствует координатам двупериодической орбиты N_1 , N_2 , лежащей на главной диагонали, с координатами

$$N_1 = (n_1, -n_2, 0, 0), \quad N_2 = (-n_1, n_2, 0, 0),$$

где $n_1 = \frac{1}{2}(s + \sqrt{a - a_2}), \quad n_2 = \frac{1}{2}(s - \sqrt{a - a_2}).$ Если $a \to a_2$, то $n_i \to s, i = 1, 2$. При $a = a_2$ координаты неподвижной точки $M_2 = (m_2, m_2, 0, 0)$ равны (s, s, 0, 0), так как

$$m_2 = -s + \sqrt{a+s^2} = -s + \sqrt{4s^2} = s.$$

Следовательно, $N_i \to M_2$, i = 1, 2, когда $a \to a_2$. Если $a = a_2$, то $N_1 = N_2 = M_2$, при этом $\lambda_{22}(a_2) = -1$. Для значений параметра a, меньших a_0 , действительных точек N_1 , N_2 не существует. Следовательно, в точке M_2 при $a = a_2$ происходит бифуркация "удвоения периода".

b) Вторая группа равенств (8) представляет собой совокупность двух систем уравнений, которые, учитывая координаты неподвижных точек и двупериодической орбиты N_1 , N_2 имеют вид:

$$\begin{array}{ll} x = p, & x^4 - (a - p^2)x^2 + p^4 = 0, \\ y = p, & xy = p^2, \\ u^2 = a - 2sp - p^2, & u^2 = a - 2sy - x^2, \\ v = -u & pv = -xu. \end{array}$$
(9)

Если $a < a_3$, то первая система равенств (9) не имеет действительных решений. Если $x = y = p, a > a_3$, то находим координаты точек

$$N_3 = (p, p, n_3, -n_3), \qquad N_3^* = (p, p, -n_3, n_3),$$

где $n_3 = \sqrt{a - 2sp - p^2} = \sqrt{a - a_3}$. Если $a \to a_3$, то $n_3 \to 0$. Неподвижная точка M_2 при $a = a_3$ имеет координаты (p, p, 0, 0). Тогда точки M_2 и N_3 , N_3^* сливаются, при этом собственное число $\lambda_{42}(a_3) = -1$. Иными словами, в точке M_2 при $a = a_3$ происходит бифуркация "удвоения периода". с) Запишем уравнение $x^4 - (a - p^2)x^2 + p^4 = 0$ из (9) в виде $x^4 - 2p^2x^2 + p^4 - (a - 3p^2)x^2 = 0$. Введя обозначение $t = \sqrt{a - a_4} = \sqrt{a - 3p^2}$, приходим к равенству

$$(x^{2} + tx - p^{2})(x^{2} - tx - p^{2}) = 0,$$

используя решения которого, получаем координаты двупериодических точек $K_i = (k_{1i}, k_{2i}, k_{3i}, k_{4i}), i = 1, 2, 3, 4.$

$$\begin{split} & k_{11} = g, & k_{12} = f, \\ & k_{21} = f, \\ & k_{31} = \sqrt{a - 2sf - g^2}, \\ & k_{41} = -p^{-1}gk_{31}; \end{split} \qquad K_2: \begin{array}{l} & k_{12} = f, \\ & k_{22} = g, \\ & k_{32} = \sqrt{a - 2sg - f^2}, \\ & k_{42} = -p^{-1}fk_{32}; \end{array} \\ & K_3: \begin{array}{l} & k_{13} = -g, \\ & k_{23} = -f, \\ & k_{33} = \sqrt{a + 2sf - g^2}, \\ & k_{43} = p^{-1}gk_{33}; \end{array} \qquad K_4: \begin{array}{l} & k_{14} = -f, \\ & k_{24} = -g, \\ & k_{34} = \sqrt{a + 2sg - f^2}, \\ & k_{44} = p^{-1}fk_{34}, \end{array} \end{split}$$

где

$$f = \frac{1}{2}(t - \sqrt{d}), \ g = \frac{1}{2}(-t - \sqrt{d}),$$
$$d = t^2 + 4p^2, \ t = \sqrt{a - a_4}.$$

Из этих равенств естественным образом находятся координаты симметричных точек K_i^* , i = 1, 2, 3, 4. Отметим очевидный факт: если $a < a_4$, то полное отображение H не имеет двупериодических точек K_i и K_i^* , i = 1, 2, 3, 4, так как $t^2 < 0$. Предположим, что $a \ge a_4$, и рассмотрим поведение точек K_1 и K_2 при $a \to a_4$. Так как при этом условии $t \to 0$ и $d \to 2p^2$, то f, g стремятся к -p. Тогда $K_i \to M_3$, i = 1, 2 (напомним, что $M_3 = (-p, -p, m_3, m_3)$, где $m_3 = \sqrt{a + 2sp - p^2}$). При $a = a_4$ точки M_3 и K_1 , K_2 совпадают, при этом μ_2 равно -1, т.е. в точке M_3 при $a = a_4$ происходит бифуркация "удвоения периода". Аналогично ведут себя точки K_1^*, K_2^* и M_3^* .

d) Рассмотрим поведение точек N_3 , K_3 и K_4 при выполнении условия $a \ge a_4$. Если $a \to a_4$, то, как показано выше, f и g стремятся к -p. Это эквивалентно тому, что K_3 , K_4 сходятся к двупериодической точке N_3 , координаты которой равны (p, p, n_3, n_3) , где $n_3 = \sqrt{a - 2sp - p^2}$. При $a = a_4$ точки N_3 , K_3 и K_4 сливаются. Аналогичным образом ведут себя точки N_3^* , K_3^* , K_4^* . Следовательно, в точках N_3 , N_3^* при $a = a_4$ происходят бифуркации.

З а м е ч а н и е. Обратим внимание на то, что в случае d) после бифуркации возникают две двупериодические орбиты, а не одна четырехпериодическая.

На диаграмме изображены следующие кривые при значениях параметров:

$$a_0 = -s^2$$
, $a_1 = p^2 - 2sp$, $a_2 = 3s^2$, $a_3 = p^2 + 2sp$, $a_4 = 3p^2$.

Области существования неподвижных точек и двупериодических орбит обозначены I - VII. В регионе, обозначенном I ($a < a_0$), периодических точек нет.

Неподвижные точки M_1 , M_2 существуют в областях II - VII, при этом $M_1 \in S_{3,1}$ в областях II, IV, т.е. $a_0 < a < a_1$, и $M_1 \in S_{2,2}$ в областях III, V - VII, соответствующих значениям параметров $a > a_1$; $M_1 \in S_{4,0}$ в областях II, III ($a_0 < a < a_2$), $M_2 \in S_{3,1}$ в областях IV, V, ограниченных кривыми $a > a_2$, $p > a_3$, $M_2 \in S_{2,2}$ в регионах VI, VII, когда p > s, $a > a_3$. Неподвижные точки M_3 , M_3^* существуют в областях III, V - VII, и при-

надлежат классу $S_{3,1}$ в III, V, VI и классу $S_{2,2}$ в VII.

Двупериодическая орбита N_3 , N_3^* существует в областях VI, VII. Двупериодические точки K_i , K_i^* , i = 1, 2, 3, 4 существуют в области VII.

Рис. 1. Диаграмма первых бифуркаций.

Работа выполнена при частичной поддержке РФФИ: программа поддержки ведущих научных школ (грант 96–15–96209), кроме того, автор поддержан Правительством Санкт-Петербурга (персональный грант 97–2.1 к–523 для студентов, аспирантов и молодых ученых). Статья подготовлена при поддержке Федеральной целевой программы "Интеграция" (проект N 2.1–326.53).

Список литературы

1. Henon M. A two-dimensional mapping with a strange attractor // Commun. Math. Phys., 1976. **50**. P. 69–77.

2. Kaneko K. Transition from torus to chaos accompanied by frequency lockings with simmetry breaking // Prog. Theor. Phis., 1983. **69**, N 5. P. 1427–1435.

3. Kaneko K. Oscillation and doubling of torus // Prog. Theor. Phis., 1984. 72, N 2. P. 202–215.

4. *Gyllenberg M., Söderbacka G., Ericsson S.* Does migration stabilize local population dynamics? Analysis of a discrete metapopulation model // Math. Biosci., 1993. **118**. P. 25–49.

5. Devanye R. L. An introduction to chaotic dynamical system. Addison-

Wesley comp., 1989.

6. Thompson J. M. T., Stewart H. B. A tutorial glossary of geometrical dynamics // Int. J. Bifurcation and Chaos, 1993. **3**, N 2. P. 223–239.

7. *Нитецки З.* Введение в дифференциальную динамику. М., "Мир", 1975.