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Abstract

In this paper, a class of uncertain linear polytopic systems with distributed time vary-
ing delays is studied. By using an improved parameter dependent Lyapunov-Krasovskii
functional approach and linear matrix inequality technique, delay-dependent sufficient
conditions for exponential stability of the system are first established in terms of Mondie-
Kharitonov type’s linear matrix inequalities (LMIs). Numerical example is presented to
demonstrate the effectiveness of the proposed conditions.
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1 Introduction

The stability analysis of linear time-delay systems is a topic of great practical
importance, which has attracted a lot of interest over the decades (see e.g. [1, 2,
3, 5]). Also, systems uncertainties arise from many sources such as unavoidable
approximation, data errors and aging of systems and so the stability issue of
uncertain time delay systems has been investigated by many researchers (see
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[6, 8, 9]), where the Lyapunov-Krasovskii functional method is certainly used
as the main tool.

Recently, the stability analysis of linear system with polytopic type uncer-
tainties has also received much attention (see e.g. [4, 8, 10]). However, the
distributed delays are not considered in the mentioned papers. In practice,
systems with distributed delays have many important applications in various
areas (see [2, 3]). Theoretically, systems with distributed delays are much more
complicated, especially for the case where the system matrices belong to some
convex polytope. To the best of our knowledge, so far, no result on the stability
for uncertain linear polytopic systems with distributed delays is available in the
literature. This motivates our present investigation.

In this paper, we develop the robust stability problem for linear uncertain
polytopic systems with discrete and distributed time varying delays. The novel
feature of the results obtained in this paper is twofold. First, the system con-
sidered in this paper is convex polytopic uncertain subjected to discrete and
distributed time varying delays. Second, by employing an improved parameter
dependent Lyapunov-Krasovskii functional and linear matrix inequality tech-
nique, delay dependent sufficient conditions for the exponential stability of the
system are obtained in terms of the Mondié-Kharitonov type’s LMI conditions
[7]. The approach also allows to compute simultaneously the two bounds that
characterize the exponential stability rate of the solution.

The paper is organized as follows: Section 2 presents notations, definitions
and a well-known technical proposition needed for the proof of the main result.
Delay dependent exponential stability conditions of the system and numerical
example is presented in Section 3. The paper ends with conclusions and cited
references.

2 Preliminaries

The following notations will be employed throughout this paper: AT denotes
the transpose of A, λ(A) denotes the set of all eigenvalues of A, λmax(A) =
max{Reλ : λ ∈ λ(A)}, λmin(A) = min{Reλ : λ ∈ λ(A)}; matrix Q ≥ 0 (Q > 0,
resp.) means Q is semi positive definite matrix i.e. 〈Qx, x〉 ≥ 0,∀x ∈ Rn

(positive definite, resp. i.e. 〈Qx, x〉 > 0,∀x ∈ Rn, x 6= 0), A ≥ B means
A−B ≥ 0; C([a, b], Rn) denotes the set of all Rn−valued continuous functions
on [a, b]; the segment of the trajectory x(t) is denoted by xt = {x(t + s) : s ∈
t ∈ [−h, 0]} with its norm ‖xt‖ = sups∈[−h,0] ‖x(t+ s)‖.
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Consider a linear uncertain polytopic system with discrete and distributed
time varying delays of the form

ẋ(t) = A(σ)x(t) +B(σ)x(t− h(t)) +D(σ)

∫ t

t−τ(t)

x(s)ds, t ≥ 0,

x(t) = φ(t), t ∈ [−h̄, 0],

(2.1)

where x(t) ∈ Rn is the state, h(t), τ(t) are time varying delay functions which
are continuous and satisfying

0 ≤ h(t) ≤ h, 0 ≤ τ(t) ≤ τ ḣ(t) ≤ µ < 1, τ̇(t) ≤ δ < 1 (2.2)

and h̄ = max{h, τ}. The system matrices [A(σ), B(σ), D(σ)] are subject to
uncertainties and belong to the polytope Ω given by

Ω =

{[
A,B,D](σ) =

p∑
i=1

σi[Ai, Bi, Di], σi ≥ 0,

p∑
i=1

σi = 1

}
,

where Ai, Bi, Di ∈ Rn×n, i = 1, 2, . . . , p, are given real matrices; φ(t) ∈
C([−h̄, 0], Rn) is the initial function with the norm ‖φ‖ = sup−h̄≤s≤0 ‖φ(s)‖.

Definition 2.1. For a given α > 0, system (2.1)is said to be α-exponentially
stable if there exist a number γ ≥ 1 such that every solution x(t, φ) of system
(2.1) satisfies the following condition

‖x(t, φ)‖ ≤ γ‖φ‖e−αt, ∀t ≥ 0.

3 Main result

For positive numbers α, h, τ , symmetric positive definite matrices Pi, Qi, Ri ∈
Rn×n and semi-positive definite matrix S ∈ Rn×n we denote

P =

p∑
i=1

σiPi, Q =

p∑
i=1

σiQi, R =

p∑
i=1

σiRi,

Γij = PjAi + AT
i Pj +Qj + τ 2Rj,

Mi(Pj, Qj, Rj) =


Γij PjBi PjDi

BT
i Pj −(1− µ)e−2αhQj 0

DT
i Pj 0 −(1− δ)

τ
e−2ατRj

 , (3.1)
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S =

S 0 0

0 0 0

0 0 0

 , N (Pj) =

Pj 0 0

0 0 0

0 0 0

 , i, j = 1, 2, . . . , p,

λmin(P ) = min
i=1,2,...,p

{λmin(Pi)}, λmax(P ) = max
i=1,2,...,p

{λmax(Pi)},

λmax(Q) = max
i=1,2,...,p

{λmax(Qi)}, λmax(R) = max
i=1,2,...,p

{λmax(Ri)},

γ1 = λmin(P ), γ2 = λmax(P ) + hλmax(Q) +
1

2
τ 2λmax(R). (3.2)

The main result is stated in the following theorem.

Theorem 3.1. For given α > 0. System (2.1) is α-exponentially stable if
there exist positive definite matrices Pi, Qi, Ri, i = 1, 2, . . . , p and a semi-positive
definite matrix S such that the following LMIs hold:

i) Mi(Pi, Qi, Ri) + 2αN (Pi) ≤ −S, i = 1, 2, . . . , p,

ii) Mi(Pj, Qj, Rj) +Mj(Pi, Qi, Ri) + 2αN (Pi + Pj) ≤
2

p− 1
S,

i = 1, . . . , p− 1, j = i+ 1, . . . , p.

Moreover, every solution x(t, φ) of the system satisfies

‖x(t, φ)‖ ≤
√
γ2

γ1
‖φ‖e−αt, t ≥ 0,

where γ1, γ2 are defined in (3.2).

Proof. Because Pi > 0, Qi > 0, Ri > 0, σi ≥ 0, i = 1, 2, . . . , p and
∑p

i=1 σi = 1
we have P =

∑p
i=1 σiPi, Q =

∑p
i=1 σiQi, R =

∑p
i=1 σiRi are symmetric posi-

tive definite matrices. Consider the following parameter dependent Lyapunov-
Krasovskii functional for system (2.1)

V (xt) = xT(t)Px(t) +

∫ t

t−h(t)

e2α(s−t)xT(s)Qx(s)ds

+

∫ t

t−τ(t)

∫ t

s

e2α(ζ−t)xT(ζ)Rx(ζ)dζds.

(3.3)

It can be verified from (3.3) that

γ1‖x(t)‖2 ≤ V (xt) ≤ γ2‖xt‖2, t ≥ 0, (3.4)
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where γ1, γ2 are defined in (3.2).

Taking derivative of V (xt) along solutions of system (2.1), we get

V̇ (xt) = xT(t)[ATP + PA]x(t) + 2xT(t)PBx(t− h(t))

+ 2xT(t)PD

∫ t

t−τ(t)

x(s)ds+ xT(t)Qx(t)

− (1− ḣ(t))e−2αh(t)xT(t− h(t))Qx(t− h(t))

− 2α

∫ t

t−h(t)

e2α(s−t)xT(s)Qx(s)ds

+ τ(t)xT(t)Rx(t)− (1− τ̇(t))

∫ t

t−τ(t)

e2α(s−t)xT(s)Rx(s)ds

− 2α

∫ t

t−τ(t)

∫ t

s

e2α(ζ−t)xT(ζ)Rx(ζ)dζds

≤ xT(t)[ATP + PA+Q+ τR]x(t) + 2xT(t)PBx(t− h(t))

+ 2xT(t)PD

∫ t

t−τ(t)

x(s)ds− (1− µ)e−2αhxT(t− h(t))Qx(t− h(t))

+ 2xT(t)PD

∫ t

t−τ(t)

x(s)ds− (1− δ)e−2ατ

∫ t

t−τ(t)

xT(s)Rx(s)ds

− 2α(V (xt)− xT(t)Px(t)).

(3.5)

By using the fact that

−
∫ t

t−τ(t)

xT(s)Rx(s)ds ≤ −1

τ

(∫ t

t−τ(t)

x(s)ds

)T

R

(∫ t

t−τ(t)

x(s)ds

)
(3.6)

then from (3.5) and (3.6) we have

V̇ (xt) + 2αV (xt) ≤ ξT(t)Ξξ(t), (3.7)

where

ξT(t) =

[
xT(t) xT(t− h(t))

(∫ t
t−τ(t) x(s)ds

)T]
,

and

Ξ =


ATP + PA+ 2αP +Q+ τR PB PD

BTP −(1− µ)e−2αhQ 0

DTP 0 −1− δ
τ

e−2ατR

 .
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By using properties

P =

p∑
i=1

σiPi, Q =

p∑
i=1

σiQi, R =

p∑
i=1

σiRi,

p∑
i=1

σi = 1,

and from conditions (i) and (ii) of Theorem 3.1 we have

Ξ =

p∑
i=1

σ2
i

[
Mi(Pi, Qi, Ri) + 2σN (Pi)

]
+

p−1∑
i=1

p∑
j=i+1

σiσj

[
Mi(Pj, Qj, Rj) +Mj(Pi, Qi, Ri) + 2αN (Pi + Pj)

]
≤−

p∑
i=1

σ2
i S +

2

p− 1

p−1∑
i=1

p∑
j=i+1

σiσjS

=− 1

p− 1

[
(p− 1)

p∑
i=1

σ2
i − 2

p−1∑
i=1

p∑
j=i+1

σiσj

]
S

It’s easy to verify that

(p− 1)

p∑
i=1

σ2
i − 2

p−1∑
i=1

p∑
j=i+1

σiσj =

p−1∑
i=1

p∑
j=i+1

(σi − σj)2 ≥ 0.

Therefore it follows from (3.7) that

V̇ (xt) + 2αV (xt) ≤ 0, ∀t ≥ 0,

and hence
V (xt) ≤ V (φ)e−2αt ≤ γ2‖φ‖2e−2αt, t ≥ 0.

Taking (3.4) into account, we finally obtain

‖x(t, φ)‖ ≤
√
γ2

γ1
e−αt‖φ‖, t ≥ 0,

where γ1, γ2 are defined in (3.2). The proof of the theorem is completed.

Remark 3.1. It is worth noting that the condition (i) means the asymptotic
stability of each ith−subsystem, the condition (ii) implies the asymptotic stability
of the ijth−subsystem and if p = 1 this condition is automatically removed.

Remark 3.2. As a consequent of theorem 3.1, if µ = 0 and Di = 0, i =
1, 2, . . . , p then the result of theorem 3.1 implies that of theorem 1 in [8].
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Example 3.1. Consider uncertain linear polytopic system with distributed
time varying delays (2.1), where

A1 =

[
−20 1

0 −15

]
, A2 =

[
−30 0

1 −10

]
, A3 =

[
−40 −1

0 −40

]
,

B1 =

[
1 0

1 −1

]
, B2 =

[
−1 1

0 1

]
, B3 =

[
−2 0

1 −1

]
,

D1 =

[
−1 1

0 −2

]
, D2 =

[
−2 0

1 −1

]
, D3 =

[
1 1

0 −1

]

and delay functions h(t) = sin2 0.5t, τ(t) = cos2 0.5t. Then we have the upper
bounds h = τ = 1 and µ = 0.5, δ = 0.5. By using LMI toolbox of Matlab it can
be verified that all LMIs in theorem 3.1 are satisfied with α = 0.5 and

P1 =

[
0.3993 0.0024

0.0024 0.4027

]
, P2 =

[
0.3555 0.0024

0.0024 0.4250

]
, P3 =

[
0.3246 0.0025

0.0025 0.3797

]
,

Q1 =

[
6.7947 −0.1060

−0.1060 4.5724

]
, Q2 =

[
8.4561 −0.1254

−0.1254 3.4611

]
,

Q3 =

[
10.7188 0.2262

0.2262 12.2987

]
, R1 =

[
6.7947 −0.1060

−0.1060 4.5724

]
,

R2 =

[
8.4561 −0.1254

−0.1254 3.4611

]
, R3 =

[
10.7188 0.2262

0.2262 12.2987

]
,

S =

[
0.1 0

0 0.1

]
.

By theorem 3.1, system (2.1) is exponentially stable with decay rate α = 0.5.
Moreover, every solution x(t, φ) satisfies the estimation

‖x(t, φ)‖ ≤ 7.6359‖φ‖e−0.5t, t ≥ 0.

4 Conclusion

This paper has proposed new sufficient conditions for exponential stability of
linear uncertain polytopic systems with distributed time varying delays. Based
on an improved Lyapunov-Krasovskii parameter dependent functional, delay
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dependent exponential stability conditions of the system are derived in terms
of the Mondié-Kharitonov type’s LMIs, which allows to compute simultaneously
the two bounds that characterize the exponential stability of the solution. A
numerical example illustrate the effectiveness of the obtained result is given.
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