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Abstract

In this paper, we study the existence of solutions for a cooperative parabolic systems
governed by Schrödinger operator defined on Rn, then we discuss the optimal control of
boundary type for this systems.
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1 INTRODUCTION.

The linear quadratic optimal control problem described by a distributed param-
eter system has a variety of mechanical and technical sources and applications.
The fundamental class of optimal controls and its mathematical approaches can
be found in Lions (1971). The necessary and sufficient condition of optimality
for systems (n × n systems) governed by different types of partial differential
operators defined on spaces of functions of infinitely many variables and spaces
of infinite order are discussed in El-Saify & Bahaa (2001,2002a,b,2003,), Ko-
tarski (1989,1997),Kotarski & Bahaa( 2005), and Kotarski & El-saify & Bahaa(
2002a,b). Interest in the study of this class of operator is stimulated by prob-
lems in quantum field theory. Various optimization problems associated with
the optimal control of distributed parameter cooperative systems have been
studied by Gali & Serag (1994,1995), Fleckinger (1981,1994) and Fleckinger &
Serag (1995).

We consider the following cooperative parabolic systems :





∂y1

∂t
+ (−∆ + q)y1 = ay1 + by2 + f1 in Rn

∂y2

∂t
+ (−∆ + q)y2 = cy1 + dy2 + f2 in Rn

y1 = g1 as |x| → ∞
y2 = g2 as |x| → ∞,

y1(x, 0) = y1,0(x) in Rn

y2(x, 0) = y2,0(x) in Rn

(1)

where :

{
a, b, c&d are given numbers such that b, c > 0

in this case, we say that the system(1)is cooperative
(2)

q(x) is a positive function and tending to∞at infinity. (3)

In [14], Gali et al. proved the existence of optimal control for system like (1)
with q(x) = 0 and with positive weight function. Also they found the set of
inequalities which described the distributed control for systems (1) with q(x) =
0 and defined on bounded domain [13]. The case of semilinear cooperative
system with q(x) = 0 is discussed in [12].
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In [11] Fleckinger, obtained the necessary and sufficient conditions for hav-
ing the maximum principle and the existence of positive solutions for coopera-
tive system (1) which are:

{
a < λ(q), d < λ(q)

(λ(q)− a)(λ(q)− d) > bc,
(4)

where λ(q) is defined later.

Here, we shall use the same conditions (4) to prove the existence of the state
of our system (1); then using the theory of Lions [19], we study the existence of
boundary control for system (1). Our model in this problem is the Schrödinger
operator.

2 Operator equation.

To prove the existence of the state y = {y1, y2} of system (1), we state briefly
some results introduced in [10] concerning the eigenvalue problem:

{
(−∆ + q)φ = λ(q)φ in Rn

φ(x) → 0 as |x| → ∞, φ > 0.
(5)

The associated variational space is Vq(Rn), the completion of D(Rn), with
respect to the norm :

||y||q =

( ∫

Rn

|∆y|2 + q|y|2dx

) 1
2

.

Since the imbedding of Vq(Rn) into L2(Rn) is compact. Then the operator
(−∆+ q) considered as an operator in L2(Rn) is positive self-adjoint with com-
pact inverse. Hence its spectrum consists of an infinite sequence of positive
eigenvalue tending to infinity; moreover the smallest one which is called the
principle eigenvalue denoted by λ(q) is simple and is associated with an eigen-
function which does not change sign in Rn. It is characterized by:

λ(q)

∫

Rn

|y|2dx ≤
∫

Rn

|∆y|2 + q|y|2dx ∀y ∈ Vq(Rn). (6)

Now, to study our system (1) we have the embedding

Vq(Rn)× Vq(Rn) → L2(Rn)× L2(Rn)
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is continuous and compact then, we define a bilinear form

a : (Vq(Rn))2 × (Vq(Rn))2 → R

by

π((y1, y2), (φ1, φ2)) =
1

b

∫

Rn

[∆y1∆φ1 + qy1φ1]dx +
1

c

∫

Rn

[∆y2∆φ2 + qy2φ2]dx

−
∫

Rn

y1φ2dx− d

c

∫

Rn

y2φ2dx− a

b

∫

Rn

y1φ1dx−
∫

Rn

y2φ1dx.

(7)

It is easy to check that π is a continuous bilinear form; and then by lax Milgram
Lemma, we have the following theorem:

Theorem 2.1 For f1, f2 ∈ L2(∂Rn), there exists a unique solution y =
{y1, y2} ∈ (Vq(Rn))2 of system (1) if conditions (4) are satisfied.

Proof We choose m large enough such that a + m > 0 and d + m > 0 and
define on Vq(Rn) the equivalent norm

||y||2q,m =

∫

Rn

[|∆y|2 + (m + q)|y|2]dx

and we write (6) as:

π((y1, y2), (φ1, φ2)) =
1

b

∫

Rn

[∆y1∆φ1 + (q + m)y1φ1]dx− a + m

b

∫

Rn

y1φ1dx

−
∫

Rn

y2φ1dx +
1

c

∫

Rn

[∆y2∆φ2 + (q + m)y2φ2]dx

− d + m

c

∫

Rn

y2φ2dx−
∫

Rn

y1φ2dx.

Then

π((y1, y2), (y1, y2)) =
1

b

∫

Rn

[|∆y1|2 + (q + m)|y1|2]dx− a + m

b

∫

Rn

|y1|2dx

−
∫

Rn

y1y2dx +
1

c

∫

Rn

[|∆y2|2 + (q + m)|y2|2]dx

− d + m

c

∫

Rn

|y2|2dx−
∫

Rn

y1y2dx.
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By Cauchy Schwarz inequality, we have

π((y1, y2), (y1, y2)) ≥ 1

b

∫

Rn

[|∆y1|2 + (q + m)|y1|2]dx− a + m

b

∫

Rn

|y1|2dx

+
1

c

∫

Rn

[|∆y2|2 + (q + m)|y2|2]dx− d + m

c

∫

Rn

|y2|2dx

− 2

( ∫

Rn

|y1|2dx

) 1
2
( ∫

Rn

|y2|2dx

) 1
2

,

from (5), we deduce

π((y1, y2), (y1, y2)) ≥ 1

b

(
1− a + m

λ(q) + m

)
||y1||2q,m +

1

c

(
1− d + m

λ(q) + m

)
||y2||2q,m

2

λ + m
||y1||q,m||y2||q,m.

If (4) holds, then

π((y1, y2), (y1, y2)) ≥ C(||y1||2q,m + ||y2||2q,m)

which prove the coerciveness of the bilinear form π. Then for f1, f2 ∈ L2(Rn),
system (1) has a unique solution by Lax Milgram lemma.

3 Formulation of the control problem

The space L2(Γ)× L2(Γ) is the space of controls. For a control u = {u1, u2} ∈
(L2(Γ))2, the state y(u) = {y1(u), y2(u)} of the system is given by the solution
of 




∂y1(u)

∂t
+ (−∆ + q)y1(u) = ay1(u) + by2(u) + f1 in Rn

∂y2(u)

∂t
+ (−∆ + q)y2(u) = cy1(u) + dy2(u) + f2 in Rn

y1 = u1 as |x| → ∞
y2 = u2 as |x| → ∞,

(8)

The observation equation is given by z(u) = {z1(u), z2(u)} = y(u) =
{y1(u), y2(u)}. For given zd = {zd1, zd2} in (L2(Rn))2; the cost function is given
by:

J(v) =

∫

Rn

(y1(v)− zd1)
2 + (y2(v)− zd2)

2dx + (Nv, v)(L2(Γ))2 (9)
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where N ∈ L((L2(Γ))2, (L2(Γ))2) is hermitian positive definite operator:

(Nu, u) ≥ η||u||2(L2(Rn))2. (10)

The control problem then is to find

{
u = {u1, u2} ∈ Uad such that

J(u) ≤ J(v)
(11)

where Uad is a closed convex subset of(L2(Γ))2.

Under the given consideration, we may apply the theorem of Lions [19] to
obtain the following result:

Theorem 3.1 Assume that (7) and (10) hold. If the cost function is given by
(9), then there exists an optimal control u = {u1, u2}; Moreover it is character-
ized by the following equations and inequalities:





−∂p1(u)
∂t + (−∆ + q)p1(u)− ap2(u)− cp2(u) = y1(u)− z1d in Rn

−∂p2(u)
∂t + (−∆ + q)p2(u)− bp1(u)− dp2(u) = y2(u)− z2d in Rn

p1(u) = 0 p2(u) = 0 on Γ

∫

Γ

∂p1(u)

∂νA
(v1 − u1) +

∂p2(u)

∂νA
(v2 − u2)dΓ + (Nu, v − u)(L2(Γ))2 ≥ 0 ∀v ∈ Uad

together with (8), where p(u) = {p1(u), p2(u)} is the adjoint state.

Proof

The control u is characterized by

J ′(u)(v − u) ≥ 0 ∀u ∈ Uad

which is equivalent to

(y(u)− zd, y(v)− y(u))(L2(Rn))2 + (Nu, v − u)(L2(Γ))2 ≥ 0

i.e.,

(y1(u)−z1d, y1(v)−y1(u))L2(Rn)+(y2(u)−z2d, y2(v)−y2(u))L2(Rn)+(Nu, v−u)(L2(Γ))2 ≥ 0
(12)

Since (A∗P, Y ) = (P,AY ), where

A(φ = {φ1, φ2}) → Aφ = {(−∆ + q)φ1 − aφ1 − bφ2, (−∆ + q)φ2 − cφ1 − dφ2}
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for φ ∈ (V ′
q (Rn))2.

Then

(P,AY ) = (p1, (−∆ + q)y1 − ay1 − by2) + (p2, (−∆ + q)y2 − cy1 − dy2)

= (p1, (−∆ + q)y1)− a(p1, y1)− b(p1, y2) + (p2, (−∆ + q)y2)− c(p2, y1)

− d(p2, y2)

= ((−∆ + q)p1, y1)− a(p1, y1)− c(p2, y1) + ((−∆ + q)p2, y2)− d(p2, y2)

− b(p1, y2)

= ((−∆ + q)p1 − ap1 − cp2, y1) + ((−∆ + q)p2 − bp1 − dp2, y2)

= (A∗P, Y )

where

A∗(P = {p1, p2}) → {(−∆ + q)p1 − ap1 − cp2, (−∆ + q)p2 − bp1 − dp2}

where A∗ is the adjoint for A, P is the adjoint state. Then A∗P = Y (u)−Zd

can be written as

−∂p1(u)

∂t
+ (−∆ + q)p1 − ap1 − cp2 = y1(u)− z1d

−∂p2(u)

∂t
+ (−∆ + q)p2 − bp1 − dp2 = y2(u)− z2d

p1(u) = p2(u) = 0.

So (12) is equivalent to

(−∂p1(u)

∂t
+(−∆+q)p1−ap1−cp2, y1(v)−y1(u))+(−∂p2(u)

∂t
+(−∆+q)p2−bp1−dp2,

y2(v)− y2(u)) + (Nu, v − u)(L2(Γ))2 ≥ 0

(p1(u),
∂

∂t
(y1(v)−y1(u))+(−∆+q)(y1(v)−y1(u))L2(Rn)−(

∂p1(u)

∂νA
, y1(v)−y1(u))L2(Γ)+

(p1(u),
∂

∂νA
(y1(v)−y1(u))L2(Γ)−a(p1(u), y1(v)−y1(u))−b(p1(u), y2(v)−y2(u))+

(p2(u),
∂

∂t
(y2(v)−y2(u))+(−∆+q)(y2(v)−y2(u))L2(Rn)−(

∂p2(u)

∂νA
, y2(v)−y2(u))L2(Γ)

+(p2(u),
∂

∂νA
(y2(v)− y2(u))L2(Γ) − c(p2(u), y1(v)− y1(u))L2(Rn) − d(p2(u),

y2(v)− y2(u))L2(Rn) + (Nu, v − u)(L2(Γ))2 ≥ 0
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From (8), we obtain

(p1(u), a(y1(v)− y1(u)) + b(y2(v)− y2(u)) + f1 − f1 − a(y1(v)− y1(u)))L2(Rn)

+(
∂p1(u)

∂νA
, v1−u1)L2(Γ)+(0,

∂

∂νA
(y1(v)−y1(u))L2(Γ)−c(p2(u), y1(v)−y1(u))L2(Rn)

(p2(u), c(y1(v)− y1(u)) + d(y2(v)− y2(u)) + f2 − f2 − c(y1 − y1(u)))L2(Rn)

+(
∂p2(u)

∂νA
, v2−u2)L2(Γ)+(0,

∂

∂νA
(y2(v)−y2(u))L2(Γ)−d(p2(u), y2(v)−y2(u))L2(Rn)

+(Nu, v − u)(L2(Γ))2 ≥ 0.

Then we have

(
∂p1(u)

∂νA
, v1 − u1)L2(Γ) + (

∂p2(u)

∂νA
, v2 − u2)L2(Γ) + (Nu, v − u)(L2(Γ))2 ≥ 0.

i.e.,
∫

Γ
(
∂p1(u)

∂νA
(v1−u1)+

∂p2(u)

∂νA
(v2−u2))dΓ+(Nu, v−u)(L2(Γ))2 ≥ 0 ∀u ∈ Uad, v ∈ Uad.

Which completes the proof of the theorem.

Remark 3.2 To study the optimal control for the scalar case




∂y

∂t
+ (−∆ + q)y = ay + f in Rn

y(x) = g in Γ,
(13)

we define a bilinear form π : Vq(Rn)× Vq(Rn) → R by

π(y, φ) =

∫

Rn

(∇y∇φ + qyφ)dx− a

∫

Rn

yφdx

As in theorem (1), we can prove π is coercive if a < λ(q) and then there exists
a unique solution of (13) for f ∈ L2(Rn). Therefore, the state of the system is
given by the solution of:





∂y

∂t
+ (−∆ + q)y(u) = ay(u) + f + u in Rn

y(u) = u in Γ,
(14)

where u is given in the space L2(Γ) of controls. For given zd in L2(Rn), the
cost function is given by

J(v) =

∫

Rn

|y(v)− zd|2dx +

∫

Γ
(Nv)vdΓ
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where N is a given hermitian positive definite operator. Then we have the
following characterization of optimal control for this system :





∂p(u)

∂t
+ (−∆ + q)p(u)− ap(u) = y1(u)− zd in Rn

p(u) = 0 in Γ,

∫

Γ

∂p(u)

∂νA
(v − u)dΓ + (Nu, v − u)L2(Γ) ≥ 0, ∀ v ∈ Uad,

together with (14), where p(u) is the adjoint state.

Remark 3.3 Also it is evident that by modifying:

- the boundary conditions,

- the nature of the control (distributed, boundary),

- the nature of the observation,

- the initial differential system,

an infinity of variations on the above problem are possible to study.
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