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Abstract

Invariant measures of a dynamical system describe the asymptotic behaviour of its or-
bits, hence the elaboration of numerical methods of their approximation is of considerable
importance in applications. We use the concept of symbolic image which is a finite ap-
proximation of a dynamical system. Symbolic image is constructed as an oriented graph
for a mapping f and a fixed covering of its phase space. Vertices of the graph correspond
to the cells of the covering and edges mark the existence of nonempty intersections of the
covering cells with their images. We construct an invariant measure (stationary process)
on the graph of symbolic image, which is the approximation of an invariant measure of the
initial system. Application of balance method allows us to construct an invariant measure
in such a way to assign the measure to all edges of the graph.

key words:dynamical system, symbolic image, entropy, stationary process
on a graph, linear programming
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1 Introduction

This paper is devoted to the elaboration of numerical methods of the construc-
tion of an invariant measure of a dynamical system using the notion of symbolic
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image [6] — a directed graph constructed by the system and its finite covering.
The advantage of such a method is that many problems (localization of peri-
odic orbits and invariant sets, estimation of Lyapunov exponents, estimation of
topological entropy) may be solved by using well known algorithms for directed
graphs.

We consider a method of the construction of an invariant measure on a
directed graph. It was shown in [8] that such a measure is an approximation of
an invariant measure of the initial system. The algorithm of the construction
of such a measure using prime cycles was designed and implemented in [1]. In
a prime cycle with [ edges the value 1/[ is assigned to every edge. A coefficient
(weight) is designated to every prime cycle, being the sum of weights equals to
one. The measure of the edge belonging to more than one cycle is defined as
the sum of the measures which the edge has in every cycle. If an edge does not
belong to any cycle, its measure is zero. The measure of a vertex is the sum of
measures of outcoming (or incoming ) edges. This method, while clear, has an
evident disadvantage: the number of prime cycles may be very significant and
the algorithm becomes time-consuming. An optimization may lead to cycles
missing. Hence, the measure is not assigned to all edges of the graph.

The method proposed in this work is aimed at the construction of an invari-
ant measure, such that to assign a value to every edge. To solve the problem
we formulate it as a task of linear programming. It allows us to construct
a stationary process on the graph (with a given accuracy), using a method
of the sequential balance of the vertices measures. L.M. Bregman proved the
convergence of the method in [2].

The paper is organized as follows: next section is dedicated to the notion
of symbolic image. In section 3 definitions of Markov chain, stationary process
on a graph and its entropy are given. Section 4 describes the algorithm of the
construction of the invariant measure. In the next section halting criteria of the
algorithm are fiven. Finally, in sections 6 and 7 we give examples of entropy
estimation and summarize our results.

2 Symbolic image of a dynamical system

Let ¢ be a discrete dynamical system generated by a homeomorphism f on a
compact M € R". Symbolic image of a dynamical system f [6] is an oriented
graph G, constructed in accordance with a covering {M;},i = 1,...,k of M
by closed sets, being vertices correspond to the covering cells and the existence
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of the edge (i,7) means that f(M;) N M; # 0. The symbolic image is a finite
approximation of the system f.

It depends on the covering and may be specified by the following parameters:
d — diameter of the covering (the largest of diameters of M;); ¢ — upper
bound of the symbolic image (the largest of diameters of f(M;)); r — lower
bound of the symbolic image, which is the minimum of the distances between
f(M;) and M;, it f(M;)NM; = (). Being a relationship between the parameters
and an value ¢ is given, there is a correspondence between the e-orbits of the
system and paths on G [9]. The construction of a sequence of symbolic images
corresponding to a sequential subdivision of the set M results in obtaining
sequential approximations of the system dynamics.

3 Markov chain on a graph

Consider an oriented graph G = (V, F).

Definition 1 /5] A Markov chain p on a graph G = (V, E) is an assignment
of probabilities (1) > 0,1 € V and conditional probabilities ji(elb(e)) > 0 such
that Y e (1) = 1,3 .cp, plell) = 1VI € V, where Er denotes the set of
edges outcoming from I, b(e) denotes the beginning of the edge e and u(e) =

p(b(e))u(efble)).

Let a row vector p be the initial state distribution, such that p; = p(/) and
the conditional probabilities p(e|l) form a stohastic square matrix defined by
Pry =2 cepy wlell), where E{ denotes the set of edges outcoming from I and
incoming to J.

Definition 2 /5] The Markov chain is said to be stationary if the equality

pP=p (1)
holds.

Taking into account the definition of Markov chain, it easy to understand
that stationarity condition means the following: for any vertex the sum of
measures of incoming edges equals to the sum of measures of outcoming ones.

It is well known [10] that the entropy of Markov process may be computed
by the formula

h(p) = = 2een(a) 1(b(e)) ulelb(e)) log(u(elb(e))). (2)
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For practical computation we use the equivalent form
h(p) = 2 perev 1(b(e)) log(p(ble))) — > _cep ple) log(u(e)). (3)

Let G be an irreducible graph. Then the entropy of every stationary process
p on G satisfies the inequality [5]

h(p) <log A, (4)

where A is the maximal eigenvalue of the adjacency matrix of G. If GG is an ar-
bitrary graph then in (4) A is the maximal value of eigenvalues of all irreducible
components of G.

4 Construction of an invariant measure u

Assign probabilities to all edges of the graph G arbitrary. Denote by P =
{pij},i,j =1,...,n, the matrix formed by these values. Our goal is to transform
P in such a way to obtain a stationary process on G.

This problem may be formulated as a part of the following linear program-

ming task.

Maximize the function )7, ; x;;In 2% on conditions
9. 1]

Z?;l Tij = G,y iy Tij = by, xij > 0;
n n
D i1 @i =35y bjag, by > 05pi > 0537, wyy = 1.

Our problem may be considered as a particular case when a; = b;,1 =
1,....,n.

(5)

A method of approximative solution of (5) based on the successive balance
of rows and columns of P was proposed by G.V.Sheleihovsky. L.M.Bregman [2]
proved its convergence. In [3] L.M.Bregman supposed and proved the relaxation
method to solve both convex and linear programming tasks, which coincided
with Sheleihovsky method for the tasks with linear restrictions.

Order elements z;; on rows and form vector z = {x},k = 1,...,m, where
m < n?, (all z; are different). Consider S = {x € R™, 2, > 0,k = 1,...,m}.
Let f be a strictly convex function, f € C'(S) and f € C°(S). Then (5) may
be formulated in the following way:

Minimize the function ), 4 In 7t on linear restrictions

Az = b, (6)
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where z € S,b € R", Ais [n x m] matrix. In such a form our problem is
formulated with A as (1,-1) matrix and b = 0.

It was proved in [3] that a sequence {z'} converges to a solution of (6) if
the following conditions are fulfilled

grad f(z"*h) = grad f(z!) + \A;,
L1y (7)
(Ain x ) — bia

where )\ is unknown parameter, A; is i

row of A and b; is the right part of
th equation in the linear restrictions (6). The solving of (7) leads to obtaining

both A and the formula of transformation for x;; :

* Y\ out(i)’
for it row and
z  [out(i)
fL’szrl = Ty

in(7)
for 4" column, being in (i) and out(i) are sums of elements in column i and row
1 respectively. It should be noted that diagonal elements are not changed.

Algorithm. Denote the given accuracy of computation by . Let i € V
and

beg(i) ={e€ E,e=(i,j),7 € V},
end(i) ={e € E,e = (j,1),j € V}.

e Assign measures to all edges of G. As the normalization step may be
fulfilled at the and of operating period, we assume pu(e) =1, Ve € E .

e For each vertex 7 calculate its balans
=1 > ule Z (e
ecbeg(i) ecend(i

Construct the queue () of the vertices of GG, being a vertex ¢ with the max-
imum ¢(7) has the maximum priority. So, we assign the greatest priority
to the most unbalanced vertex.

e In the cycle: select the next vertex i from Q).
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— If q(i) < e, then complete the processing of ¢ and go out from the
cycle. (In view of the structure of @) such an inequality holds for all
remaining elements.)

— Else calculate

xoul(i) = > pfe)

ecbeg(i)

cin(i)= X ple)

ecend(i)

x Ve € end(i) u(e) == p(e) *

+ Ve € beg(i) ple) == p(e) * ;ut(i)~

out(1)

() 18 too large (or small), we

x If some of values out(),in(i),
fulfill the normalization.

e Fulfill the normalization. The algorithm is completed.

To provide the efficiency of the algorithm we have to save both forth and back
directions of the edges, which results in the representation of the graph with
using two hash-tables. Priority queue has been implemented using Fibonacci
trees [4].

5 Halting problem

Let C, be the volume of a cell C' corresponding to a vertex v, |V| be the number
of vertices and € be a given accuracy. We consider the following criteria for the
algorithm halting:

1. Maximal discrepancy is not greater than ¢.

max qx(v) < €. (8)
veV

2. Maximal discrepancy divided by the cell volume is not greater than ¢.

max qx(v) < eC,. 9)

veV

3. The sum of discrepances over all vertices at the step k is not greater than

£.
Mgy — Tyt

veV leeV teV

< e. (10)
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4. The average sum of discrepances over all vertices at the step k is not greater

than e.
DD mi, =y my,

veV |eeV teV

<e|V|. (11)

5. The sum of discrepances over all vertices at the step k£ divided by the cell
volume is not greater than e.

DD me =) my

veV |leeV teV

< eC,. (12)

6. The sum of variation of vertices weights for 1 step is not greater than e.

Z ‘mff —mit <e. (13)
veV

7. The sum of variation of vertices weights for 1 step divided by the cell
volume is not greater than ¢.

Z Im —mit < eC,. (14)
veV

8. The sum of variation of edges weights for 1 step is not greater than ¢.

Z ’mfj — mffl <e. (15)
(i—j)€E

9. The sum of variation of edges weights for 1 step divided by the cell volume
is not greater than ¢.

Z ’m]? — mk*l‘ < eC,. (16)

1J 17
(i—j)eE

The rate of convergence was estimated experimentally for

(m) <1a,x2+by)
% Y
Y x

e Henon map

a=14,b=0.3;
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e [keda map

x . d — Cy(xcost(z,y) —ysint(z,y))
y Co(asinT(z,y) +ycost(z,y)) |
where T(gj’y) = Cl — lerCTBer” d = 27 Ol = 04, CQ = 09, 03 = 6,
e Duffing system
T =y,
y = xv—a2°—0.1y.
The number of steps equals 100 000 and € = 107°. The dependence of the

number of steps from a halting criteria is shown in table 1. and run time — in
table 2.
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0R Tewmolyip/nrnqdsjeur mmm//:dypy [eUINOL dIUOIP[H

System | Step Vert. Edge 1 2 3 4 5 6 7 8 9
Henon |6 138 4331 1194 2394 2337 1034 1034 1194 2394 1194 2394
8 866 2802 | 9494 00 00 7627 7627 9494 00 9 495 00
10 4 692 15 350 | 30 543 00 oo 18622 18622 30 543 00 30 543 00
12 25 000 81 458 | 29 649 00 oo 11063 11063 29 649 00 29 649 00
14 143 345 467 347 | 8 167 00 00 1 1 8 176 00 8 167 00
Ikeda |6 1145 5348 | 12219 77103 oo 9664 9664 12219 77103 12219 77104
8 10 750 49 779 | 40 421 00 oo 18859 18 859 40 421 00 40 421 00
10 104 799 482 427 | 3 522 00 00 1 1 3 526 00 3 522 00
Duffing | 6 6 252 25 116 | 94 434 00 oo 16892 16 892 94 434 00 89 096 00
8 55 528 227 147 | 2 153 00 00 1 1 2 153 00 1 683 00
10 757 622 3 119 866 2 00 00 1 1 2 00 1 00

Table 1: Convergence of balance method

T10Z ‘T N ‘52559204 10431U0;) pup Suovnbiy 101uasaffuq



18 rewmolytp/nrnqgds yyeuwrmmm //:dy)y [RUINOL OTHOIY09[H

System | Step Vert. Edge 1 2 3 4 5 6 7 8 9
Henon |6 138 433 | 46ms 125ms 125ms 3lms 3lms 46ms 125ms 78ms  140ms
8 866 2 802 | 828ms 00 00 656ms 656ms 828ms 00 828ms o)
10 4 692 15 350 11s 00 o9 6s 6s 11s %9 11s %9
12 25 000 81 458 | 48s 00 %9 18s 18s 48s %9 48s 00
14 143 345 467 347 e 00 00 3s 33 778 %9 e 00
Ikeda 6 1145 5 348 2s 11s 00 1s 1s 23 11s 28 11s
8 10 750 49 779 | 41s 00 %) 19s 19s 41s 00 41s 00
10 104 799 482 427 | 36s 00 00 2s 23 36s 00 36s 00
Duffing | 6 6 252 25 116 | 48s 00 00 9s 9s 48s o0 46s 00
8 5H 528 227 147 11s 00 %9 921ms  921ms 11s %9 8s 00
10 757 622 3119 866 | 33s 00 %) 33s 33s 33s o0 33s 00

Table 2: Run time for balance method

T10Z ‘T N ‘52559204 10431U0;) pup Suovnbiy 101uasaffuq
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Subdivision

Nodes

Entropy

log A

9 x 22><6

231

1.384079

1.386763

Table 3: Entropy estimation for Henon map

Subdivision | Nodes | Entropy | log A

9 x 22%6 162 0.916999 | 0.940517
9 x 22x12 1032 | 0.729919 | 0.731549
9 x 22x11 672 0.756997 | 0.779899

Table 4: Entropy estimation for logistic map

6 Entropy estimation

To obtain the value of the entropy according to the constructed measure we use
formula (3).

Example 1 For Henon map consider area D = [—10,10] x [—10, 10] and use
both linear and punctual methods [11] to construct a symbolic image. The initial
partition consists from 9 cells. On each step every cell is subdivided in /4 cells.
Construct an invariant measure on the symbolic image and estimate the entropy
for this measure.

In table 3 the number of nodes, the entropy and the estimation of the entropy
by (4) are given.

Example 2 Consider logistic map f(x) = ax(1l —x),x € [0,1], for a = 4 and
a = 3.569. The results are given in table 4.

7 Conlusion

In this paper a numerical method of the construction of a approximation to an
invariant measure of a dynamical system is considered. Such an approximation
may be obtained as a stationary process ( an invariant measure) on the graph of
a symbolic image of the initial system. A measure is assigned to all edges of the
graph using a linear programming technique. Experimental data about the rate
of convergence are given. The entropy of the stationary process on a graph with
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regard to the obtained invariant measure is computed. Numerical experiments
show that this value less than the entropy of corresponding topological Markov
chain.
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