

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ПРОЦЕССЫ УПРАВЛЕНИЯ N 3, 1998

Электронный журнал, рег. N П23275 от 07.03.97

http://www.neva.ru/journal e-mail: diff@osipenko.stu.neva.ru

теория обыкновенных дифференциальных уравнений

ОБОБЩЕНИЕ ТЕОРЕМЫ ЛЯПУНОВА ОБ УСЛОВНОЙ УСТОЙЧИВОСТИ НА СЛУЧАЙ НЕАНАЛИТИЧНОСТИ

Крыжевич С.Г.

199034 Россия, Санкт-Петербург, Библиотечная пл., д.2 Санкт-Петербургский Государственный Университет

Аннотация.

Обобщается известная теорема об условной устойчивости систем о.д.у, составляющая основу первого метода Ляпунова, приведенная в [1]. Устанавливается, что утверждение, доказанное Ляпуновым для систем с правыми частями, аналитическими по фазовым переменным, справедливо на более широком классе систем. При доказательстве используется оригинальный вариант метода последовательных приближений.

1. Постановка задачи

Рассматривается правильная линейная система

$$\dot{x} = A(t)x,\tag{1}$$

где $x \in R^m$ с непрерывной матрицей A(t), определенной на $[0,\infty)$ и такой, что

$$||A(t)|| < a \tag{2}$$

для всех t.

Кроме того, рассматривается нелинейная система

$$\dot{x} = A(t)x + f(t, x) \tag{3}$$

определена в области $\Lambda = R \times B(0, \delta)$ для некоторого $\delta > 0$, где отображение $f: [0, \infty) \times B(0, 1) \to R^m$ обладает следующими свойствами:

- 1. f(t,0) = 0 для любого $t \ge 0$;
- 2. $\frac{\partial f}{\partial x}(t,0) = 0$ для любого $t \ge 0$;
- 3. если $\frac{\partial f}{\partial x}(t,x)$ матрица Якоби функции f по x, то равномерно по t и x в области Λ выполнено условие Гельдера, а именно: существуют такие L>0 и $\alpha>0$, что для любых t,x_1,x_2 таких, что $t\geq 0,\|x_1\|<\delta$ и $\|x_2\|<\delta$, верно:

$$\left\| \frac{\partial f}{\partial x}(t, x_1) - \frac{\partial f}{\partial x}(t, x_2) \right\| \le L \|x_1 - x_2\|^{\alpha}; \tag{4}$$

4. если $\lambda_1, \ldots, \lambda_m$ — характеристические показатели системы (1), то для некоторого $k \leq m$ выполнено: $\lambda_1, \ldots, \lambda_k < 0$.

Теорема. Если система (3) удовлетворяет перечисленным выше условиям, то существует C^1 гладкое и взаимно однозначное отображение g некоторой окрестности нуля из R^k в R^m такое что:

- 1. g(0) = 0;
- 2. если $\Phi(t) = (X_1(t), \dots, X_m(t))$ нормальная фундаментальная система решений (1) такая, что характеристические показатели

$$X_1(t),\ldots,X_m(t)$$

равны $\lambda_1, \ldots, \lambda_m$ соответственно, а J(g)(0) — матрица Якоби отображения g в точке θ , то $J(g)(0) = (X_1(0), \ldots, X_k(0));$

3. для любого $x_0 \in \Lambda$, для которого существует $y_0 \in R^k$ такое, что $x_0 = g(y_0)$, решение системы (1) с начальными данными $x(0) = x_0$ стремится к нулю при $t \to \infty$.

Замечание. В предположении аналитичности правой части системы (1) по x этот результат был получен Ляпуновым [1]. В случае k=m доказательство этого факта приведено в книге [2].

2. Схема доказательства

Условимся обозначать символом $\|\cdot\|$ первую векторную норму в R^m (максимум модулей координат вектора) или соответствующую ей матричную норму.

Пусть $X_j(t) = \operatorname{col}(x_{1j}(t), \dots, x_{mj}(t))$ при всех j от 1 до m. Тогда элементами матрицы $\Phi(t)$ являются функции $x_{ij}(t)$. Обозначим через $\Delta(t)$ и $\Delta_{ij}(t)$ определитель матрицы $\Phi(t)$ и алгебраическое дополнение элемента $x_{ij}(t)$ соответственно. Ясно, что при любом $t \geq 0$ $\Delta(t) \neq 0$, а в силу правильности системы (1) $\chi(1/\Delta(t)) = -(\lambda_1 + \dots + \lambda_m)$ и для элемента $\Delta_{ij}(t)/\Delta(t)$, стоящего в j-той строке и i-том столбце матрицы $\Phi^{-1}(t)$, верно: $\chi(\Delta_{ij}/\Delta(t)) \leq -\lambda_j$ для любых i и j от 1 до m.

Построим приближенные решения системы (3) по следующему алгоритму.

Возьмем некоторые достаточно малые вещественные постоянные

$$\alpha_1,\ldots,\alpha_k$$

и введем в рассмотрение последовательность вектор-функций

$$\{X^{(n)}(\cdot)\} = X^{(1)}(\cdot), \dots, X^{(n)}(\cdot), \dots,$$

первый член которой представим в виде линейной комбинации столбцов матрицы $\Phi(t)$:

$$X^{(1)} = \sum_{r=1}^k \alpha_r X_r.$$

Вектор-функции $X^{(n)}$ будем последовательно и однозначно определять по известным $X^{(n-1)}$ в виде некоторых решений линейной неоднородной системы:

$$\dot{X}^{(n)} = A(t)X^{(n)} + f(t, X^{(n-1)}(t)) \tag{5}$$

с отрицательными характеристическими показателями. Далее будет показано, что

 $X^{(n)}(t) \to X^*(t)$ равномерно по всем $t \in [0, \infty)$, где X^* - некоторое решение системы (3) с отрицательным характеристическим показателем, а также будет проверена C^1 гладкая и взаимно однозначная при любых t зависимость X(t) от чисел $\alpha_1, \ldots, \alpha_k$.

Строя последовательность $X^{(n)}$, возьмем $\lambda < 0$ таким, что

$$\lambda > \max(\lambda_1, \ldots, \lambda_k).$$

Пусть известно $X^{(n-1)}(t) = \operatorname{col}(x_1^{(n-1)}(t), \dots, x_m^{(n-1)}(t))$. Отыщем

$$X^{(n)}(t) = \operatorname{col}(x_1^{(n)}(t), \dots, x_m^{(n)}(t))$$

по формулам:

$$x_s^{(n)}(t) = x_s^{(1)}(t) + \sum_{i=1}^m \sum_{j=1}^m x_{sj}(t) \int \eta_{ij}(\tau) f_i(\tau, X^{(n-1)}(\tau)) d\tau.$$
 (6)

Здесь

$$x_s^{(1)}(t) = \sum_{i=1}^m \alpha_i x_{is}(t),$$

$$\eta_{ij}(\tau) = \Delta_{ij}(\tau) / \Delta(\tau),$$

 f_s — s-тая компонента вектора f $(f(t,x)=\operatorname{col}(f_1(t,x),\ldots,f_m(t,x))),$ а пределы интегрирования в выражении

$$\int \eta_{ij}(\tau) f_i(\tau, X^{(n-1)}(\tau)) d\tau$$

установлены следующим образом:

$$\int_0^t \eta_{ij}(\tau) f_i(\tau, X^{(n-1)}(\tau)) d\tau, \text{ если } \chi(\eta_{ij}(\tau)) \ge -\lambda(1+\alpha);$$

$$-\int_t^\infty \eta_{ij}(\tau) f_i(\tau, X^{(n-1)}(\tau)) d\tau, \text{ если } \chi(\eta_{ij}(\tau)) < -\lambda(1+\alpha).$$

3. Сходимость метода последовательных приближений.

Положим $X^{(0)} \equiv 0$ и докажем следующую лемму.

Лемма 1.

Для любого $q \in (0,1)$ существует $\varepsilon > 0$ такое, что если $\alpha_1, \ldots, \alpha_k$ столь малы, что $\|X^{(1)}(t)\| \le \varepsilon \exp(\lambda t)$ при любом $t \ge 0$, то

$$X^{(2)}(t), X^{(3)}(t), \dots, X^{(n)}(t), \dots,$$

полученные последовательно по формулам (6) будут определены и будут являться решениями (5) с характеристическими показателями, не большими λ . При этом для любых $n \geq 1, t \geq 0$ будет верна оценка

$$||X^{(n)}(t) - X^{(n-1)}(t)|| \le \varepsilon q^{n-1} \exp(\lambda t).$$
 (7)

Доказательство. Докажем лемму по индукции. По выбору $X^{(1)}$, для m=1 лемма верна. Пусть n>1, а $X^{(1)}(t),\ldots,X^{(n-1)}(t)$ определены и удовлетворяют утверждению леммы.

Так как f дифференцируема по x в некоторой окрестности нуля, то при достаточно малых ε по обобщенной теореме Лагранжа для любых $t\geq 0$ выполнено:

$$||f(t, X^{(n-1)}(t) - f(t, 0) - \frac{\partial f}{\partial x}(t, 0)X^{(n-1)}(t)|| \le \sup_{\xi \in [0, X^{(n-1)}(t)]} ||\frac{\partial f}{\partial x}(t, \xi) - \frac{\partial f}{\partial x}(t, 0)|| ||X^{(n-1)}(t)||.$$

Поскольку f(t,0)=0 , $\partial f(t,x)/\partial x|_{x=0}=0$, то с учетом (4) при достаточно малых ε имеем:

$$||f(t, X^{(n-1)}(t)|| \le \sup_{\xi \in [0, X^{(n-1)}(t)]} ||\frac{\partial f}{\partial x}(t, \xi)|| ||X^{(n-1)}(t)|| \le L||X^{(n-1)}(t)||^{(1+\alpha)}.$$

Тогда так как $X^{(n-1)}(t)$ имеет характеристический показатель, не больший, чем λ , характеристический показатель функции $f(X^{(n-1)}(t))$ не превысит $\lambda(1+\alpha)$. Тогда все интегралы в (6) будут сходящимися, и функции $X^{(n)}(t)$, полученные по этим формулам, будут определены.

Складывая неравенства (7), получаем:

$$||X^{(n-1)}(t)|| \le \varepsilon \exp(\lambda t) \frac{1 - q^{n-1}}{1 - q} < \varepsilon \frac{\exp(\lambda t)}{1 - q}.$$
 (8)

Аналогично можно показать, что $\|X^{(n-2)}(t)\| < \varepsilon \exp(\lambda t)/(1-q)$, а тогда такая же оценка справедлива для любой выпуклой комбинации функций $X^{(n-2)}(t)$ и $X^{(n-1)}(t)$. По обобщенной теореме Лагранжа для любых $t\geq 0$

$$\begin{split} &\|f(X^{(n-1)}(t)) - f(X^{(n-2)}(t)) - \frac{\partial f}{\partial x}(t, X^{(n-2)}(t))(X^{(n-1)}(t) - X^{(n-2)}(t))\| \leq \\ &\leq \sup_{\xi \in [X^{(n-2)}(t), X^{(n-1)}(t)]} &\|\frac{\partial f}{\partial x}(t, \xi) - \frac{\partial f(t, x)}{\partial x}(t, X^{(n-2)}(t))\| \times \\ &\|X^{(n-1)}(t) - X^{(n-2)}(t)\|. \end{split}$$

Тогда в силу оценок (4) и (8)

$$\begin{split} &\|f(X^{(n-1)}(t)) - f(X^{(n-2)}(t))\| \leq \\ &\leq \sup_{\xi \in [X^{(n-2)}(t), X^{(n-1)}(t)]} (\|\frac{\partial f}{\partial x}(t, \xi) - \frac{\partial f}{\partial x}(t, X^{(n-2)}(t))\| + \\ &+ \|\frac{\partial f}{\partial x}(t, X^{(n-2)}(t))\|) \|X^{(n-1)}(t) - X^{(n-2)}(t)\| \leq \\ &\leq 3 \sup_{\xi \in [X^{(n-2)}(t), X^{(n-1)}(t)]} \|\frac{\partial f}{\partial x}(t, \xi)\| \|X^{(n-1)}(t) - X^{(n-2)}(t)\| \leq \\ &\leq 3L \sup_{\xi \in [X^{(n-2)}(t), X^{(n-1)}(t)]} \|\xi\|^{\alpha} \varepsilon q^{n-2} \exp(\lambda t) \leq \\ &\leq 3L \varepsilon^{1+\alpha} q^{n-2} \exp(\lambda (1+\alpha)t)/(1-q)^{\alpha}. \end{split}$$

Покажем справедливость (7). Для любого s от 1 до m верно:

$$||x_{s}^{(n)}(t) - x_{s}^{(n-1)}(t)|| =$$

$$= ||\sum_{i=1}^{m} \sum_{j=1}^{m} x_{sj}(t) \int \eta_{ij}(\tau) (f_{i}(\tau, X^{(n-1)}(\tau)) - f_{i}(\tau, X^{(n-2)}(\tau))) d\tau|| \le$$

$$\le \sum_{i=1}^{m} \sum_{j=1}^{m} ||x_{sj}(t)|| \int ||\eta_{ij}(\tau)|| 3L\varepsilon^{1+\alpha} q^{n-2} \exp(\lambda(1+\alpha)\tau)(1-q)^{-\alpha} d\tau \le$$

$$\le (\varepsilon q^{n-1} \exp(\lambda t)) 3L\varepsilon^{\alpha} q^{-1} (1-q)^{-\alpha} m^{2} \max_{i,j,s} (||x_{sj}(t)|| \exp(-\lambda t) \times$$

$$\times \int ||\eta_{ij}(\tau)|| \exp(\lambda(1+\alpha)\tau) d\tau.$$

При любых i, j и s функции

$$||x_{sj}(t)|| \exp(-\lambda t) \int ||\eta_{ij}(\tau)|| \exp(\lambda(1+\alpha)\tau) d\tau$$

имеют отрицательные характеристические показатели и, следовательно, все они ограничены сверху некоторым числом M>0 при $t\geq 0$. Взяв $\varepsilon>0$ таким, что

$$\varepsilon^{\alpha} 3Lq^{-1}(1-q)^{-\alpha}m^2M \le 1,$$

получим, что для любого s от 1 до m

$$||x_s^{(n)}(t) - x_s^{(n-1)}(t)|| \le \varepsilon q^{n-1} \exp(\lambda t),$$

откуда видно, что (7) выполнено при малых ε . Так как характеристический показатель $X^{(n-1)}(t)$ не больше λ , из (7) получаем, что то же верно и для характеристического показателя $X^{(n)}(t)$.

Лемма 1 доказана.

Рассмотрим функциональный ряд

$$\sum_{n=1}^{\infty} (X^{(n)}(t) - X^{(n-1)}(t)). \tag{9}$$

Из оценок (7) видно, что ряд (9) сходится абсолютно и равномерно. Пусть $X^*(t)$ — его сумма. Суммируя (7) по всем n от 1 до ∞ , получим, что

$$||X^*(t)|| \le \varepsilon \exp(\lambda t)/(1-q),$$

и, следовательно, характеристический показатель $X^*(t)$ не превосходит $\lambda.$

Пусть $X^*(t)=\operatorname{col}(x_1^*(t),\ldots,x_m^*(t)).$ Тогда для любых $t\geq 0$ и j от 1 до m

$$x_j^*(t) = \lim_{n \to \infty} x_j^{(n)}(t).$$

Покажем,что $X^*(t)$ — решение системы (3).

Лемма 2.

При любом выборе достаточно малых произвольных постоянных

$$\alpha_1, \ldots, \alpha_k$$

 $X^*(t)$ является решением системы интегральных уравнений

$$x_s^*(t) = x_s^{(1)}(t) + \sum_{i=1}^m \sum_{j=1}^m x_{sj}(t) \int \eta_{ij}(\tau) f_i(\tau, X^*(\tau)) d\tau$$
 (10)

при любых $s=1,\dots,m$ (откуда следует, что $X^*(t)$ является решением (3)).

Доказательство.

Из оценки (7) следует что при любых s, n и t

$$||x_s^*(t) - x_s^{(n)}(t)|| \le \sum_{r=n+1}^{\infty} ||x_s^{(r)}(t) - x_s^{(r-1)}(t)|| \le \sum_{r=n+1}^{\infty} \varepsilon q^{n-1} \exp(\lambda t) = \varepsilon q^n \exp(\lambda t) / (1 - q).$$

А тогда

$$||x_{s}^{*}(t) - (x_{s}^{(1)}(t) + \sum_{i=1}^{m} \sum_{j=1}^{m} x_{sj}(t) \int \eta_{ij}(\tau) f_{i}(\tau, X^{*}(\tau)) d\tau)|| \leq$$

$$\leq ||x_{s}^{*}(t) - x_{s}^{(n)}(t)|| +$$

$$+ ||x_{s}^{(n)}(t) - (x_{s}^{(1)}(t) + \sum_{i=1}^{m} \sum_{j=1}^{m} x_{sj}(t) \int \eta_{ij}(\tau) f_{i}(\tau, X^{(m-1)}(\tau)) d\tau)|| +$$

$$+ ||\sum_{i=1}^{m} \sum_{j=1}^{m} x_{sj}(t) \int \eta_{ij}(\tau) f_{i}(\tau, X^{*}(\tau)) d\tau -$$

$$- \sum_{i=1}^{m} \sum_{j=1}^{m} x_{sj}(t) \int \eta_{ij}(\tau) f_{i}(\tau, X^{(n-1)}(\tau)) d\tau || \leq$$

$$\leq \varepsilon q^{n} \exp(\lambda t) / (1 - q) \times$$

$$\times ||\sum_{i=1}^{m} \sum_{j=1}^{m} x_{sj}(t) \int \eta_{ij}(\tau) (f_{i}(\tau, X^{*}(\tau)) - f_{i}(\tau, X^{(n-1)}(\tau))) d\tau || \leq$$

$$\leq \varepsilon q^{n} \exp(\lambda t) / (1 - q) + \sum_{i=1}^{m} \sum_{j=1}^{m} ||x_{sj}(t)|| \times$$

$$\times \int \eta_{ij}(\tau) 3L \varepsilon^{1+\alpha} q^{n-1} \exp(\lambda (1 + \alpha)\tau) / (1 - q)^{1+\alpha} d\tau.$$

Правая часть полученного неравенства определена и стремится к 0 при $n \to \infty$, а левая часть его не зависит от n. Но тогда она равна 0 и, следовательно, (10) выполнено и лемма 2 доказана.

4. Дифференцируемость по α_r . Касательные к перроновым дискам.

Для завершения доказательства исходного утверждения покажем, что при достаточно малых $\alpha_1, \ldots, \alpha_k$ зависимость вектора $X^*(0, \alpha_1, \ldots, \alpha_k)$, построенного по вышеуказанному алгоритму от $\alpha_1, \ldots, \alpha_k$ является C^1 гладкой и при этом ранг матрицы Якоби

$$J(X^*)(0) = \left(\frac{\partial X^*}{\partial \alpha_1}(0, 0, \dots, 0), \dots, \frac{\partial X^*}{\partial \alpha_k}(0, 0, \dots, 0)\right)$$

равен k.

Лемма 3. При $t \geq 0$ отображение $X^*(t, \alpha_1, \dots, \alpha_k)$ имеет непрерывные в некоторой окрестности точки $O = (0, \dots, 0) \in R^k$ частные производные

$$\frac{\partial X^*}{\partial \alpha_1}(t, \alpha_1, \dots, \alpha_k), \dots, \frac{\partial X^*}{\partial \alpha_k}(t, \alpha_1, \dots, \alpha_k),$$

удовлетворяющие уравнениям

$$\frac{\partial x_s^*}{\partial \alpha_r}(t) = x_{sr}(t) + \sum_{i=1}^m \sum_{j=1}^m \sum_{p=1}^m x_{sj}(t) \int \eta_{ij}(\tau) \frac{\partial f_i}{\partial x_p}(\tau, X^*(\tau)) \frac{\partial x_p^*}{\partial \alpha_r}(\tau) d\tau \qquad (11)$$

npu любых r om 1 до k u s om 1 до m.

Доказательство.

По определению $X^{(1)}$ при любом r $\partial X^{(1)}/\partial \alpha_r = X_r$. Покажем, что при всех n $X^{(n)}(t)$ дифференцируемо по α_r , причем выполнено:

$$\frac{\partial x_s^{(n)}}{\partial \alpha_r}(t) = x_{sr}(t) + \sum_{i=1}^m \sum_{j=1}^m \sum_{p=1}^m x_{sj}(t) \int \eta_{ij}(\tau) \frac{\partial f_i}{\partial x_p}(\tau, X^{(n-1)}(\tau)) \frac{\partial x_p^{(n-1)}}{\partial \alpha_r}(\tau) d\tau$$
(12)

Это утверждение доказывается по индукции. Пусть $X^{(n-1)}(t)$ имеет частные производные

$$\frac{\partial X^{(n-1)}}{\partial \alpha_1}(t), \dots, \frac{\partial X^{(n-1)}}{\partial \alpha_k}(t).$$

Тогда, дифференцируя правую часть (6) по α_r , получим, что существуют

$$\frac{\partial X^{(n)}}{\partial \alpha_1}(t), \dots, \frac{\partial X^{(n)}}{\partial \alpha_k}(t),$$

удовлетворяющие (12). Заметим, что дифференцирование под знаком интеграла в (6) возможно в силу равномерной по $\alpha_1, \ldots, \alpha_k$ из некоторой окрестности нуля в R^k сходимости интегралов

$$\int \eta_{ij}(\tau) f_i(\tau, X^{(n-1)}(\tau)) d\tau.$$

Покажем, что функции $\partial x_s^{(n)}(\tau)/\partial \alpha_r$ при фиксированных s и r образуют фундаментальную последовательность. Возьмем $K \in R$, такое, что

$$\max_{i \le k} ||X_i(t)|| \le K \exp(\lambda t)/2.$$

Убедимся, что если $\alpha_1, \dots, \alpha_k$ достаточно малы, то для любого n выполнено:

$$\|\frac{\partial x_s^{(n)}}{\partial \alpha_r}(t)\| \le K \exp(\lambda t). \tag{13}$$

Для n=1 неравенство (13) справедливо, так как $\|\partial x_s^{(1)}(t)/\partial \alpha_r\| = x_{sr}(t)$. Далее, рассуждая по индукции, в силу (12) получаем:

$$\|\frac{\partial x_s^{(n)}}{\partial \alpha_r}(t)\| \leq \|x_{sr}(t)\| +$$

$$+ \sum_{i=1}^m \sum_{j=1}^m \sum_{p=1}^m \|x_{sj}(t)\| \int \|\eta_{ij}(\tau)\| \|\frac{\partial f_i}{\partial x_p}(\tau, X^{n-1}(t))\| \|\frac{\partial x_p^{(n-1)}}{\partial \alpha_r}(\tau)\| d\tau \leq$$

$$\leq K \exp(\lambda t)/2 + \sum_{i=1}^m \sum_{j=1}^m m \int \|\eta_{ij}(\tau)\| \frac{L\varepsilon^\alpha \exp(\alpha \lambda \tau)}{(1-q)^\alpha} K \exp(\lambda \tau) d\tau.$$

$$(14)$$

По аналогии с доказательством леммы 1, выберем $\varepsilon > 0$ таким, что

$$\sum_{i=1}^{m} \sum_{j=1}^{m} m \|x_{sj}(t)\| \int \|\eta_{ij}(\tau)\| \frac{L\varepsilon^{\alpha} \exp(\alpha \lambda \tau)}{(1-q)^{\alpha}} K \exp(\lambda \tau) d\tau \le K \exp(\lambda t)/2.$$

при всех s от 1 до m. А тогда (13) верно для любых $n \in N$.

Покажем, что при любых r,s и t последовательности $\{\partial x_s^{(n)}/\partial \alpha_r(t)\}$ фундаментальны, причем для любых n>l справедливы следующие оценки:

$$\left\| \frac{\partial x_s^{(n)}}{\partial \alpha_r}(t) - \frac{\partial x_s^{(l)}}{\partial \alpha_r}(t) \right\| \le K q^{\alpha(l-1)} \exp(\lambda t). \tag{15}$$

При l=0 (15) следует из (14). При бо́льших l, рассуждая по индукции, имеем:

$$\begin{split} \|\frac{\partial x_s^{(n)}}{\partial \alpha_r}(t) - \frac{\partial x_s^{(l)}}{\partial \alpha_r}(t)\| &= \\ &= \|\sum_{i=1}^m \sum_{j=1}^m \sum_{p=1}^m \sum_{x_{sj}}(t) \int \eta_{ij}(\tau) \frac{\partial f_i}{\partial x_p}(\tau, X^{(n-1)}(t)) \frac{\partial x_p^{(n-1)}}{\partial \alpha_r}(\tau) \, d\tau - \\ &- \sum_{i=1}^m \sum_{j=1}^m \sum_{p=1}^m \sum_{x_{sj}}(t) \int \eta_{ij}(\tau) \frac{\partial f_i}{\partial x_p}(\tau, X^{(l-1)}(\tau)) \frac{\partial x_p^{(l-1)}}{\partial \alpha_r}(\tau) \, d\tau\| = \\ &= \|\sum_{i=1}^m \sum_{j=1}^m \sum_{p=1}^m \sum_{x_{sj}}(t) \int \eta_{ij}(\tau) (\frac{\partial f_i}{\partial x_p}(\tau, X^{(n-1)}(t)) \frac{\partial x_p^{(n-1)}}{\partial \alpha_r}(\tau) - \\ &- \frac{\partial f_i}{\partial x_p}(\tau, X^{(l-1)}(\tau)) \frac{\partial x_p^{(l-1)}}{\partial \alpha_r}(\tau)) \, d\tau\| \leq \\ &\leq \sum_{i=1}^m \sum_{j=1}^m \sum_{p=1}^m \|x_{sj}(t)\| \int \|\eta_{ij}(\tau)\| (\|\frac{\partial f_i}{\partial x_p}(\tau, X^{(n-1)}(t)) \frac{\partial x_p^{(n-1)}}{\partial \alpha_r}(\tau) - \\ &- \frac{\partial f_i}{\partial x_p}(\tau, X^{(n-1)}(t)) \frac{\partial x_p^{(l-1)}}{\partial \alpha_r}(\tau) \| + \\ &+ \|\frac{\partial f_i}{\partial x_p}(\tau, X^{(n-1)}(t)) \frac{\partial x_p^{(l-1)}}{\partial \alpha_r}(\tau) - \frac{\partial f_i}{\partial x_p}(\tau, X^{(l-1)}(\tau)) \frac{\partial x_p^{(l-1)}}{\partial \alpha_r}(\tau) \|) \, d\tau \leq \\ &\leq \sum_{i=1}^m \sum_{j=1}^m \sum_{p=1}^m \|x_{sj}(t)\| \int \|\eta_{ij}(\tau)\| (L\|X^{(n-1)}(\tau)\|^\alpha \|\frac{\partial x_p^{(n-1)}}{\partial \alpha_r}(\tau) \|) \, d\tau \leq \\ &\leq \sum_{i=1}^m \sum_{j=1}^m \sum_{p=1}^m \|x_{sj}(t)\| \int \|\eta_{ij}(\tau)\| (L\varepsilon^\alpha \exp(\alpha\lambda\tau)/(1-q)^\alpha Kq^{\alpha(l-2)} \exp(\lambda\tau) + \\ &+ \frac{L\varepsilon^\alpha \exp(\alpha\lambda\tau)q^{\alpha(l-2)}}{(1-q)^\alpha} K \exp(\lambda\tau)) \, d\tau = \\ &= \frac{2mL\varepsilon^\alpha}{(1-q)^\alpha} Kq^{\alpha(l-2)} \times \\ &\times \sum_{i=1}^m \sum_{j=1}^m \|x_{sj}(t)\| \int \|\eta_{ij}(\tau)\| \exp((1+\alpha)\lambda\tau) \, d\tau. \end{split}$$

Таким образом, взяв достаточно малое ε , можно добиться того, чтобы правая часть полученного неравенства была меньше $Kq^{\alpha(l-1)}\exp(\lambda t)$. Из оценки (15) следует, что последовательность $\partial x_s^{(n)}(t)/\partial \alpha_r$ является фундаментальной при любом $t\geq 0$. Определим $y_{sr}(t)$ как

$$\lim_{n \to \infty} \frac{\partial x_s^{(n)}}{\partial \alpha_r}(\tau).$$

В силу оценки (15) сходимость $\partial x_s^{(n)}(t)/\partial \alpha_r$ к $y_{sr}(t)$ будет равномерной по t при $t\geq 0$ и по α_1,\ldots,α_k из некоторой окрестности точки О.Отсюда следует, что все функции $y_{sr}(t)$ непрерывны по t при $t\geq 0$.

Перейдем теперь непосредственно к доказательству леммы. Поскольку $x_s^{(n)}(t) \to x_s^*(t)$, а $\partial x_s^{(n)}(t)/\partial \alpha_r \to y_{sr}(t)$ при $m \to \infty$ и обе эти последовательности сходятся равномерно по $\alpha_1, \ldots, \alpha_k$, при любых s и r частные производные $\partial x_s^*(t)/\partial \alpha_r$ существуют и равны $y_{sr}(t)$.

Так как

$$\frac{\partial x_s^{(n)}}{\partial \alpha_r}(t, \alpha_1, \dots, \alpha_k) \to \frac{\partial x_s^*}{\partial \alpha_r}(t, \alpha_1, \dots, \alpha_k)$$

равномерно по t, переходя в (12) к пределу при $n \to \infty$, получаем соотношения (11). Лемма 3 доказана.

Так как при
$$\alpha_1^0 = \dots = \alpha_k^0 = 0$$
 $X^* \equiv 0$, из (11) следует, что
$$\frac{\partial x_s^*}{\partial \alpha_r}(t,0,\dots,0) = x_{sr}(t).$$

Тогда матрица $J(X^*)(0)$ состоит из первых k столбцов матрицы $\Phi(0)$ и, следовательно, ранг ее равен k. Таким образом, при любом фиксированном $t \geq 0$ отображение, ставящее значениям $\alpha_1, \ldots, \alpha_k$ в соответствие вектор $X^*(t, \alpha_1, \ldots, \alpha_k)$ является C^1 гладким вложением некоторой малой окрестности в R^k в R^m .

Определим $g(\alpha_1, \dots, \alpha_k) = X^*(0, \alpha_1, \dots, \alpha_k)$. Это отображение, как было показано выше, удовлетворяет условиям 1.—3. теоремы 5.

Таким образом, утверждение об условной устойчивости системы (3) доказано полностью.

5. Заключение

Известная теорема об условной устойчивости была доказана А.М.Ляпуновым в случае, когда правая часть рассматриваемой системы аналитична

по фазовым переменным. В данной работе с помощью специально построенного метода последовательных приближений показывается справедливость данной теоремы для более широкого класса систем.

Список литературы

- [1] Ляпунов А.М. Общая задача об устойчивости движения. Избранные труды А.М. Ляпунова Изд. Акад. Наук, 1948 г.
- [2] Былов Б.Ф, Виноград Р.Э., Гробман Д.М., Немыцкий В.В. *Теория* показателей Ляпунова и ее приложения к вопросам устойчивости. М.,1968, 576 с.