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Abstract.

Group invariant solutions of the magma equation have been investigated
for different values of two physical parameters.

1 Introduction

The flow of melt in the earth’s mantle which is like a porous flow is effected by
the buoyant force caused by the density difference between melt and matrix.
The model equation describing this motion and the phase transition have been
investigated by many authors 1,2). Neglecting the phase transition and allowing
only vertical motions, Scott and Stevenson 3) proposed an equation assuming
that the melt and matrix are fully connected and incompressible, which was
given by

ut = [un {(u−m ut)x − 1}]x. (1.1)
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x and t denote vertical space co-ordinate and time respectively, and u = u(x, t)
is the mean volume fraction of the liquid phase which is non-negative for any
x and t. The parameters n and m denote the dependency of permeability and
effective viscosity. Scott and Stevenson suggested that the reasonable values of
n and m are 2 ∼ 5 and 0 ∼ 1 respectively. Equation (1.1) is called the magma
equation.

We assume a travelling wave solution u = u(z), z = x−ct for equation (1.1).
Integrating equation (1.1) twice, we get the ordinary differential equation

c

2
u2

z +
1

1−m
um+1+

2A

1−m− n
um−n+1− c

2−m− n
um−n+2−B u2m = 0, (1.2)

where c is the wave velocity, A and B are integration constants. Equation
(1.2) is not valid for m = 1 or m+ n = 1, 2.

Takahashi and Satsuma4) obtained the explicit form of travelling wave so-
lutions of equation (1.2) by using the transformation from z to ζ given by

ζ =
∫ z
uα dz,

where α is determined by the values of n and m. They found solitary wave
solutions and periodic wave solutions in terms of ζ for n = 3, m = 0 ; n =
4, m = 0 and n = 5

2 , m = 1
2 .

An nth order ordinary differential equation which admits an r-parameter
Lie group of transformations, 2 ≤ r ≤ n, can be reduced to an (n − r)th order
ODE if the Lie group is solvable. The reduced (n − r)th order ODE can be
obtained directly from the given nth order ODE without the need to determine
any intermediate ODEs of orders n − r + 1 to n − 1. Solvable Lie groups
play an important role in the study of group invariance of ordinary and partial
differential equations5−7). In this paper, we shall investigate the group invariant
solutions of the magma equation for different values of the parameters n and
m.

2 Group Invariant solutions for n = 3 and m = 0

When n = 3 and m = 0, the equation (1.1) becomes

ut = [u3(uxt − 1)]x (2.1)
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and (1.2) reduces to

c

2
u2

z = −u+B − c

u
+
A

u2 . (2.2)

We consider the wave velocity c > 0.

Introducing the independent variable ζ defined by

ζ =
∫ z

u−1 dz, (2.3)

we get,

c

2
u2

ζ = −u3 +Bu2 − cu+ A. (2.4)

Differentiating equation (2.4) twice with respect to ζ, we have

uζζζ = −6

c
u uζ +

2B

c
uζ . (2.5)

We write equation (2.5) in the form

u3 = (αu + β)u1 (2.6)

where,

u1 = uζ , u3 = uζζζ , α = −6

c
, β =

2B

c
(2.7)

The invariance criterion for (2.6) is,

η(3) = αu η(1) + αu1 η + β η(1), (2.8)

where, X = ξ(ζ, u)
∂

∂ζ
+ η(ζ, u)

∂

∂u
is the infinitesimal generator of the one

parameter Lie group of transformations and η(1) and η(3) are given by

η(1) = ηζ + (ηu − ξζ)u1 − ξu (u1)
2, (2.9a)

η(3) = ηζζζ + (3ηζζu − ξζζζ)u1 + +3(ηζuu − ξζζu)(u1)
2

+(ηuuu − ξζuu)(u1)
3 − ξuuu(u1)

4 + 3(ηζu − ξζζ)u2
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+3(ηuu − 3ξζu)u1u2 − 6ξuu(u1)
2u2

−3ξu(u2)
2 + (ηu − 3ξζ)u3 − 4ξu u1u3. (2.9b)

The resulting set of determining equations for ξ(ζ, u) and η(ζ, u) are:

ηζζζ − (αu + β)ηζ = 0 (2.10a)

3ηζζu − ξζζζ − 2ξζ (αu+ β) − αη = 0 (2.10b)

3ηζuu − 3ξζζu − 3 ξu (αu + β) = 0 (2.10c)

ηuuu − 3 ξζuu = 0 (2.10d)

ξuuu = 0 (2.10e)

3 ηζu − 3 ξζζ = 0 (2.10f)

3 ηuu − 9 ξζu = 0 (2.10g)

ξuu = 0 (2.10h)

ξu = 0 (2.10i)

ξ is a function of ζ alone from (2.10i) and (2.10e) and (2.10h) are auto-
matically satisfied. From (2.10g), we have ηuu = 0. Differentiating (2.10b) with
respect to u, we have,

− 2α ξζ − α ηu = 0 (2.11)

which leads to

ηu = − 2 ξζ (2.12)
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Substituting (2.12) in (2.10f), we get

ξζζ = 0 (2.13)

giving rise to

ξ = K1 + K2 ζ (2.14)

Now, using (2.12) and (2.14) in (2.10b), we obtain

η = − 2K2 u −
2β

α
K2 = − 2K2 u + K3 (2.15)

where K1 , K2 and K3 are arbitrary constants.

(2.14) and (2.15) give a nontrivial three-parameter Lie group of transfor-
mations acting on (ζ, u)-space with infinitesimal generators given by

X1 =
∂

∂ζ
, X2 = ζ

∂

∂ζ
− 2u

∂

∂u
, X3 =

∂

∂u
. (2.16)

It can be easily verified that the differential equation (2.6) has a 3-dimensional
solvable Lie algebra.

Now, we reduce the third order ordinary differential equation to a second
order from invariance under translations (K1). Obvious invariants of the first
extension of ζ∗ = ζ + ε, u∗ = u, are

U(ζ, u) = u , V (ζ, u, u1) = u1. (2.17)

So,

u2 = V
dV

dU
, u3 = V 2 d

2V

dU2 + V (
dV

dU
)2. (2.18)

Hence the ordinary differential equation (2.6) reduces to

V
d2V

dU2 + (
dV

dU
)2 = αU + β. (2.19)

In particular, if

V = ψ(U ;C1, C2) (2.20)
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is the general solution of (2.19), then the first order ODE

V = u1 = ψ(u;C1, C2) (2.21)

admits ζ∗ = ζ + ε, u∗ = u. Consequently, the general solution of equation
(2.6) is given by

∫ dz

ψ(z;C1, C2)
= ζ + C3, (2.22)

where C1 , C2 , C3 are arbitrary constants.

3 Group Invariant solutions for n = 4 and m = 0

When n = 4 and m = 0, the equation(1.1) becomes

ut = [u4 (uxt − 1)]x, (3.1)

and (1.2) reduces to

c

2
u2

z = −u + B − c

2u2 +
2A

3u3 . (3.2)

Introducing the independent variable ζ defined by

ζ =
∫ z
u−3/2 dz, (3.3)

we get

c

2
u2

ζ = −u4 + Bu3 − c

2
u +

2A

3
. (3.4)

Differentiating (3.4) w.r.t. ζ twice, we have,

uζζζ = − 12

c
u2uζ +

6B

c
uuζ . (3.5)

We write equation (3.5) in the form

u3 = (αu2 + βu)u1, (3.6)

where,
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u1 = uζ , u3 = uζζζ , α = −12

c
, β =

6B

c
. (3.7)

The invariance criterion for (3.6) is,

η(3) = (αu2 + β u) η(1) + β u1 η + 2αuu1η, (3.8)

where, X = ξ(ζ, u)
∂

∂ζ
+ η(ζ, u)

∂

∂u
is the infinitesimal generator of the one-

parameter Lie group of transformations and η(1) and η(3) are given by (2.9a)
and (2.9b).

The resulting set of determining equations for ξ(ζ, u) and η(ζ, u) are:

ηζζζ − (αu2 + β u)ηζ = 0 (3.9a)

3ηζζu − ξζζζ − 2ξζ (αu2 + β u) − (2αu + β) η = 0 (3.9b)

3ηζuu − 3ξζζu − 3ξu (αu2 + β u) = 0 (3.9c)

ηuuu − 3ξζuu = 0 (3.9d)

ξuuu = 0 (3.9e)

3ηζu − 3ξζζ = 0 (3.9f)

3ηuu − 9ξζu = 0 (3.9g)

ξuu = 0 (3.9h)

ξu = 0 (3.9i)

From (3.9i), ξ is a function of ζ alone and (3.9e) and (3.9h) are automatically
satisfied. From (3.9g), ηuu = 0. Differentiating (3.9b) with respect to u twice,
we get ηu = −ξζ . Using this in (3.9f), it leads to ξζζ = 0. So, ξ = L1 + L2 ζ.
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From (3.9f) again, ηζu = 0 which gives rise to η = −L2 u + L3. Here, L1, L2

and L3 are arbitrary constants. Thus,

ξ = L1 + L2 ζ (3.10)

η = −L2 u + L3 (3.11)

give a nontrivial three-parameter Lie group of transformations acting on
(ζ, u) - space with infinitesimal generators given by

X1 =
∂

∂ζ
, X2 = ζ

∂

∂ζ
− u

∂

∂u
, X3 =

∂

∂u
. (3.12)

One can easily verify that the differential equation (3.6) has a 3-dimensional
solvable Lie algebra.

Now, we reduce the third order ordinary differential equation to a second
order ODE from invariance under translations (L1). Obvious invariants of the
first extension ζ∗ = ζ + ε, u∗ = u are

U(ζ, u) = u, V (ζ, u, u1) = u1. (3.13)

So, using (2.18), the ODE (3.6) reduces to

V
d2V

dU2 + (
dV

dU
)2 = αU 2 + β U. (3.14)

In particular, if V = ψ(U ; C1C2) is the general solution of (3.14), then the
first order ODE

V = u1 = ψ(u; C1C2) (3.15)

admits ζ∗ = ζ + ε, u∗ = u. Thus the general solution of (3.6) is given by

∫ dz

ψ(z; C1, C2)
= ζ + C3, (3.16)

where, C1, C2, C3 are arbitrary constants.
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4 Group Invariant solutions for n = 5
2 and m = 0

When n = 5
2 and m = 1

2 , the equation (1.2) reduces to

c

2
u2

z + 2 u3/2 − Au−1 + c − B u = 0. (4.1)

Transforming the dependent variable u inti v by

u = v2, (4.2)

(4.1) can be written as

2cv2
z + 2v − Av−4 + cv−2 − B = 0. (4.3)

Introducing the independent variable ζ defined by

ζ =
∫ z
v−1 dz, (4.4)

and assuming that the integration constant A is zero, equation (4.2) will be
reduced to

2cv2
ζ = −2v3 + Bv2 − c. (4.5)

Differentiating equation (4.5) twice with respect to ζ, we get

vζζζ = −3

c
vvζ +

B

2c
vζ . (4.6)

We write equation (4.6) in the form

v3 = (
α

2
v +

β

4
) v1, (4.7)

where,

v1 = vζ , v3 = vζζζ and α and β are as defined in (2.7).

Therefore, using the same notations as in section 2, the ODE (4.7) will
reduce to

V
d2V

dU2 + (
dV

dU
)2 =

α

2
U +

β

4
, (4.8)
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where,

U(ζ, v) = v, V (ζ, v, v1) = v1. (4.9)

The general solution of (4.7) can be got as in previous sections.
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