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Abstract 
      By using averaging functions, several new oscillation criteria are established for the 
half-linear damped differential equation 
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where p,q ,r:[t0,∞)→R and ψ,g: R→R are continuous, r(t)>0, p(t)≥0 and ψ(x)>0, 
xg(x)>0 for x≠0, α>1 a fixed real number. Our results generalize 

and extend some known oscillation criteria in the literature. 
 
      



Differential Equations and Control Processes, № 4, 2008  

 
Electronic Journal. http://www.neva.ru/journal, http://www.math.spbu.ru/user/diffjournal  2 

1.  INTRODUCTION 
 
    We are concerned with the oscillation of solutions of second order differential 
equations with damping terms of the following form 
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      (1.1) 

and the more general equation 
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        (1.2) 

where r∈C[[t0,∞),R+], p∈C[[t0,∞),[0,∞)], q∈C[[t0,∞),R], ψ∈C[R,R+] and g∈C¹[R,R] 
such that xg(x)>0 for x≠0 and g′(x)>0 for x≠0. φ is defined and continuous on R×R-{0} 
with uφ(u,v)>0 for  uv≠0 and φ(λu, λv)= λφ(u,v) for  0<λ<∞ and (u,v) ∈R×R-{0}. 
 

    By oscillation of equation (1.1)[(1.2)], we mean a function x∈C¹([Tx,∞),R) for some 
Tx≥t0, which has the property that -2

1r(t) (x) ([ , ), )x
dx dx C T R
dt dt

α

ψ
⎛ ⎞

∈ ∞⎜ ⎟⎜ ⎟
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and satisfies equation 

(1.1)[(1.2)] on [Tx,∞). 
    A solution of equation (1.1)[(1.2)] is called oscillatory if it has arbitrarily large zeros 
otherwise, it is called nonoscillatory. Finally, equation (1.1)[(1.2)] is called oscillatory if 
all its solutions are oscillatory. 
    In Section 2 we provide sufficient conditions for the oscillation of all solutions of 
(1.1). Several particular cases of (1.1) have been discussed in the literature. To cite a 
few examples, the differential equation 
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has been studied by [5]-[12]. A more general equation than (1.3) 
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                     (1.4) 
 

has been considered by [2] and [20]. Our results include, as special cases, known 
oscillation theorems for (1.3), (1.4). In particular, we extend and improve the results 
obtained in [13], [17], [2] and [14]. 
    In Section 3 we will establish oscillation criteria for equation (1.2). Several particular 
cases of (1.2) have been discussed in the literature. To cite a few examples, the 
differential equation 
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established by [16] and [19] considered a special case of this equation as 
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-2

r(t) +q(t)g(x)=0,d dx dx
dt dt dt
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                            (1.6) 
 

Our results in this section generalize and improve [17], [1], [3] and [18]. 
 
 
 
 
2.  OSCILLATION RESULTS FOR (1.1) 
 
    In order to discuss our main results, we need the following well-known inequality 
which is due to Hardy et al. [4]. 
Lemma 2.1. If X and Y are nonnegative, then 
 

1 X +( -1)Y - XY 0,  >1,λ λ λλ λ λ− ≥  
 

where equality holds if and only if X=Y. 
Theorem 2.1. Suppose, in addition to conditions 
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and H has a continuous and nonpositive partial derivative on D  with respect to the 
second variable such that 
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Then equation (1.1) is oscillatory if 
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where 
1/ 1 (s)R(t,s)=h(t,s)+(H(t,s)k(s)) +p(s) .
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d
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Proof. On the contrary we assume that (1.1) has a nonoscillatory solution x(t). We 
suppose without loss of generality that x(t)>0  for all  t∈ [t0,∞). We define the function 
ω(t) as 
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Thus 
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This and equation (1.1) imply 
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From (2.1) we obtain 
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Multiply the above inequality by H(t,s)k(s) and integrate from T  to t we obtain 
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The previous inequality becomes 
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Hence we have 

T

1 1

1/( -1)
T T

H(t,s)k(s) (s)q(s)ds H(t,T)k(T) (T)

H(t,s)k(s)| (s)|+ R(t,s)((H(t,s)k(s)) (s) ds ( 1) . (2.4)
[ (s)r(s)]

t

t t

ds

α
α α
α

α

ρ ω

ωω α
γρ

− −

≤

− −

∫

∫ ∫
 

Define 
1/

1/
1/( 1) -1

1[ (s)r(s)] [ ( , )],

H(t,s)k(s)[ (s)r(s)] (s) .

X R t s

Y

α

αα
α α

γρ
α

γρ ω− −

=

⎛ ⎞=⎜ ⎟
⎝ ⎠

 

 

Since  α>1, then by Lemma 2.1, 
 

( 1)/ 1
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for all t>s≥T. Moreover, by (2.4) we also have for every t≥T, 
 

T
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T
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We use the above inequality for T=T0 to obtain 
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Therefore, 
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H(t,t ) k(s) (s) q(s) ds+k(T ) (T ) ,

t

T

t

T

T

α

α

α

α

α

α

γρρ
α

γρρ
α

γρρ
α

ρ ω

⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
= ⎨ ⎬

⎩ ⎭

⎧ ⎫
+ ⎨ ⎬

⎩ ⎭

⎧ ⎫⎪ ⎪≤ ⎨ ⎬
⎪ ⎪⎩ ⎭

∫

∫

∫

∫

 

for all  t≥T0. This gives 
 

0

0

0

t
0 t

0 0
t

1 (s)r(s)R (t,s)lim sup H(t,s)k(s) (s)q(s)- ds
H(t,t )

k(s) (s) q(s) ds+k(T ) (T ) ,

t

T

α

α

γρρ
α

ρ ω

→∞

⎧ ⎫
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⎩ ⎭

⎧ ⎫⎪ ⎪≤ <∞⎨ ⎬
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∫

∫
 

 

which contradicts the assumption (2.3). This completes the proof. 
Corollary 2.1. If the condition (2.3) is replaced by the conditions 
 

0

0

t
0 t

t
0 t

1lim sup H(t,s)k(s) (s)q(s)ds ,
H(t,t )

1lim sup (s)r(s)R (t,s)ds ,
H(t,t )

t

t
α

ρ

ρ

→∞

→∞

=∞

<∞

∫

∫
 

then the conclusion of Theorem 2.1 remains valid. 
 

    Theorem 2.2. Suppose that (2.1) and (2.2) are satisfied and let the functions H, h,  
and k be the same as in Theorem 2.1. Moreover, assume that 
 

t s t
0

H(t,s)0<inf lim inf , (2.6)
H(t,t )≥ →∞

⎡ ⎤
≤∞⎢ ⎥

⎣ ⎦
 

 

and 
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0
t

0 t

1lim inf (s)r(s)R (t,s)ds< , (2.7)
H(t,t )

t
αρ

→∞
∞∫  

 

hold. If there exists a function Ω∈C([t0,∞),R) such that 
 

( )0

/( 1)

1/( 1)t
t

( )lim  sup , (2.8)
k(s) (s)r(s)

t sα α

αρ

−
+

−→∞

Ω
= ∞∫  

 

and for every T≥t0, 

 
t

T

1 (s)r(s)R (t,s)lim inf { ( , ) (s)k(s)q(s)- }ds (T), (2.9)
H(t,T)

t

H t s
α

α

γρρ
α→∞

≥Ω∫  

where ( ) max{ ( ),0},t t+Ω = Ω then equation (1.1) is oscillatory. 
 

    Proof. On the contrary we assume that (1.1) has a nonoscillatory solution x(t). We 
suppose without loss of generality that x(t)>0  for all t∈[t0,∞). Defining ω (t) as in the 
proof of Theorem 2.1, we obtain (2.4) then we get 

T

1 (s)r(s)R (t,s)( , ) (s)k(s)q(s)- k(T) (T)-J(t,T)
H(t,T)

t

H t s ds
α

α

γρρ ω
α

⎧ ⎫
≤⎨ ⎬

⎩ ⎭
∫   

where 

( -1)/

T

( -1)
1/( 1)

1 (s)r(s)R (t,s)( , ) { ( ( , )k(s)) R(t,s) (s)
H(t,T)

( 1) ( , )k(s) (s) }ds,
( ( ) ( ))

t

J t T H t s

H t s
s r s

α
α α

α

α
α

α

γρ ω
α

α ω
γρ −

= −

−
+

∫
 

for all T≥T0. Thus, by (2.9), we have 
 

o(T) k(T) (T)   for all  T T (2.10)ωΩ ≤ ≥  
  

and 

ot
lim sup J(t,T)<        for all  T T . (2.11)
→∞

∞ ≥  
Let 
 

0

0

( -1)/

0 T

1
( 1) -1

0 T

1( ) R(t,s)( ( , )k(s)) (s) ,
H(t,T )

( 1)( ) ( , )k(s)( ( ) ( )) (s) ,
H(t,T )

t

t

F t H t s ds

G t H t s s r s ds

α α

α
α α

ω

α γρ ω
−
−

=

−
=

∫

∫
 

 

for t>T0. Then by (2.4) and (2.11) we get that 
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( )
0

-1
1/( 1)t t

0 T

( -1)/

0t

1 ( -1) ( , )k(s)lim  sup|G(t)-F(t)|  lim  sup { (s)
H(t,T ) ( ( ) ( ))

  -R(t,s) H(t,s)k(s) |(s)|}ds
lim  supJ(t,T )< . (2.12)

t H t s
s r s

α
α

α

α α

α ω
γρ

ω

−→∞ →∞

→∞

≤

≤ ∞

∫

 

Now, we claim that 
 

0

/( -1)

1/( 1)
T

(s)
k(s) . (2.13)

( ( ) ( ))
ds

s r s

α α

α

ω
ρ

∞

− < ∞∫  

 

Suppose to the contrary that 
 

0

/( -1)

1/( 1)
T

(s)
k(s) . (2.14)

( ( ) ( ))
ds

s r s

α α

α

ω
ρ

∞

− = ∞∫  

By (2.6), there is a positive constant η satisfying 

0 t
0

H(t,s)inf lim inf . (2.15)
H(t,t )s t

η
≥ →∞

⎡ ⎤
>⎢ ⎥

⎣ ⎦
 

On the other hand, by (2.14) for any positive number µ there exists a T1>T0 such that 
 

0

1
/( -1)

1

11/( 1)
T

(s)
k(s) for all  t T ,

( ( ) ( )) ( 1)

t

ds
s r s

α α
α

α

ω γ µ
ρ α η

−

− ≥ ≥
−∫   

so for all t≥T1 
 

0 0

0 0

1
/( -1)

1

1/( 1)
0 T T

1
/( -1)

1

1/( 1)
0 T T

1
1

0

(u)( 1)( ) H(t,s)d ( )
H(t,T ) ( ( ) ( ))

(u)( 1) H(t,s) d ( )
H(t,T ) ( ( ) ( ))

( 1) H(t,s)
H(t,T )

t s

t s

G t k u du
u r u

k u du ds
s u r u

s

α α
α

α

α α
α

α

α

ωα γ
ρ

ωα γ δ
δ ρ

α γ δ
δ

−
−

−

−
−

−

−
−

⎡ ⎤−
= ⎢ ⎥

⎢ ⎥⎣ ⎦

⎡ ⎤− −⎡ ⎤= ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

− −⎡≥ ⎢⎣

∫ ∫

∫ ∫

1 0

1

/( -1)

1/( 1)
T T

1 1
1 1

1

0 0T

(u)
d ( )

( ( ) ( ))

( , )( 1) H(t,s) ds= . (2.16)
( 1) H(t,T ) H(t,T )

t s

t

k u du ds
u r u

H t T
s

α α

α

α α

ω
ρ

µγ µ α γ δ
α η δ η

−

−
− −

⎡ ⎤⎤ ⎢ ⎥⎥⎦ ⎢ ⎥⎣ ⎦

− −⎡ ⎤≥ ⎢ ⎥− ⎣ ⎦

∫ ∫

∫

 

 

From (2.15) we have 
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1

t
0

( , )lim  inf > >0.
H(t,t )

H t T η
→∞  

So there exists  T2≥T1 such that  1

0

( , )
H(t,t )

H t T η≥  for all  t≥T2. Therefore by (2.16) G(t)≥η 

for all  t≥T2, and since µ is arbitrary constant, we conclude that 

t
lim G(t)= . (2.17)
→∞

∞  

Next, consider a sequence n n=1{t }∞  in (T0,∞) with limn→∞tn=∞ and such that 
 

[ ] [ ]n nn t
lim G(t )-F(t ) = limsup G(t)-F(t) .
→∞ →∞  

In view of (2.12), there exists a constant M such that 

n nG(t )-F(t )  for all sufficient large n. (2.18)M≤  

It follows from (2.17) that 

nn
lim G(t )= . (2.19)
→∞

∞  
This and (2.18) give 

nn
lim F(t )= . (2.20)
→∞

∞  
 

Then, by (2.18) and (2.19), 
 

n

n n

F(t ) -M -1-1 >     for n large enough.
G(t ) G(t ) 2

≥  

Thus, 
 

n

n

F(t ) 1>     for n large enough.
G(t ) 2  

This and (2.20) imply that 

n
-1n

n

F (t )    lim = . (2.21)
G (t )

α

α→∞
∞  

On the other hand, by the Holder's inequality, we have 
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0

0

0

( -1)/
n n

n 0 T

( 1)//( -1)

n 1/( 1)
n 0 T

1/

n1
n 0 t

( 1)/

1( ) R(t ,s)(H(t ,s)k(s)) (s) ds
H(t ,T )

(s)1 H(t ,s)k(s) ds
H(t ,T ) ( ( ) ( ))

( ) ( ) (t ,s)ds
( 1) H(t ,T )

( )
( 1)

n

n

n

t

n

t

t

n

F t

s r s

s r s R

G t

α α

α αα α

α

α

α
α

α α

ω

ωα
ρ

γ ρ
α

α

−

−

−

−

=

⎧ ⎫−⎪ ⎪≤⎨ ⎬
⎪ ⎪⎩ ⎭

⎧ ⎫⎪ ⎪×⎨ ⎬−⎪ ⎪⎩ ⎭

≤
−

∫

∫

∫

0

1/

n( 1)/
n 0 t

( ) ( ) (t ,s)ds ,
H(t ,T )

nt

s r s R
α

α
α α

γ ρ−

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

∫

 

 
and therefore, 
 

0

0

n
n-1 ( 1)

n n 0 t

n( 1)
n 0 t

F (t ) ( ) ( ) (t ,s)ds
G (t ) ( 1) H(t ,T )

( ) ( ) (t ,s)ds
( 1) H(t ,t )

n

n

t

t

s r s R

s r s R

α
α

α α

α
α

γ ρ
α

γ ρ
α η

−

−

≤
−

≤
−

∫

∫
 

  

for all large n. It follows from (2.21) that 
 

0

nn
n 0 t

1 lim ( ) ( ) (t ,s)ds= , (2.22)
H(t ,t )

nt

s r s R αρ
→∞

∞∫  

that is, 
 

0

nt
0 T

1 lim ( ) ( ) (t ,s)ds= ,
H(t,t )

t

s r s R αρ
→∞

∞∫   

which contradicts (2.7). Hence, (2.13) holds. Then, it follows from (2.10) that 
 

( ) ( )0 0

/( 1)/( 1)

1/( 1) 1/( 1)
T T

( )( )( ) ( ) ,
k(s) (s)r(s) (s)r(s)

t t ssk s ds k s ds
α αα α

α α

ω

ρ ρ

−−
+

− −

Ω
≤ < ∞∫ ∫  

 

which contradicts (2.8). This completes the proof of Theorem 2.2. 
 

    Theorem 2.3. Suppose that (2.1) and (2.2) are satisfied and let the functions H, h, ρ 
and k be the same as in Theorem 2.1. Moreover, assume that 
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0
t

0 t

1lim inf ( , ) (s)k(s)q(s)ds< , (2.23)
H(t,t )

t

H t s ρ
→∞

∞∫  
 

and (2.6) hold. If there exists a function Ω∈C([t0,∞),R) such that (2.8) and (2.9) hold, 
then equation (1.1) is oscillatory. 
 

    Proof. Without loss of generality, we may assume that there exists a solution x(t) of 
equation (1.1) such that x(t)≠0 on [T0,∞) for some sufficiently large T0≥t0. Define ω(t) 
as of Theorem 2.1. As in the proofs of Theorem 2.1 and 2.2, we can obtain (2.4), (2.5) 
and (2.10). From (2.23) it follow that 

0

0 0t

t
0 t

lim sup G(t)-F(t) k(t ) (t )

1- lim inf ( , ) (s)k(s)q(s)ds< , (2.24)
H(t,t )

t

H t s

ω

ρ

→∞

→∞

≤

∞∫  

where F(t) and G(t) are defined as in the proof of Theorem 2.2. By (2.9) we have 

0

0

0 t
0 t

t
0 t

1( ) liminf ( , ) (s)k(s)q(s)ds
H(t,t )

1liminf (s)r(s)R ( , )ds.
H(t,t )

t

t

t H t s

t sα

ρ

ρ

→∞

→∞

Ω ≤

−

∫

∫
 

 

This and (2.9) imply that 
 

0
t

0 t

1lim inf (s)r(s)R ( , )ds .
H(t,t )

t

t sαρ
→∞

< ∞∫  

Considering a sequence n n=1{t }∞  in (T0,∞) with limn→∞tn=∞ and such that 
 

0

0

n 0 t

0 t

1lim (s)r(s)R ( , )ds
H(t ,t )

1lim inf (s)r(s)R ( , )ds< .   (2.25)
H(t,t )

nt

nn

t

t

t s

t s

α

α

ρ

ρ

→∞

→∞
= ∞

∫

∫
 

Now, suppose that (2.14) holds. With the same argument as in Theorem 2.2, we 
conclude that (2.17) is satisfied. By (2.24), there exists a constant M such that (2.18) is 
fulfilled. Then, following the procedure of the proof of Theorem 2.2, we see that (2.22) 
holds, which contradicts (2.25). This contradiction proves that (2.25) fails. The 
remainder of the proof is similar to that of Theorem 2.2, so we omit the details. This 
completes the proof of Theorem 2.3. 
 

    Theorem 2.4. Suppose that (2.1) and (2.2) are satisfied and let the functions H, h, ρ 
and k be the same as in Theorem 2.1. Moreover, suppose that 
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00 t

1limsup (s)r(s)R ( , )ds< ,   (2.26)
H(t,t )

t

t
t sαρ

→∞
∞∫  

 
and (2.6) hold. If there exists a function Ω∈C([t0,∞),R) such that (2.8) hold for every 
T≥t0 and 

T

1 (s)r(s)R (t,s)limsup ( , ) (s)k(s)q(s)- (T), (2.27)
H(t,T)

t

t
H t s ds

α

α

γρρ
α→∞

⎧ ⎫
≥ Ω⎨ ⎬

⎩ ⎭
∫  

then equation (1.1) is oscillatory. 
The proof of Theorem 2.4 can be carried out as the proof of Theorem 2.2 and therefore 
it will be omitted.   
 

    Remark 2.1. If α=2 and p(t)≡0, r(t)≡1 and ψ(x)≡1, then Theorem 2.1, 2.2 extend and 
improve theorem in [17]. 
 

    Remark 2.2. If p(t)≡0, r(t)≡1 and ψ(x)≡1, then Theorem 2.1, 2.3 and 2.4 extend and 
improve Theorem 2, 4 and 3 of Li [13], respectively. 
 

    Remark 2.3. If p(t)≡0, then Theorem 2.1-2.4 extend and improve Theorem 2, 4, 6 
and 5 in [2], respectively. 
 

    Example 2.1. Consider the differential equation 
 

( )-2 -5/2
0t (1 ) +t x(t)=0, t t >1.x td dxe

dt dt
−⎛ ⎞+ ≥⎜ ⎟

⎝ ⎠
 

We note that 
α =2 and ψ (x)=1+e-|x(t)|. 

Let 
ρ(s)=1, k(s)=s² and H(t,s)=(t-s)². 

Then 

0

0

t
0 t

1 1 3 2
2 2 2 2

2 2t
0 t

1 (s)r(s)R (t,s)limsup H(t,s)k(s) (s)q(s)- ds
H(t,t )

1 9 6limsup t 2 2 ds .
(t-t ) 2

t

t t ts ts s
s s

α

α

γρρ
α→∞

−

→∞

⎧ ⎫
⎨ ⎬
⎩ ⎭

⎛ ⎞
= − + − − − =∞⎜ ⎟

⎝ ⎠

∫

∫
 

 

Hence, this equation is oscillatory by Theorem 2.1. while, Ayanlar and Tiryaki [2], fails. 
 

    Example 2.2. Consider the differential equation 
 

02

1 1+ x=0, t t =1.
t t

1 2+cos²t 1+3x²
1+3cos²t 2+x²

d dx
dt dt

dx
t dt

+ ≥
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

We not that 
 

1+3x² 3 , 2.
2+x²

0 ( )x γ αψ ≤ = =< =  
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If we take ρ(t)=t, k(t)=t, H(t,s)=(t-s)², then 

0
t

0 t

2

2
2 2t

1

2

2
2 2t

1 (s)r(s)R (t,s)lim sup H(t,s)k(s) (s)q(s)- ds
H(t,t )

1 3 2+cos²slim sup (t-s) 2 ds
(t-1) 4 1+3cos²s

1 1lim sup (t-s) 2
(t-1) 4

t

t t s ss s
s s

t s ss s
s s

α

α

γρρ
α→∞

→∞

→∞

⎧ ⎫
⎨ ⎬
⎩ ⎭

⎛ ⎞⎛ ⎞⎛ ⎞⎜ ⎟= − + −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞
⎜ ⎟≥ − + −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∫

∫

1

ds= .
t

∞∫

 

 

Hence, this equation is oscillatory. One such solution of this equation is x(t)=cos t. 
 
3.  OSCILLATION RESULTS FOR (1.2) 
 
    Theorem 3.1. Suppose that (2.1) and 
 

-2 1/( -1)

g'(x) >0  for  x 0,  (3.1)
( (x)|g(x) |)α α δ
ψ

≥ ≠  
 

hold, and let the functions H, h and k be the same as in Theorem 2.1. Moreover, 
suppose that there exist ρ ∈C¹([t0,∞),(0,∞)). Then equation (1.2) is oscillatory if 
 

0

1

t
0 t

1 (s)r(s)Q (t,s)lim sup H(t,s)k(s) (s)q(s)- ds= ,
H(t,t )

t α α

α

β ρρ
α

−

→∞

⎧ ⎫
∞⎨ ⎬

⎩ ⎭
∫  

where 
 

 1/1 (s)=   and  Q(t,s)= h(t,s)- (s) (H(t,s)k(s)) .
-1 (s)

d p
ds

αδ ρβ
α ρ

⎛ ⎞
−⎜ ⎟

⎝ ⎠
 

 

    Proof. Without loss of generality, we may assume that there exists a solution x(t) of 
equation (1.2) such that x(t)≠0 on [T0,∞) for some sufficiently large T0≥t0. Define ω(t) 
as 
 

-2

0

r(t) (x)
(t)= (t)     for  t t .

g(x)

dx dx
dt dt

α

ψ
ω ρ ≥  

 
Thus, 
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-2

1

-2 1/( -1) 1/( -1)

r(t) (x)
(t) 1 (t)= (t)+ (t)

(t) g(x)

g'(x) | (t)| .
( (x)|g(x) |) [ (t)r(t)]

d dx dx
dt dt dtd d dx

dt dt dt

α

α
α

α α α

ψ
ω ρ ω ρ

ρ

ω
ψ ρ

−

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

−

 

 

This and equation (1.2) imply 
 

1

-2 1/( -1) 1/( -1)

(t) 1 (t) (t)(t)- (t)[q(t)+p(t) (1, )]
(t) (t)

g'(x) | (t)| .
( (x)|g(x) |) [ (t)r(t)]

d d
dt dt

α
α

α α α

ω ρ ωω ρ ϕ
ρ ρ

ω
ψ ρ

−

≤

−
 

 

From (2.1) and (3.1) we have 
 

 
1

1/( -1)

(t) 1 (t) | (t)|(t)- (t)q(t)-p(t) (t) .
(t) [ (t)r(t)]

d d
dt dt

α
α

α

ω ρ ωω ρ ω δ
ρ ρ

−

≤ −  
 

Multiply the above inequality by H(t,s)k(s) and integrate from T to t we obtain 

 
T T

-1
-1 1

T T

1 (s)H(t,s)k(s) (s)q(s)ds H(t,s)k(s) (s) (s)ds
(s)

(s) (s)- H(t,s)k(s) ds- H(t,s)k(s)[ (s)r(s)] | (s)| ds.

t t

t t

d p
ds

d d
ds ds

α
α α

ρρ ω
ρ

ω ωδ γρ ω −

⎛ ⎞
≤ −⎜ ⎟

⎝ ⎠
∫ ∫

∫ ∫
  

Since 

T T

( -1)

T

(s)- H(t,s)k(s) ds=H(t,T)k(T) (T)+ (H(t,s)k(s)) (s)ds

=H(t,T)k(T) (T)- ( , )(H(t,s)k(s)) (s)ds.

t t

t

d
ds s

h t s
α
α

ω δω ω
δ

ω ω

∫ ∫

∫
 

The previous inequality becomes 
 

( -1)

T T
( -1)/

1/( -1)
T

H(t,s)k(s) (s)q(s)ds H(t,T)k(T) (T)+ Q(t,s)(H(t,s)k(s)) (s) ds

H(t,s)k(s) (s)
( 1) ds. (3.2)

[ (s)r(s)]

t t

t

α
α

α α

α

ρ ω ω

β ω
α

ρ

≤

− −

∫ ∫

∫
 

Define 
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[ ]( )

(1 )/ 1/

1/( 1)( 1)/(1 )/ 1/

1[ (s)r(s)] [ ( , )],

H(t,s)k(s) [ (s)r(s)] (s) .

X Q t s

Y

α α α

αα αα α α

β ρ
α

β ρ ω

−

−−− −

=

=
 

Then use the lemma 2.1, we have 
/( 1) (1 )

( 1)/
1/( 1)

H(t,s)k(s)| (s)| (s)r(s)Q (t,s)Q(t,s)(H(t,s)k(s)) (s) ( 1) .
[ (s)r(s)]

α α α α
α α

α α

β ω β ρω α
ρ α

− −
−

−− − ≤  

From (3.2) we have 
(1 )

T

(s)r(s)Q (t,s)H(t,s)k(s) (s)q(s)- ds H(t,T)k(T) (T).
t α α

α

β ρρ ω
α

−⎧ ⎫
≤⎨ ⎬

⎩ ⎭
∫  

 

The remainder of the proof proceeds as in the proof of Theorem 2.1. The proof is 
complete. 
 

    Following the procedure of the proof of Theorem 2.2 and 2.3, we can also prove the 
following theorems. 
 

    Theorem 3.2. Suppose that (2.1) and (3.1) hold, and let the functions  H, h and k  be 
the same as in Theorem 2.1. If there exist two functions ρ∈C¹([t0,∞),(0,∞))  and 
Ω∈C([t0,∞),R) such that 
 

0
t

0 t

1lim inf (s)r(s)Q (t,s)ds< , (3.3)
H(t,t )

t
αρ

→∞
∞∫  

and that for every T≥t0, 
(1 )

t
T

1 (s)r(s)Q (t,s)lim inf { ( , ) (s)k(s)q(s)- }ds (T), (3.4)
H(t,T)

t

H t s
α α

α

β ρρ
α

−

→∞
≥Ω∫  

and (2.8) hold, then every solution of (1.2) is oscillatory. 
 

    Theorem 3.3. Suppose that (2.1) and (3.1) hold, and let the functions H, h and k be 
the same as in Theorem 2.1. If there exist two functions ρ ∈C¹([t0,∞),(0,∞)) and 
Ω∈C([t0,∞),R) such that (2.8), (3.4) and 

t
T

1lim inf ( , ) (s)k(s)q(s)ds< , (3.5)
H(t,T)

t

H t s ρ
→∞

∞∫  

hold, then every solution of (1.2) is oscillatory. 
 

      Theorem 3.4. Suppose that (2.1) and (3.1) are satisfied. Let the functions H, h and k 
be the same as in Theorem 2.1. If there exist two functions ρ ∈C¹([t0,∞),(0,∞)) and 
Ω∈C([t0,∞),R) such that 
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00 t

1lim sup (s)r(s)Q ( , )ds< ,   (3.6)
H(t,t )

t

t
t sαρ

→∞
∞∫  

 

and for every T≥t0, 
 

1

T

1 (s)r(s)Q (t,s)lim sup ( , ) (s)k(s)q(s)- (T), (3.7)
H(t,T)

t

t
H t s ds

α α

α

β ρρ
α

−

→∞

⎧ ⎫
≥ Ω⎨ ⎬

⎩ ⎭
∫  

and (2.8) hold, then every solution of (1.2) is oscillatory. 
 

    Remark 3.1. If p(t)≡0 and α=2, then Theorem 3.2 and 3.4 extend and improve 
Theorem 4 and 3 of Grace [3]. 
 

    Remark 3.2. If p(t)≡0 and H(t,s)=(t-s)ⁿ from Theorem 3.1, we obtain Theorem 2  of 
Agarwal and Grace [1]. 
 

    Example 3.1. Consider the differential equation 

-2 2 -1 3
0t ( ) +t x (t)=0, t t >1.d dxx t

dt dt
⎛ ⎞ ≥⎜ ⎟
⎝ ⎠  

We note that 
α=2, r(t)=t-2, q(t)=t-1 and '( ) 3.

( )
g x

xψ
=  

Let 
ρ(s)=1, k(s)=s² and H(t,s)=(t-s)². 

Then 

 
0

0

1

t
0 t

2
2 3

2 2t
0 t

1 (s)r(s)Q (t,s)lim sup H(t,s)k(s) (s)q(s)- ds
H(t,t )

1 3 1lim sup t 2 ds .
(t-t ) 4 3

t

t t ts ts s
s s

α α

α

β ρρ
α

−

→∞

→∞

⎧ ⎫
⎨ ⎬
⎩ ⎭

⎛ ⎞
= − + − + − =∞⎜ ⎟

⎝ ⎠

∫

∫
 

 

Hence, this equation is oscillatory by Theorem 3.1. 
 
    Example 3.2. Consider the differential equation 
 

3
02

1 1+ (x+x )=0, t t =1.
t t(1+3cos²t)

1 2+cos²t 1+3x²
1+3cos²t 2+x²

dx
dt

dx
t dt

+ ≥
⎛ ⎞
⎜ ⎟
⎝ ⎠

We not that 

2'( ) 2 2 , 2.
( )

g x x
x

δ α
ψ

= + ≥ = =  
 

If we take ρ(t)=t, k(t)=t, H(t,s)=(t-s)², then 
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0

1

t
0 t

22

2 2t
1

2
2t

1 (s)r(s)Q (t,s)lim sup H(t,s)k(s) (s)q(s)- ds
H(t,t )

1 (t-s) 1 2+cos²s 2lim sup 4 ds
(t-1) 1+3cos²s 2 1+3cos²s

1 1lim sup (t-s) 4
(t-1) 4 4

t

t s t s s ts
s s s

s t ss

α α

α

β ρρ
α

−

→∞

→∞

→∞

⎧ ⎫
⎨ ⎬
⎩ ⎭

⎛ ⎞⎛ ⎞⎛ ⎞⎜ ⎟= − + − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

⎛ ⎞≥ − +⎜ ⎟
⎝ ⎠

∫

∫
2

2
1

2 ds= .
t s t

s s s

⎛ ⎞⎛ ⎞
⎜ ⎟− − ∞⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∫

 

Hence, this equation is oscillatory. One such solution of this equation is x(t)=cos t. 
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