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Abstract.

Using the method of Lie group of transformations and the direct method,
solitary wave and explode decay mode solutions of a combined KdV-Boussinesq
equation governing weakly nonlinear shallow water waves have been derived.

1 Introduction

Nonlinearity and dispersion are two of the most fundamental concepts in wave
motions in nature. The nonlinear shallow water equations governed by the
hyperbolic type lead to the wave breaking phenomena. These equations which
neglect dispersion develop a vertical slope and a multiple-valued wave profile.
Breaking is prevented by including dispersive effects into the shallow water
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theory. In 1895, Korteweg and de Vries showed that long waves, in water of
relatively shallow depth, could be described by a nonlinear equation which is
now known as Korteweg de Vries equation1). Periodic solutions of this equation
were found in terms of Jacobian elliptic functions cn, known as cnoidal waves.
The infinite period counterpart of this solution is the single hump solitary wave
solution moving with no change in shape, size and speed. Another example
of an equation governing long waves on the surface of shallow water is the
Boussinesq equation which include waves moving to both left and right2).

In this paper, we consider a combined KdV and Boussinesq equation gov-
erning long waves in shallow water. Considering travelling wave solutions, we
reduce the basic equations to a second order ordinary differential equation. In
section 3, using the method of Lie group of transformations3,4), we reduce it
to a first order ordinary differential equation. In section 4, we derive using
the direct method5,6), periodic solutions in terms of elliptic functions and the
corresponding solitary wave and the explode decay mode solutions. In section
5, we plot the solitary wave and the explode decay mode solutions.

2 Weakly nonlinear shallow water equations

We consider an inviscid and incompressible fluid of constant depth h. We take
the (x, y)− plane as the undisturbed free surface with the z− axis positive
upward. The free surface elevation above the undisturbed depth h is z =
η(x, y, t), so that the free surface is at z = h + η and z = 0 is the horizontal
rigid bottom.

If φ(x, y, z, t) is the velocity potential of an unbounded fluid lying between
the rigid bottom z = 0 and the free surface z = η(x, y, t) as shown in the figure
below,
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then the nonlinear system of equations for the classical water waves is,

52 φ = 0, 0 < z < η + h, −∞ < x, y < ∞, (2.1)

φt +
1

2
(5φ)2 + gη = 0, z = h + η, (2.2)

ηt + ηxφx + ηyφy − φz = 0, z = h + η, (2.3)

φxhx + φyhy + φz = 0, z = 0, (2.4)

In the linear theory of surface water waves, two parameters ε =
a

h
, and

κ = ak, where a is the surface wave amplitude and k is the wave number,
must be small. To characterize nonlinear shallow water waves, we introduce
two fundamental parameters

ε =
a

h
, δ =

h2

l2
(2.5)

where, l is a typical horizontal length like wavelength λ and the following
non-dimensional variables:

(x∗, y∗) =
1

l
(x, y), z∗ =

z

h
, t∗ =

ct

l
, η∗ =

η

a
, φ∗ =

h

alc
φ, (2.6)

where c =
√

gh is the shallow water wave speed. Using (2.5) and (2.6),
(2.1)− (2.4) can be written, dropping the asterisks as,

δ(φxx + φyy) + φzz = 0, (2.7)

φt +
ε

2
(φ2

x + φ2
y) +

ε

2δ
φ2

z + η = 0, z = 1 + εη, (2.8)

δ{ηt + ε(φxηx + φyηy)} − φz = 0, z = 1 + εη, (2.9)

φz = 0, z = 0. (2.10)

We expand φ in terms of δ and write
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φ = φ0 + δφ1 + δ2φ2 + ... (2.11)

and then substitute in (2.7)− (2.9). Retaining terms upto order δ, ε in (2.8)
and δ2, ε2 and δε in (2.9), we get

φ0t −
δ

2
(utx + vty) + η +

1

2
ε(u2 + v2) = 0, (2.12)

δ[{ηt + ε(uηx + vηy)}+ (1 + εη)(ux + vy)] =
δ2

6
[(52u)x + (52v)y] (2.13)

Differentiation of (2.12) with respect to x and then with respect to y gives

ut + ε(uux + vvx) + ηx −
1

2
δ(utxx + vtxy) = 0, (2.14)

vt + ε(uuy + vvy) + ηy −
1

2
δ(utxy + vtyy) = 0, (2.15)

(2.13) can be simplified as

ηt + {u(1 + εη)}x + {v(1 + εη)}y =
δ

6
{(52u)x + (52v)y}. (2.16)

(2.14)− (2.16) are the non-dimensional nonlinear shallow water equations.

Considering the one-dimensional case, (2.14)− (2.16) reduce to

ut + ε uux + ηx −
1

2
δ utxx = 0, (2.17)

ηt + {u(1 + εη)}x −
1

6
δ uxxx = 0. (2.18)

An alternative system equivalent to the nonlinear evolution equations (2.17)−
(2.18) known as Boussinesq equations can be derived from the nonlinear shal-
low water theory, retaining both ε and δ order terms with δ < 1. This system,
in dimensional variables, is given by

ηt + {(h + η)u}x = 0, (2.19)
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ut + uux + gηx =
1

3
h2uxxt. (2.20)

(2.19) − (2.20) describe the evolution of long water waves that travel in
both positive and neagative x directions. The corresponding weakly nonlinear
shallow water equations are given by

ηt + (hu)x = 0, (2.21)

ut + uux + gηx =
1

3
h2uxxt. (2.22)

3 Group invariant solutions

We define

hu =
∂V

∂t
, η = −∂V

∂x
, (3.1)

so that,

∂2V

∂t2
− gh

∂2V

∂x2 +
1

2h

∂

∂x
(
∂V

∂t
)2 =

h2

3

∂4V

∂x2 ∂t2
. (3.2)

Travelling wave solutions can be found by assuming z = x − Ut which
reduces (3.2) to

(U 2 − gh)
d2V

dz2 +
U 2

2h

d

dz
(
dV

dz
)2 − U2h2

3

d4V

dz4 = 0. (3.3)

Integrating (3.4) once and setting
dV

dz
= w, we get

d2w

dz2 = α w2 + β w + γ, (3.4)

where,

α =
3

2h3 , (3.5a)
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β =
3(U 2 − gh)

U 2h2 w, (3.5b)

γ = − 3B

U 2h2 . (3.5c)

We write (3.4) in the form

w2 = α w2 + β w + γ, (3.6)

where,

w2 =
d2w

dz2 . (3.7)

Let X = ξ(z, w)
∂

∂z
+ τ(z, w)

∂

∂w
be the infinitesimal generator of the one-

parameter Lie-group of transformations, so that the invariance criterion for
(3.6) is

τ (2) = ατ 2 + βτ + γ, (3.8)

where,

τ (2) = τzz + (2τzw − ξzz)w1 + (τww − 2ξzw)w2
1

−ξww w3
1 + (τw − 2ξz)(α w2 + β w + γ)

−3ξww1(α w2 + β w + γ). (3.9)

Here, subscripts denote differentiation with respect to the corresponding

variables and w1 =
dw

dz
. The resulting set of determining equations for ξ(z, w)

and τ(z, w) are:

ξww = 0, (3.10a)

τww − 2 ξzw = 0, (3.10b)
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ξw = 0, (3.10c)

−3ξw γ + 2τzw − ξzz = 0, (3.10d)

τzz + γ(τw − 2ξz) = ατ 2 + βτ + γ. (3.10e)

ξ is a function of z alone from (3.10c) and (3.10a) is automatically satisfied.
From (3.10b), τww = 0 which gives rise to

τ = K1 w + K2. (3.11)

(3.10d) and (3.10e) give

ξ =
1

2
K1 z + K3. (3.12)

Here, K1, K2 and K3 are arbitrary constants. Also, (3.10e) gives rise to the
trivial infinite parameter Lie group.

(3.11) and (3.12) give a nontrivial three-parameter Lie group of transfor-
mations acting on (z, w)−space with infinitesimal generators given by

X1 =
1

2

∂

∂z
+ w

∂

∂w
, X2 =

∂

∂w
, X3 =

∂

∂z
. (3.13)

Thus the differential equation (3.6) has a 3-dimensional solvable Lie-algebra.

Now, we reduce the second order ordinary differential equation from in-
variance under translation (K3). Obvious invariants of the first extension of
z∗ = z + ε, w∗ = w, are

R(z, w) = w, S(z, w, w1) = w1. (3.14)

Hence, (3.6) becomes

S dS = (α R2 + β R + γ) dR. (3.15)

Integrating (3.15),

S2

2
=

α R3

3
+

β R2

2
+ γ R + µ, (3.16)
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or,

(
dw

dz
)2 =

2 α

3
w3 + β w2 + 2γ w + 2µ. (3.17)

4 Solitary wave and explode decay mode solutions

We shall consider two cases when the shallow water wave speed is the same as
the travelling wave speed and when they are unequal.

Case1 (U 2 = gh)

When U 2 = gh, β = 0 and the equation (3.17) reduces to

(
dw

dz
)2 =

2α

3
w3 + 2γw + 2µ. (4.1)

We assume a solution in the form

w = A℘(z), (4.2)

where, ℘ is the Weierstrass elliptic function which satisfies the well known
differential equation

(
d℘

dz
)2 = 4 ℘3 − g2℘− g3. (4.3)

g2 and g3 are known as the invariants of the Weierstrass elliptic function satis-
fying the condition

g3
2 − 27 g2

3 > 0. (4.4)

Substituting (4.2) in (4.1) and equating the coefficients of equal powers of
℘(z), we get

4 A2 =
2α

3
A3, (4.5)

−A2 g2 = 2 γ A, (4.6)

−A2 g3 = 2 µ. (4.7)
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(4.5)− (4.7) give rise to

A =
6

α
, (4.8)

g2 = − αγ

3
, (4.9)

g3 = −α2µ

18
. (4.10)

Since the two invariants g2 and g3 satisfy (4.4), g2 must always be positive
and hence α and γ should be of opposite signs. Thus the constant of integration
B is a positive quantity.

The condition (4.4) puts the restriction on µ as

4 γ3 + 9 α µ2 < 0. (4.11)

Therefore, the solution is

w(z) =
6

α
℘(z + ε ; g2 , g3), (4.12)

where, ε is an integration constant of (4.3).

Thus the exact bounded periodic solution is

w(z) =
6

α
[e3 + (e2 − e3)sn

2(
√

e1 − e3 z + ε′)], (4.13)

where ε′ is an arbitrary real constant and e1, e2, e3 are real roots of the
equation

4y3 − g2y − g3 = 0, (4.14)

with e1 > e2 > e3. Here, sn is the Jacobian sine elliptic function where it is
related to the Weierstrass elliptic function by

℘(z) = e3 + (e2 − e3) sn2(
√

e1 − e3 z + ε′). (4.15)

The solitary wave limits are obtained when the period is infinite which
occurs when the modulus of the Jacobian elliptic function is equal to unity.
The modulus m and the e′s are related by
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m =
e2 − e3

e1 − e3
, (4.16)

and so in the solitary wave limit, e1 = e2. Since, e1, e2, e3 are roots of the
cubic 4y3 − g2y − g3 = 0, e1 + e2 + e3 = 0. So, the solitary wave solution is,

w(z) =
6

α
[e3 + (e2 − e3) sn2(

√
e1 − e3 z + ε′)]. (4.17)

Using (3.1), we have,

u(x, t) = −4h2 U [e1 − (e1 − e3) sech2{
√

e1 − e3 (x− Ut) + ε′}], (4.18)

η(x, t) = −4h3 [e1 − (e1 − e3) sech2{
√

e1 − e3 (x− Ut) + ε′}], (4.19)

The corresponding explode-decay mode solutions are given by

u(x, t) = −4h2 U [e1 + (e1 − e3) cosech2{
√

e1 − e3 (x− Ut) + ε′}], (4.20)

η(x, t) = −4h3 [e1 + (e1 − e3) cosech2{
√

e1 − e3 (x− Ut) + ε′}], (4.21)

Case2 (U 2 6= gh)

In this case we have the equation

(
dw

dz
)2 =

2α

3
w3 + β w2 + 2γ w + 2µ. (4.22)

We assume a solution in the form

w(z) = C tanh2(λ z), (4.23)

where, C and λ are to be determined in terms of the coefficients in (4.22).

Substituting (4.23) in (4.22) and equating the coefficients of like powers of
tanh2(λ z) on both sides of the resulting equation,

4C2λ2 =
2α

3
C3, (4.24)
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−8C2 λ2 = β C2, (4.25)

4 C2 λ2 = 2 γ C, (4.26)

2 µ = 0. (4.27)

From (4.24), we get C =
6 λ2

α
and λ2 = −β

8
and so β should be negative

which leads to

U 2 < gh. (4.28)

From (4.26), λ2 =
γ

2 C
and thus the integration constant B should satisfy

B = −β2 U 2 h2

16 α
. (4.29)

In this case B is a negative quantity.

Thus the solitary wave solution of (4.22) is

w(z) =
3

2

h(gh− U 2)

U 2 tanh2{
√√√√3(gh− U 2

8U 2h2 z}. (4.30)

Using (3.1), we have

u(x, t) = −3

2

(gh− U 2)

U
tanh2{

√√√√3(gh− U 2)

8U 2h2 (x− Ut)}. (4.31)

η(x, t) = −3

2

h(gh− U2)

U 2 tanh2{
√√√√3(gh− U 2)

8U 2h2 (x− Ut)}. (4.32)

The corresponding explode-decay mode solutions are given by

u(x, t) = −3

2

(gh− U 2)

U
coth2{

√√√√3(gh− U 2)

8U 2h2 (x− Ut)}. (4.33)

η(x, t) = −3

2

h(gh− U2)

U 2 coth2{
√√√√3(gh− U 2)

8U 2h2 (x− Ut)}. (4.34)
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5 Numerical Results

In case 1, β = 0. Taking h = 1 and B = 1, we have α = 1.5, γ ≈ −0.3061

and g2 ≈ 0.1531. Now, g3 = −µ

8
where, µ satisfies (4.11). For solitary wave

solution, e1 ≈ 0.113, e2 ≈ 0.113 and e3 ≈ −0.226. Thus the solitary wave
solution is given by,

u(x, t) = −1.415 + 4.245 sech2(0.582x− 1.823t). (5.1)

This is plotted in Fig.1.

The corresponding explode decay mode solution is plotted in Fig.2 given by

u(x, t) = −1.415− 4.245 cosech2(0.582x− 1.823t). (5.2)

In case 2, where U 2 < gh, we take h = 1 and U = 3. Thus the solitary
wave solution (See Fig.3) and the corresponding explode decay mode solution
(See Fig.4) are given respectively by

u(x, t) = −0.4 tanh2 {x− 3t√
30

}, (5.3)

u(x, t) = −0.4 coth2 {x− 3t√
30

}, (5.4)
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