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Abstract 

This article deals with anti-synchronization between different hyperchaotic systems such as Lu system 

and Newton-Leipnik system; and Newton-Leipnik system and Rossler system using adaptive control 

method. Based on Lyapunov stability theory, the anti synchronization between a pair of hyperchaotic 

systems with fully unknown parameters are derived. An adaptive control law and a parameter update 

rule for unknown parameters are designed such that the hyperchaotic Newton-Leipnik system is 

controlled to be the hyperchaotic Lu system and hyperchaotic Rossler system is controlled to be the 

hyperchaotic Newton-Leipnik system. Numerical simulation results which are carried out using 

MATLAB, show that the adaptive control method is effective, easy to implement and reliable for anti-

synchronizing of the considered hyperchaotic systems.  

 

Keywords: Hyperchaos, Lu system, Newton-Leipnik system, Rossler system, Anti-synchronization, 

Adaptive control. 

1. Introduction 

In the past, modeling was restricted mainly to linear systems which would have been tackled using 

various analytical methods. But with the advent of powerful computers and related softwares, it is 
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made possible to tackle nonlinear systems. Nonlinearity is the heart of dynamical systems is 

deterministic and changes with time. The applications of dynamical systems have nowadays spread to 

a wide spectrum of disciplines including science, engineering, biology, sociology etc. Study and 

analysis of nonlinear dynamics have gained immense popularity during the last few decades due to its 

important feature of any real-time dynamical system. In nonlinear systems, a small change in a 

parameter can lead to sudden and dramatic changes in both the qualitative and quantitative behavior of 

the system. Sometimes these may give rise to the complex behavior called chaos. In dynamical 

systems, the term chaos is applied to deterministic systems that are aperiodic and that exhibit sensitive 

dependence on initial conditions and parameter variations. Sensitivity means that a small change in the 

initial state will lead to progressively larger changes in later system states. The presence of chaos in 

physical systems has been extensively demonstrated and is very common. The main property of 

chaotic dynamics is its critical sensitivity to initial conditions, which is responsible for initially 

neighboring trajectories separating from each other exponentially in the course of time. The concept of 

chaos has been used to explain how systems that should be subject to known laws of physics may be 

predictable in the short term but are apparently random on a longer time scale. 

A Hyperchaotic system is usually classified as a chaotic system with more than one positive Lyapunov 

exponent. Though the positive largest Lyapunov exponent does not indicate chaos as the negative 

largest Lyapunov exponent does not indicate stability [1], it is a fact that with the advent of computers 

and the increasing facility to perform a number of experiments for calculating characteristic exponents 

for the sake construction of various numerical characteristics attractors, the researchers working in 

dynamical systems consider that the instability of the solutions of the system occurs at this largest 

positive characteristic exponent [2]. Combine with one null exponent along the flow and one negative 

exponent to ensure the boundness of the solution. It means that hyperchaotic systems have more 

complex dynamical behaviours which can be used to improve the security of a chaotic communication 

system. Firstly, Hyperchaotic system introduced by Rossler [3] in 1979. Controlling synchronization 

of hyperchaotic system have attracted a great deal of attention from various fields and become a 

challenging work. 

Since the idea of synchronizing chaotic systems was introduced by Pecora and Carroll [4] in 1990, 

they showed that it is possible to synchronize chaotic systems through a simple coupling. 

Synchronization of chaotic dynamical systems has been intensively studied by many researchers [5-8] 

and has attracted a great deal of interest in various field due to its important applications in ecological 

system [9], physical system [10], chemical system [11], modeling brain activity, system identification, 

pattern recognition phenomena and secure communications [12-14] etc. 

In the recent years several different types of synchronization schemes have been proposed, such as 

time delay feedback approach [15], adaptive control [16-23], active control [24], back-stepping design 
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method [25] and sliding mode control [26] etc, have been successfully applied to chaos 

synchronization. The concept of synchronization can be extended to generalized synchronization [27], 

complete synchronization [28], lag synchronization [29], phase synchronization [30], anti-

synchronization [31], projective synchronization [32], modified projective synchronization [33] and 

hybrid synchronization [34] etc. 

The control of chaotic systems is to design state feedback control laws that stabilizes the chaotic 

systems around the unstable equilibrium points. Adaptive control technique is used when the system 

parameters are unknown.  In an adaptive method control law and a parameter update rule for unknown 

parameters are designed in such a way that the hyperchaotic response system is controlled to be the 

hyperchaotic master system. The idea of anti-synchronization is observed in periodic hyperchaotic 

systems, which is a phenomenon in which the state variables of synchronized systems with different 

initial values have the same absolute values but opposite signs. The sums of two signals are expected 

to converge to zero when anti-synchronization occurs. 

Most of the studies in synchronization involve two identical /non-identical systems under the 

hypotheses that all the parameters of the master and slave systems are known a prior, a controller is 

constructed with the known parameters and systems are free from external perturbations. But in 

practical situations the uncertainties like parameter mismatch and external disturbances may destroy 

the synchronization and even break it. So it is necessary to design an adaptive controller and parameter 

update law for control and synchronization of chaotic systems consisting of unknown parameters to get 

rid of internal and external noises. From the literature survey, it is seen that with the development of 

nonlinear control theory, nowadays adaptive anti-synchronization method has become very much 

effective to control and synchronize of chaotic and hyperchaotic systems both with unknown 

parameters and external disturbances. This has motivated the authors to do significant study of the 

adaptive anti-synchronization between two pair of two hyperchaotic systems all having unknown 

parameters. 

Recently, many authors have studied the control and synchronization for the chaotic and hyperchaotic 

systems. Zhang et al. [16] studied adaptive synchronization between two different chaotic systems 

with unknown parameters. Hu et al. [17] proposed adaptive control for anti-synchronization of Chua’s 

chaotic system. In 2008, Salarieh and Shahrokhi [18] investigated adaptive synchronization of two 

different chaotic systems with time varying unknown parameters. In 2008, Wu et al. [19] proposed a 

scheme to synchronize hyperchaotic Chen system and generalized Henon-Heiles System of different 

structures via adaptive control. Zhang and Zhu [20] proposed anti-synchronization of two different 

hyperchaotic systems via active and adaptive control methods. Mossa et al. [21] investigated adaptive 

anti-synchronization of chaotic systems with fully unknown parameters in 2010. Mossa et al. [22] have 

investigated adaptive anti-synchronization of two identical and different hyperchaotic systems with 
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uncertain parameters in 2010.  In 2011, Li et al. [23] proposed Complete (anti-)synchronization of 

chaotic systems with fully uncertain parameters by adaptive  control.  

In this article, the authors have studied adaptive anti-synchronization between different hyperchaotic 

systems using adaptive control and parameter update rule. This article has been organized as follows. 

In Section 2, adaptive anti-synchronization method is discussed. In section 3, the system descriptions 

of Lu, Newton-Leipnik and Rossler systems are given. In Sections 4 and 5, adaptive anti-

synchronization between Lu and Newton-Leipnik hyperchaotic systems; and Newton-Leipnik and 

Rossler hyperchaotic systems are discussed respectively. In Section 6, the conclusion of the work is 

presented.  

2. Adaptive anti-synchronization 

Consider the drive hyperchaotic system in the form of  

,)()( xfxFx                                                                                                                           (1) 

where nRx is the state vector of the system, mR is the unknown parameter vector of the system, 

non linear term )(xF  is an 1n matrix, )(xf  is an mn  matrix and the elements )(xf ij in the matrix 

)(xf satisfy Lxf ij )( for .nRx On the other hand, the response system is assumed as 

),()()( txgxGy                                                                                                                 (2) 

where nRy is the state vector of the system, qR is the unknown parameter vector of the system, 

non linear term )(xG  is an 1n matrix, )(xg  is an qn  matrix, nR  is control input vector, and 

the elements )(xg ij in the matrix )(xg satisfy Lxgij )( for .nRy  

Let xye  be the anti-synchronization of the error dynamical system. The purpose of hyperchaos 

anti-synchronization is how to design the controller parameter )(t , such that,
 

,0),(),(lim)(lim 00 


xtxytyte
tt

                                                                                           

where . represents the Euclidean norm.  

We add equation (2) to equation (1) and get 

),()()()()( txgxGxfxFe                                                                                        (3) 

The parameters belonging to the drive and the response systems are always unknown. Therefore, by 

using the adaptive control and the parameter update rule techniques, the adaptive nonlinear controller 

can be selected as 

,ˆ)()(ˆ)()( keygyGxfxF                                                                                        (4) 

and adaptive laws of parameters are taken as 

http://www.springerlink.com/content/?Author=Xian-Feng+Li
http://www.springerlink.com/content/r136598144p072gh/
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                                                                                                                                (5) 

then the response system (2) can anti-synchronize the drive system (1) globally and asymptotically, 

where k > 0 is a constant, ̂   and ̂   are, respectively, estimations of the unknown parameters  and

,  where and   are constants. 

Assume a positive Lyapunov function ],[
2

1
 TTT eeV  where ).ˆ(),ˆ(    

With the choice of the adaptive control law and parameter update rule above for unknown parameters 

are designed, the time derivative of V  along the solution in equation (3) will be smaller than zero. In 

other words, the error vector will approach to zero as time goes infinite and from Lyapunov stability 

theory [35], the states of the slave system and projected master system are asymptotically anti-

synchronized. 

3. Systems’ descriptions 

3.1 Lu system 

The hyperchaotic Lu system [36] is described by 

,

)(

wdzxwD

zbyxzD

yczx yD

wxyax=D

t

t

t

t









                                                                                                                         (6)  

where zyx ,,  and w  are state variables, and cba ,,  and d  are real constants. When 

dcba and20,3,36  take different values, system performance different dynamics. When 

,46.003.1  d  system has a periodic orbit; when ,35.046.0  d system has chaotic attractor 

and when ,30.135.0  d there are two index greater than zero system showing hyperchaotic 

attractor. The hyperchaotic attractors in ,zyx  wyx  , wzx   and  wzy   spaces are 

depicted through Fig. 1. 

 

 

 

 

 

 

 

 

 

 

 

 



Differential Equations and Control Processes, № 4, 2012  

 

Electronic Journal. http://www.math.spbu.ru/diffjournal  97 

(a)       (b) 

  
(c) (d) 

  
Fig.1. Phase portraits of hyperchaotic Lu attractor in (a) x-y-z space (b) x-y-w space (c) x-z-w space 

and (d) y-z-w space. 

 

3.2 Newton-Leipnik system 

The hyperchaotic Newton-Leipnik system [37] is described by 

,

5

54.0

10

wdzxcwD

yxzbzD

zxyx yD

wzyyxax=D

t

t

t

t









                                                                                                           

(7) 

where zyx ,,  and w  are state variables, and cba ,,  and d  are real constants. At 

,01.08.0,175.0,4.0  dandcba  system has chaotic behavior. The chaotic attractors of 

hyperchaotic Newton-Leipnik system are depicted through Fig. 2. 
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(a) (b) 

  
(c) (d) 

  
Fig.2. Phase portraits of hyperchaotic Newton-Leipnik attractor in (a) x-y-z space (b) x-y-w space (c) 

x-z-w space and (d) y-z-w space. 

 

3.3 Rossler system 

The hyperchaotic Rossler system [38] is described by 

,wszrwD

zxqzD

wypxyD

zyx=D

t

t

t

t









                                                                                                                          

(8) 

where wzyx ,,,  are state variables and srqp ,,, are the real parameters. As and when 

05.0,5.0,3,25.0  srqp , the dynamic behavior of the system is hyperchaotic. The hyperchaotic 

attractors in ,zyx  ,wyx  wzx   and wzy   spaces are depicted through Fig. 3. 
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(a) (b) 

  
(c) (d) 

  
Fig.3. Phase portraits of hyperchaotic Rossler attractor in (a) x-y-z space (b) x-y-w space (c) x-z-w 

space and (d) y-z-w space. 

 

4. Adaptive anti-synchronization between Lu and Newton-Leipnik hyperchaotic systems 

In this section, the anti-synchronization between Lu hyperchaotic system (9) and hyperchaotic 

Newton-Leipnik system (10) is studied, we assume that Lu system with four unknown parameters 

drives the Newton-Leipnik system with four unknown parameters.  

The drive system is given by 

,

)(
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                                                                                                                     (9) 

The response system is described by 
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                                                                                       (10) 
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where Tttttt )](),(),(),([)( 4321      are  four control functions to be designed. In order to 

determine the control functions to realize the anti-synchronization between systems (9) and (10), we 

add equation (10) to (9) and obtain 

),(

)(5

)(54.0

)(10)(

42221114

32221113

222221112

1222221111

twszxrwdzxeD

tyxzqzbyxeD

tzxyxyczx eD

twzyyxpwxya=eD

t

t

t

t

















                                                               (11) 

where ,121 xxe  ,122 yye  ,123 zze  .124 wwe  Our main aim is to find proper control 

functions )4,3,2,1(),( iti  and parameter update rule, such that system (10) globally anti-

synchronizes the system (9) asymptotically , i.e.,
 

.0)(lim 


te
t

 For two systems  (9) and (10) without 

controls ),4,3,2,1,0)((  iti if the initial condition ))0(),0(),0(),0(( 1111 wzyx )),0(),0(),0(),0(( 2222 wzyx        

then the trajectories of two systems will quickly separate each other and become irrelevant. However, 

when controls are applied, the two systems will approach for anti-synchronization for any initial 

conditions by appropriate control functions. With this idea, we propose the following adaptive control 

law for system equation (10) as 

432221114

332221113

2222221112

11222221111

ˆˆˆ)(

5ˆˆ)(

54.0ˆ)(

10ˆ)(ˆ)(

ekwszxrwdzx=t

ekyxzqzbyx=t

ekzxyxyczx=t

ekwzyyxpwxya=t

















                                                             (12) 

and parameters update rule for seven unknown parameters ,a ,b ,c ,d ,p  ,q ,r s are 












,ˆ,ˆ,ˆ,ˆ

,ˆ,ˆ,ˆ,)(ˆ

424223212

412131111

ewsezx=rez=qex=p

ewdey=cez=bexy=a





                                                                         

(13) 

where )4,3,2,1( iki are positive real scalars and ,â ,b̂ ,ĉ ,d̂ ,p̂ q̂ ,r̂ ŝ   are estimates values of ,a ,b ,c

,d ,p  ,q ,r s respectively. 

Theorem 1. For any initial conditions, the two systems (9) and (10) are globally asymptotically anti-

synchronized by adaptive control law (12) and parameter update rule (13). 

Proof.  Equation (12) with equation (11) yields the error dynamics as  

,

)(

4422214

331213

2212

112111

ekwszxrwdeD

ekzqzbeD

ekyc eD

ekxpxya=eD

t
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t

t









                                                                                               (14) 

where  ,âaa   ,b̂bb   ,ĉcc   ,d̂dd  ,p̂pp   ,q̂qq   ,r̂rr  .ŝss   



Differential Equations and Control Processes, № 4, 2012  

 

Electronic Journal. http://www.math.spbu.ru/diffjournal  101 

Consider the following Lyapunov function 

).(
2

1
)( 22222222 srqpdcbaeetV T                                                                  (15) 

The time derivative of V  along the solution of error dynamical systems gives  
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where  
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Since V  is negative semi definite, then .ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,,,, 4321 Lsrqpdcbaeeee From error system (14), 

we have Leeee 4321 ,,,  . Since ePetV T)(  and P  is a positive definite matrix, then we have 

),0()()0()(

00

2

0

min VtVVdtVdtePedteP

tt
T

t

                                                              (17) 

where, )(min p is the minimum eigenvalue of positive-definite matrix P . Thus .,,, 24321 Leeee   

According to the Barbalats lemma, we have 0)(),(),(),( 4321 tetetete as t .Therefore, response 

system (10) can globally anti-synchronize the drive system (9) asymptotically. This completes the 

proof. 

4.1 Numerical simulation and results 

We verify and demonstrate the effectiveness of the proposed method, and discuss the simulation result 

for the anti-synchronization behavior of two different hyperchaotic Lu and Newton-Leipnik systems. 

In numerical simulations, the parameters of hyperchaotic Lu and Newton-Leipnik systems are taken as 

)1,20,3,36(),,,( dcba  and )01.0,8.0,175.0,4.0(),,,( srqp  respectively, such that both the 

systems exhibit hyperchaotic behavior. The initial values of the drive and response systems are taken 

as )2,1,4,3())0(),0(),0(),0((( 1111 wzyx  and ( )3,2,2,4())0(),0(),0(),0(( 2222 wzyx ) 
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respectively. Thus, the initial errors will be )1,1,2,1())0(),0(),0(),0(( 4321 eeee . The fourth order 

Range-Kutta method is used to solve the two systems of equations (9) and (10) with time step size is 

taken as 0.001. We assume that control inputs ).1,1,1(),,( 321 kkk  Anti-synchronization of systems 

(9) and (10) via adaptive control laws (12) and parameter update rule (13) with the initial estimated 

parameters )6,4,1,5())0(ˆ),0(ˆ),0(ˆ),0(ˆ( dcba  and 2)4,1,(2, ))0(ˆ),0(ˆ),0(ˆ),0(ˆ( srqp are 

shown in Fig.4 and Fig.5. Fig.4 shows the state response and also the anti-synchronization error 

system (14) converges to zero. Fig.5 shows that the estimated values ))(ˆ),(ˆ),(ˆ),(ˆ( tdtctbta and 

 ))(ˆ),(ˆ),(ˆ),(ˆ( tstrtqtp of unknown parameters of the systems (9) and (10) converge to 

)1,20,3,36(),,,( dcba and )01.0,8.0,175.0,4.0(),,,( srqp respectively as .t   
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Fig.4. Adaptive anti-synchronization of drive system (9) and response system (10): (a) between 21 xx 

signals (b) between 
21 yy  signals (c) between 

21 zz  signals (d) between 
21 ww  signals and (e) The 

error functions ),(),( 21 tete )(3 te  and )(4 te of the hyperchaotic Lu and Newton-Leipnik systems under 

the controller (12) and the parameters update law (13) with time t. 

 

 

Fig.5. Estimate values of parameters dcba ,,, and srqp ,,,  of hyperchaotic Lu and Newton-Leipnik 

systems with parameter update rule (13). 
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The response system is described by 
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where Tttttt )](),(),(),([)( 4321   are  four control functions to be designed. In order to 

determine the control functions to realize the anti-synchronization between systems (18) and (19), we 

add equation (19) to (18), 
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                                                                      (20) 

where ,121 xxe  ,122 yye  ,123 zze  .124 wwe  Our main aim is to find proper control 

functions )4,3,2,1(),( iti  and parameter update rule, such that system (19) globally anti-

synchronizes system (18) asymptotically , i.e.
 

.0)(lim 


te
t

 For two systems  (18) and (19) without 

controls ),4,3,2,1,0)((  iti  if the initial condition )),0(),0(),0(),0(( 1111 wzyx  

)),0(),0(),0(),0(( 2222 wzyx then the trajectories of two systems will quickly separate each other and 

become irrelevant. However, when controls are applied, the two systems will approach anti-

synchronization for any initial conditions by appropriate control functions. With this idea, we propose 

the following adaptive control law for system equation (19) 
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                                                               (21) 

and parameters update rule for seven unknown parameters ,a ,b ,c ,d ,p  ,q ,r s  
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                                                                              (22)

 

where )4,3,2,1( iki are positive real scalars and ,â ,b̂ ,ĉ ,d̂ ,p̂ q̂ ,r̂ ŝ   are estimates values of ,a ,b ,c

,d ,p  ,q r s respectively. 

Theorem 2. For any initial conditions, the two systems (18) and (19) are globally asymptotically anti-

synchronized by adaptive control law (21) and parameter update rule (22). 

Proof.  Equation (21) with equation (20) yields the error dynamics as  
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                                                                                    (23) 

where  ,âaa   ,b̂bb   ,ĉcc   ,d̂dd  ,p̂pp   ,q̂qq   ,r̂rr  sss ˆ  
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Consider the following Lyapunov function 

).(
2

1
)( 22222222 srqpdcbaeetV T                                                                  (24) 

The time derivative of V  along the solution of error dynamical systems gives that 
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where  
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Since V  is negative semi definite. Then .ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,,,, 4321 Lsrqpdcbaeeee  From error system 

(23), we have Leeee 4321 ,,,   Since ePetV T)(  and P  is a positive definite matrix, then we have 

),0()()0()(

00

2

0

min VtVVdtVdtePedteP

tt
T

t

                                                              (26) 

where, )(min p is the minimum eigenvalue of positive-definite matrix P . Thus .,,, 24321 Leeee   

According to the Barbalats lemma, we have 0)(),(),(),( 4321 tetetete as t .Therefore, 

response system (19) can globally anti-synchronized the drive system (18) asymptotically. This 

completes the proof. 

5.1 Numerical simulation and results 

We verify and demonstrate the effectiveness of the proposed method, and discuss the simulation result 

for the anti-synchronization behavior of two different hyperchaotic Newton-Leipnik and Rossler 

systems. In numerical simulations, the parameters of hyperchaotic Newton-Leipnik and Rossler 

systems are taken as )01.0,8.0,175.0,4.0(),,,( dcba and )05.0,5.0,3,25.0(),,,( srqp  

respectively, such that both the systems exhibit hyperchaotic behavior. The initial values of the drive 

and response systems are taken as )2,1,4,3())0(),0(),0(),0((( 1111 wzyx and

)3,2,2,4())0(),0(),0(),0(( 2222 wzyx  respectively. Thus, the initial errors will be
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)1,1,2,1())0(),0(),0(),0(( 4321 eeee . The fourth order Range-Kutta method is used to solve the 

two systems of equations (18) and (19) with time step size is taken as 0.001. We assume that control 

inputs ).1,1,1(),,( 321 kkk  Anti-synchronization of systems (18) and (19) via adaptive control laws 

(21) and parameter update rule (22) with the initial  estimated parameters ))0(ˆ),0(ˆ),0(ˆ),0(ˆ( dcba   

)6,4,1,5(   and 2)4,1,(2, ))0(ˆ),0(ˆ),0(ˆ),0(ˆ( srqp  are shown in Fig.6 and Fig.7. Fig.6 shows the 

state response and also the anti-synchronization error system (23) converges to zero. Fig.7 shows that 

the estimated values ))(ˆ),(ˆ),(ˆ),(ˆ( tdtctbta and  ))(ˆ),(ˆ),(ˆ),(ˆ( tstrtqtp of unknown parameters of the 

systems (18) and (19) converge to )01.0,8.0,175.0,4.0(),,,( dcba and 

)05.0,5.0,3,25.0(),,,( srqp respectively as .t   
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Fig.6. Adaptive anti-synchronization of drive system (18) and response system (19): (a) between 

21 xx  signals (b) between 
21 yy  signals (c) between 

21 zz  signals (d) between 
21 ww  signals and 

(e) The error functions ),(),( 21 tete )(3 te  and )(4 te  of the hyperchaotic Newton-Leipnik and Rossler  

systems under the controller (21) and the parameters update law (22) with time t.       

 
Fig.7. Estimate values of parameters dcba ,,, and srqp ,,,  of hyperchaotic Newton-Leipnik and 

Rossler systems with parameter update rule (22). 

 

 

6. Conclusion 

The present investigation has attained accomplishment in two significant capacities.  First it is  

successfully carried out the study of anti-synchronization between Lu and Newton-Leipnik 

hyperchaotic systems, and Newton-Leipnik and Rossler hyperchaotic systems with uncertain 

parameters using adaptive control method. Adaptive controller and parameters update law are designed 

properly to anti-synchronize two different pair of hyperchaotic systems based on the Lyapunov 

stability theorem. The second one is the numerical simulation, which are carried out using Runge-

Kutta method calls for appreciation to show that the method is reliable and effective for adaptive anti-

synchronization of nonlinear dynamical systems. 
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