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Abstract

In this paper we concern with the nonlinear functional integral inclusion in the real
line R. The existence of integrable solutions will be study under the assumptions that
the set-valued function F has L1-Caratheodory selection and measurable selection. We
reformulate the functional integral inclusion according to these selections and study two
cases of such problem.
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1 Introduction

Let R denote the real line. Let I = [0, T ] and let L1(I) be the class of all
Lebesgue integrable functions defined on the interval I, with the norm

‖x‖ =

∫ T

0

|x(t)|dt.

The topic of differential and integral inclusions is of much interest in the subject
of set-valued analysis.
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The existence theorems for the inclusions problems are generally obtained under
the assumptions that the set-valued function is either lower or upper semicontin-
uous on the domain of its definitions (see [1] and [16]) and for the discontinuity
of the set-valued function (see [8]).
The integral inclusions have been studied by B.C. Dhage and D. O’Regan (see
[7] and [16]) for the existence results under Caratheodory condition of F .

Let m : [0, T ]→ [0, T ] be continuous and nondecreasing function.
In this paper we study the existence of integrable solution x ∈ L1[0, T ] of the
functional integral inclusion

x(t) ∈ F (t,

∫ t

0

g(s, x(m(s)))ds), t ∈ [0, T ] (1)

where F : [0, T ] × R → P (R) is a nonlinear set-valued mapping and P (R)
denote the family of nonempty subsets of R under a set of several suitable as-
sumptions on the function F .

Our study is based on the selections of the set-valued function F on which
we have a functional integral equation, such a type has been studied in several
papers (see [5], [12]-[13] and [17]).

We study two approaches, the first approach we study the existence of inte-
grable solution x ∈ L1[0, T ] by reformulating the functional integral inclusion
(1) into a coupled system under the assumption that the set-valued function
F has L1-Caratheodory selection and the second approach study the integrable
solution x ∈ L1[0, T ] under the assumption that the set-valued function F has
measurable selection, .

2 Preliminaries

Now, we present some definitions and results that will be used in this work.

Definition 1 [11] Let (T,Σ) be a measurable space and X be a topological space,
a multivalued function F : T → X is measurable if for each open set A in X
the set

F−1(A) = {t ∈ T : F (t) ∩ A 6= φ}
is measurable. (I.e. F−1(A) ∈ Σ).
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Definition 2 [10] A set-valued function F : I × R → P (R) is called L1-
Caratheodory if:
(1) t→ F (t, x) is measurable in t ∈ I for all x ∈ R, and
(2) x→ F (t, x) is upper semicontinuous in x ∈ R for almost all t ∈ I.
(3) There exists h ∈ L1[I, R] such that

|F (t, x)| = sup{|f | : f ∈ F (t, x)} ≤ h(t)

for almost all t ∈ I.

Definition 3 [10] A single-valued function f : I × R → R is called L1-
Caratheodory if:
(1) t→ f(t, x) is measurable in t ∈ I for all x ∈ R, and
(2) x→ f(t, x) is continuous in x ∈ R for almost all t ∈ I.
(3) There exists h ∈ L1[I, R] such that

|f(t, x)| ≤ h(t)

for almost all t ∈ I.

Definition 4 [10] The set

S1
F (.,x(.)) = {f ∈ L1(I, R) : f(t, x) ∈ F (t, x(t)) for a.e. t ∈ I}

is called the set of selections of the set-valued function F that belongs to L1.

Theorem 1 [10] Let F : I ×R→ P (R) be an L1-Caratheodory multifunction,
the set S1

F (.,x(.)) is nonempty (i.e. there exists a selector f of F which belongs

to L1).

Theorem 2 [6] Let F : I × R → P (R) be an multifunction. Assume that the
multifunction F satisfies the following assumptions
(1) F (t, x) is nonempty, closed and convex for all (t, x) ∈ I ×R,
(2) F (t, .) is lower semicontinuous from R into R,
(3) F (., .) is measurable,
Then there exists a measurable selection for F (., x(.)). This selection is inte-
grable if

|F (t, x)| ≤ a(t) + b(t)|x|
for each t ∈ (0, 1) and x ∈ R, where a(.) ∈ L1(0, 1) and b(.) is measurable and
bounded.
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Theorem 3 [9] ”Kolmogorov Compactness Criterion”
Let Ω ⊆ Lp(0, 1), 1 ≤ p ≤ ∞. If
(i) Ω is bounded in Lp(0, 1), and
(ii) xh → x as h → 0 uniformly with respect to x ∈ Ω, then Ω is relatively
compact in Lp(0, 1), where

xh(t) =
1

h

∫ t+h

t

x(s)ds

Theorem 4 [10] ”Schauder fixed point theorem”
Let Q be a convex subset of a Banach space X, T : Q → Q be a compact,
continuous map. Then T has at least one fixed point in Q.

3 Existence of integrable solution

In this section, we present our main result by proving the existence of at least
one integrable solution x ∈ L1[0, T ] of the functional integral inclusion (1).

3.1 Coupled system approach

Let F : I ×R→ R satisfy the following assumptions:
(H1) The set F (t, x) is nonempty, closed and convex for all (t, x) ∈ I ×R.
(H2) F (t, .) is upper semicontinuous in x ∈ R for each t ∈ I.
(H3) F (., x) is measurable in t ∈ I for each x ∈ R.
(H4) There exists an integrable function h(t) ∈ L1[I, R] such that

|F (t, x)| = sup{|f | : f ∈ F (t, x)} ≤ h(t)

for almost all t ∈ [0, T ].
(H5) The function g : [0, T ]×R→ R satisfies Caratheodory condition, i.e g(t, .)
is continuous in x ∈ R for each t ∈ I and g(., x) is measurable in t ∈ I for each
x ∈ R.
(H6)There exists an integrable function a ∈ L1[I, R] and a positive constant
b > 0 such that

|g(t, x)| ≤ |a(t)|+ b|x|, ∀ t ∈ I, x ∈ R.

(H7) There exists β > 0 such that m
′
(t) > β, for every t ∈ I.

For the application of these assumptions (see [2], [4], [6], [9] and [15]).
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Now, let

y(t) =

∫ t

0

g(s, x(m(s)))ds, t ∈ [0, T ].

Then the nonlinear functional integral inclusion (1) can written in the form of
the coupled system of functional inclusion and functional integral equation.

x(t) ∈ F (t, y(t)), t ∈ [0, T ] (2)

y(t) =

∫ t

0

g(s, x(m(s))ds, t ∈ [0, T ] (3)

Definition 5 Let X be the class of all ordered pairs (u, v), u, v ∈ C[I, R], with
the norm ‖(u, v)‖X = ‖u‖+ ‖v‖.

Definition 6 By a solution of the coupled system (2), (3) we mean the func-
tions x, y ∈ L1[0, T ] satisfying (2), (3).

Now for the existence of integrable solution U = (x, y), x, y ∈ L1[0, T ] of the
coupled system (2), (3) we have the following theorem.

Theorem 5 Let the assumptions (H1)-(H7) be satisfied. Then there exists at
least one integrable solution U = (x, y), x, y ∈ L1[0, T ] of the coupled system
(2), (3).

Proof. Let the set-valued function F satisfy the assumptions (H1)-(H4), then
from Theorem 2.1, we deduce that there exists a selection f ∈ F , this selection
is L1-Caratheodory,
i.e. f satisfy the following assumptions:
(I) f(t, .) is continuous in x ∈ R for each t ∈ I.
(II) f(., x) is measurable in t ∈ I for each x ∈ R.
(III) There exists an integrable function h(t) ∈ L1[I, R] such that

|f(t, x)| ≤ h(t)

for almost all t ∈ [0, T ].
And

x(t) = f(t, y(t)), t ∈ [0, T ] (4)

Now consider the coupled system (3), (4).
Let

U(t) = (x(t), y(t)) = (f(t, y(t)),

∫ t

0

g(s, x(m(s)))ds), t ∈ [0, T ]
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.
Let A be any operator defined by

AU(t) = A(x(t), y(t)) = (A1y(t), A2x(t))

where
A1y(t) = f(t, y(t)), t ∈ [0, T ]

A2x(t) =

∫ t

0

g(s, x(m(s)))ds, t ∈ [0, T ]

Let the set Qr be defined as

Qr = {U = (x, y) ∈ X : x, y ∈ L1[I, R], ‖U‖ ≤ r}, r = ‖h‖L1+‖a‖L1T+
b

β
‖x‖L1T.

Then, it is clear that it is nonempty, bounded, closed and convex set.
Let U ∈ Qr be an arbitrary ordered pair, then

|A1y(t)| = |f(t, y(t))|, t ∈ [0, T ]

from the properties (1) and (3), of Definition 2.3, and by integration, we get∫ t

0

|A1y(s)|ds =

∫ t

0

|f(s, y(s))|ds

≤
∫ t

0

h(s)ds.

Then
‖A1y‖L1 ≤ ‖h‖L1.

And

|A2x(t)| = |
∫ t

0

g(s, x(m(s)))ds|

≤
∫ t

0

|g(s, x(m(s)))|ds

≤
∫ t

0

{|a(s)|+ b|x(m(s))|}ds

≤
∫ t

0

|a(s)|ds+ b

∫ t

0

|x(m(s))|ds
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taking m(s) = u and ds = du
m′(s)

, then

|A2x(t)| ≤
∫ t

0

|a(s)|ds+ b

∫ m(t)

m(0)

|x(u)| du
m′(s)

≤
∫ t

0

|a(s)|ds+
b

β

∫ t

0

|x(u)|du

≤ ‖a‖L1 +
b

β
‖x‖L1

taking integration over t, we get

‖A2x‖L1 ≤ ‖a‖L1T +
b

β
‖x‖L1T.

Now

‖AU‖X = ‖A1y‖+ ‖A2x‖

≤ ‖h‖L1 + ‖a‖L1T +
b

β
‖x‖L1T = r.

Hence AU ∈ Qr, which proves that AQr ⊂ Qr, i.e. A : Qr → Qr.
Now, let us observe that the assumptions (I)-(III) imply that A1 is continuous
on the set Qr (see [3]), and from the assumption (H5)-(H6) the operator A2 is
continuous on the set Qr (see [4] and [15]).
Hence we deduce that the operator A is continuous on Qr.
Finally, we will show that A is compact, to prove this we will apply Kolmogorov
compactness criterion.
Let Ω be a subset of the set Qr, then (AΩ) is bounded in L1, i.e. condition (i)
of theorem 2.3 is satisfied. It remains to show that (AU)h → (AU) in L1 as
h→ 0 uniformly with respect to AU ∈ Ω, we have the following.
Let U ∈ Ω ⊂ Qr, that is y, x ∈ Ω ⊂ Qr, {A1Ω}, {A2Ω} ⊂ Qr ⊂ L1[0, T ], then

A1yh(t)− A1y(t) =
1

h

∫ t+h

t

A1y(s)ds− A1y(t)

=
1

h

∫ t+h

t

(A1y(s)− A1y(t))ds

and

|A1yh(t)− A1y(t)| ≤ 1

h

∫ t+h

t

|A1y(s)− A1y(t)|ds
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then

‖A1yh − A1y‖L1 =

∫ T

0

|A1yh(t)− A1y(t)|dt

≤
∫ T

0

1

h

∫ t+h

t

|A1y(s)− A1y(t)|dsdt

≤
∫ T

0

1

h

∫ t+h

t

|f(s, y(s))− f(t, y(t))|dsdt

since f ∈ L1[0, T ], then

1

h

∫ t+h

t

|f(s, y(s))− f(t, y(t))|ds→ 0 as h→ 0 for t ∈ I.

Therefore
(A1y)h → (A1y), uniformly as h→ 0

And

|A2xh(t)− A2x(t)| ≤ 1

h

∫ t+h

t

|A2x(s)− A2x(t)|ds

then

‖A2xh − A2x‖L1 =

∫ T

0

|A2xh(t)− A2x(t)|dt

≤
∫ T

0

1

h

∫ t+h

t

|A2x(s)− A2x(t)|dsdt

≤
∫ T

0

1

h

∫ t+h

t

|
∫ s

0

g(v, x(m(v)))dv −
∫ t

0

g(w, x(m(w)))dw|dsdt

since g ∈ L1[0, T ], then

1

h

∫ t+h

t

|
∫ s

0

g(v, x(m(v)))dv−
∫ t

0

g(w, x(m(w)))dw|ds→ 0 as h→ 0 for t ∈ I.

Therefore
(A2x)h → (A2x), uniformly as h→ 0.

Hence
(AU)h → (AU), uniformly as h→ 0.

Then, by theorem 2.3, we have that (AΩ) is relatively compact, that is A is
compact operator.
According to Schauder fixed point theorem, there exists at least one fixed point
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U ∈ Qr, and then the system (3), (4) and consequently the system (2), (3) has
at least one integrable solution U = (x, y) ∈ Qr, x, y ∈ L1[0, T ].
Hence, there exists at least one integrable solution of the functional integral
inclusion (1).

3.2 Functional integral inclusion approach

Consider now the functional integral inclusion (1) under the assumptions (H5)-
(H7) and the following assumptions
(I) The set F (t, x) is nonempty, closed and convex for all (t, x) ∈ I ×R,
(II) F (t, .) is lower semicontinuous from R into R,
(III) F (., .) is measurable in t ∈ I for each x ∈ R.
(IV) There exists an integrable real function a1 ∈ L1[I, R] and a measurable
bounded function b1, such that

|F (t, x)| ≤ |a1(t)|+ b1(t)|x|, ∀ t ∈ I, x ∈ R.

Definition 7 By a solution of the functional integral inclusion (1) we mean
the function x(.) ∈ L1[0, T ] satisfying (1).

Now for the existence of integrable solution x ∈ L1[0, T ] of the functional inte-
gral inclusion (1) we have the following theorem.

Theorem 6 Let the assumptions (I)-(IV) and (H5)-(H7) be satisfied, then
there exists at least one integrable solution x ∈ L1[0, T ] of the functional in-
tegral inclusion (1).

Proof. Let the set-valued function F satisfy the assumptions (I)-(IV), then
from theorem 2.2, we deduce that there exists a selection f ∈ F, f : I×R→ R,
which satisfies:
(i) f(t, .) is continuous in x ∈ R for each t ∈ I.
(ii) f(., x) is measurable in t ∈ I for each x ∈ R.
(iii) There exists an integrable real function a1 ∈ L1[I, R] and a measurable
bounded function b1, such that

|f(t, x)| ≤ |a1(t)|+ b1(t)|x|, ∀ t ∈ I, x ∈ R.

And f satisfy the functional integral equation

x(t) = f(t,

∫ t

0

g(s, x(m(s)))ds), t ∈ I (5)
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Define the operator A by

Ax(t) = f(t,

∫ t

0

g(s, x(m(s)))ds), t ∈ I (6)

Let the set Qr be defined as

Qr = {x ∈ R : ‖x‖L1 ≤ r}; r =
‖a1‖L1 + b1‖a‖L1T

1− b1b
β T

.

Then, it is clear that it is nonempty, bounded, closed and convex set.
Let x ∈ Qr be an arbitrary element, then

|Ax(t)| = |f(t,

∫ t

0

g(s, x(m(s)))ds)|

≤ |a1(t)|+ |b1(t)||
∫ t

0

g(s, x(m(s)))ds|

≤ |a1(t)|+ |b1(t)|
∫ t

0

|g(s, x(m(s)))|ds

≤ |a1(t)|+ |b1(t)|
∫ t

0

{|a(s)|+ b|x(m(s))|}ds

≤ |a1(t)|+ |b1(t)|
∫ t

0

|a(s)|ds+ |b1(t)|b
∫ t

0

|x(m(s))|ds

taking m(s) = u and ds = du
m′(s) , then

|Ax(t)| ≤ |a1(t)|+ |b1(t)|
∫ t

0

|a(s)|ds+ |b1(t)b|
∫ m(t)

m(0)

|x(u)| du
m′(s)

≤ |a1(t)|+ |b1(t)|
∫ t

0

|a(s)|ds+
|b1(t)|b
β

∫ t

0

|x(u)|du

≤ |a1(t)|+ |b1(t)|
∫ t

0

|a(s)|ds+
|b1(t)|b
β

∫ t

0

|x(u)|du

≤ |a1(t)|+ |b1(t)|‖a‖L1 +
|b1(t)|b
β
‖x‖L1.
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Taking integration over t, we get

‖Ax‖L1 ≤
∫ t

0

|a1(s)|ds+

∫ t

0

|b1(s)|‖a‖L1

+
b

β

∫ t

0

|b1(s)|‖x‖L1

≤ ‖a1‖L1 + b1‖a‖L1T +
b1b

β
‖x‖L1T

≤ ‖a1‖L1 + b1‖a‖L1T +
b1b

β
rT = r,

then
‖Ax‖L1 ≤ r.

Which prove that A : Qr → Qr.

Now, we will show that A is continuous.
To achieve this goal we will apply the property of continuity of the function f

condition (i). Let {xn} ⊂ Qr, xn converges to x0 in Qr.
Now

|g(t, xn(m(t)))| ≤ |a(t)|+ b|xn(m(t))|
≤ |a(t)|+ br,

and xn → x0, then g(t, xn)→ g(t, x0).
Then applying Lebesgue dominated convergence theorem

Axn(t) = f(t,

∫ t

0

g(s, xn(m(s)))ds) t ∈ I

Take limit for both sides, we have

lim
n→∞

Axn(t) = lim
n→∞

f(t,

∫ t

0

g(s, xn(m(s)))ds)

= f(t, lim
n→∞

∫ t

0

g(s, xn(m(s)))ds)

= f(t,

∫ t

0

lim
n→∞

g(s, xn(m(s)))ds)

= f(t,

∫ t

0

g(s, x0(m(s)))ds)

= Ax0.
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Hence A is continuous.
Finally, we will show that A is compact, to prove this we will apply Kolmogorov
compactness criterion.
Let Ω be a subset of the set Qr, then A(Ω) is bounded in L1, i.e. condition (i)
of theorem 2.3 is satisfied.
It remains to show that (Ax)h → Ax in L1 as h→ 0 uniformly with respect to
Ax ∈ Ω. we have the following:
Let x ∈ Ω ⊂ Qr, {AΩ} ⊂ Qr ⊂ L1[o, T ], then

Axh(t)− Ax(t) =
1

h

∫ t+h

t

Ax(s)ds− Ax(t)

=
1

h

∫ t+h

t

(Ax(s)− Ax(t))ds

and

|Axh(t)− Ax(t)| =
1

h

∫ t+h

t

|Ax(s)− Ax(t)|ds.

Then

‖Axh − Ax‖L1 =

∫ T

0

|Axh(t)− Ax(t)|dt

≤
∫ T

0

1

h

∫ t+h

t

|Ax(s)− Ax(t)|dsdt.

Since f ∈ L1[0, T ], then

1

h

∫ t+h

t

|Ax(s)− Ax(t)|ds→ 0 as h→ 0.

Therefore, by theorem 2.3 we have that A(Ω) is relatively compact, that is A
is compact operator.
According to Schauder fixed point theorem, there exists at least one integrable
solution of the functional integral equation (5), hence, there exists at least one
integrable solution of the functional integral inclusion (1).
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