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Abstract In this work, we establish an existence result (based on O’Regan
fixed point theorem) for a nonlinear fractional-order nonlocal boundary value
problem.
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1 Preliminaries and Introduction

Let L1(1) be the space of Lebesgue integrable functions on the interval I = [0, 1].
Unless otherwise stated, E is a reflexive Banach space with norm ||.|| and dual
E*. We will denote by E,, the space E endowed with the weak topology o(FE, E*)
and denote by C[I, F] the Banach space of strongly continuous functions w :
I — E with sup-norm ||.||.

We recall that the fractional integral operator of order > 0 with left-hand
point a is defined by (see [4], [9], [10] and [15])

6U = t(t_S)ﬂ_l'LLS S
) = [ ) as

We recall the following definitions. Let E be a Banach space and let u : [ — E.
Then
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(1) u(.) is said to be weakly continuous (measurable) at t, € I if for every
¢ € E* we have p(u(.)) continuous (measurable) at tg.

(2) A function h : E — F is said to be weakly sequentially continuous if A
takes weakly convergent sequences in ' to weakly convergent sequences in
E.

If u is weakly continuous on I, then u is strongly measurable (see [3]), hence
weakly measurable.

Note that in reflexive Banach spaces weakly measurable functions are Pettis
integrable (see [1], [3] and [8] for the definition) if and only if p(u(.)) is Lebesgue
integrable on [ for every ¢ € E* (see [3]).

Now, we present some auxiliary results that will be needed in this paper. Firstly,
we state O’Regan fixed point theorem ([7]).

Theorem 1.1 Let E be a Banach space with () a nonempty, bounded, closed,
convezr, equicontinuous subset of C[I, E]. Suppose T : QQ — Q is weakly sequen-
tially continuous and assume TQ(t) is weakly relatively compact in E for each
t € I, holds. Then the operator T' has a fixed point in Q).

The following theorems can be found in [2], [16] and [5] respectively.

Theorem 1.2 (Dominated convergence theorem for Pettis integral)

Let w : I — E. Suppose there is a sequence (u,) of Pettis integrable functions
from I into E such that lim, . o(u,) = p(u) a.e. for o € E*. If there is a
scalar function ¢ € Li(I) with ||u,(-)|| < ¥(:) a.e. for all n, then u is Pettis
integrable and

/un(s) ds — /u(s) ds weakly ¥Vt € I.
J J

Theorem 1.3 A subset of a reflexive Banach space is weakly compact if and
only if it is closed in the weak topology and bounded in the norm topology.

Theorem 1.4 Let Q be a weakly compact subset of C[I,E]. Then Q(t) is
weakly compact subset of E for each t € I.

Finally, we state some results which is an immediate consequence of the Hahn-
Banach theorem.

Theorem 1.5 Let E be a normed space with ug # 0. then there exists a ¢ € E*
with [||| = 1 and o(uo) = [|uol|.
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Theorem 1.6 If uy € E is such that p(ug) = 0 for every ¢ € E*, then uy = 0.

In this work we study the existence of solutions, in the Banach space C[I, E],
of the nonlocal boundary value problem

D7 u(t)  + f(tut) = 0,
1

4

\

Now consider the fractional-order integral equation

u(t) = — I7 f(t, (t) _11052;1 G F f(s,u(s)) ds
- taﬂnlﬁ T fo ;S) ,u(s)) dS,
B e (1,2),75 € (0,1).

In [7] the author studied the integral equation

t) = xy + /0 f(s,y(s)) ds, t € [0,T], zp € E

where F = (FE,|.|) is a real Banach space, under the assumptions that f(¢,.)
is weakly sequentially continuous for each ¢t € [0,7] and f(.,y(.)) is Pettis
integrable on [0, T] for each continuous function y : [0,7] — F and |f(t,y)| <
h.(t) for a.e. t € [0,T] and all y € E with |y| < r,r > 0,h, € L1[0,T].

Also, in [6] the author studied the Volterra-Hammerstein integral equation

y(t) = h(t) + /0 k(t,s) f(s,y(s))ds, t € [0,T], T > 0,

under the assumptions that f : [0,7] x B — B is weakly-weakly continuous
and h : [0,T] — B is weakly continuous, where B is a reflexive Banach space.
Here we study the existence of weak solution of the fractional-order integral
equation (2) such that the function f : I x B, — F satisfies the following
conditions:

(1) For each t € I, f; = f(t,.) is weakly sequentially continuous.
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(2) For each u € E,, f(.,u(.)) is weakly measurable on 1.

(3) for any r > 0, the weak closure of the range of f(I x B,) is weakly compact
in E (or equivalently; there exists an M, such that ||f(¢,u)|| < M, for all
(t,u) € I x B,).

Definition 1.1 by a weak solution of (2) we mean a function v € C|[I, E] such
that for all ¢ € E*

p(u(t)) = — 17 o(f(tu(t)) —

a B-1 n — 3 B—-1
BL / O =) (s, uls)) ds

1 —anft I'(B)
451 L1 = )0
D /0 Sy U us) ds e (1,2),6€ 0, 1)

2 Fractional-order integrals in reflexive Banach spaces

Here, we define the fractional-order integral operator in reflexive Banach spaces.
Definition given below is an extension of such a notion for real-valued functions.

Definition 2.1 Let v : I — E be a weakly measurable function, such that
o(u(.)) € Li(I), and let « > 0. Then the fractional (arbitrary) order Pettis
integral (shortly FPI) I®u(t) is defined by

I u(t) = /0 U _F(ix))a u(s) ds.

In the above definition the sign ” [” denotes the Pettis integral.
Such an integral is well defined (see [11]):

Lemma 2.1 Let uw : I — FE be a weakly measurable function, such that
o(u(.)) € Li(I), and let o > 0. The fractional (arbitrary) order Pettis integral

I u(t) = /0 4 _F(S)a_ u(s) ds

a)

exists for almost every t € I as a function from I into E and p(I%u(t)) =
I%p(u(t)).

The following lemma can be found in [12]
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Lemma 2.2 Letu: [ — E be weakly continuous function on [0,1]. Then, FPI
of u exists for almost every t € [0,1] as a weakly continuous function from [0, 1]
to E. Moreover,

e(Iu(t)) = I%p(u(t)), forall ¢ € E*.
Definition 2.2 Let u : I — FE. We define the fractional-Pseudo derivative
(shortly FPD) of u of order o € (n — 1,n),n € N by

dOé

In the above definition the sign ”D” denotes the Pseudo differential operator

(see [8]).
The following lemma can be found in [13]

Lemma 2.3 Let u : [0,1] — E be weakly continuous function on [0,1] such
that the real-valued function 1" “pu 1s n-times differentiable. Then, the FPD
of u of order a € (n — 1,n), exists.

Definition 2.3 A function u : I — E is called Pseudo solution of (1) if u €
C|I, E] has FPD of order 3 € (1,2), I"u(t)|t=0 = 0,7 € (0, 1], au(n) = u(1),0 <
n<1,0<an’! <1 and satisfies

d2

ﬁgo(ﬂ_ﬁ u(t)) + o(f(t,u(t))) = 0, a.e. on (0,1), foreachp € E*.

Now, for the properties of the integrals of fractional-orders in reflexive spaces
we have the following lemma [11]:

Lemma 2.4 Let u : I — E be weakly measurable and o(u(.)) € Li(I). If
a, € (0,1), we have:

(1) I°I5u(t) = 1°"Pu(t) for a.e. t € I.

(2) limg 1 I®u(t) = T*u(t) weakly uniformly on I if only these integrals exist
on I.

(3) limg_o I®u(t) = u(t) weakly in E for a.e. t € I.

(4) If, for a fized t € I, p(u(t)) is bounded for each ¢ € FE*, then
limg_ol“u(t) = 0.
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3 Main result

In this section we present our main result by proving the existence of solutions
of the equation (2) in C[I, E].
Let E be a reflexive Banach space. And let

E, = {u € C[[,E] HUHO < % + 7“} (7“ > O),

where |[.||o is the sup-norm. We will consider the set
B, = {u(t) € F: u € E., t € I}
Now, we are in a position to formulate and prove our main result.

Theorem 3.1 Let the assumptions (1) - (3) are satisfied.

(a + 1) M,
Toa—aryrar e <

Then equation (2) has at least one weak solution u € C[I, E.

Proof: Let us define the operator 1T as

o8-l g)81
Tu(t) = — I f(tu(t) — — /O =97 ¢ u(s)) ds

1—an™! I'(3)
tﬁ—l 1 (1 o 8)5_1
+ 1 — « nﬁ—l A 1’\(6) f(S,U(S)) dS, B c (1,2), t € 1.

We will solve equation (2) by finding a fixed point of the operator 7'
We claim
T: C[I,E] — C[I,E].

To prove our claim, first note that assumption (2) implies that for each
u € C[I,E], f(.,,u(.)) is weakly measurable on I. The fact that f has weakly
compact range means that o(f(.,u(.))) is Lebesgue integrable on I for ev-
ery ¢ € E* and thus the operator T' is well defined. Now, we show that
if u € C[I,E], then Tu € C[I,E]. Note that there exists r > 0 with
lully = suprey o)l < ey + 7

Now assumption (3) implies that

Lf(Eu(d)]] < M, for ¢ € [0,1].
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Let ¢t,7 € [0, 1] with ¢ > 7. Without loss of generality, assume Tu(t) — Tu(7) #
0. Then there exists (a consequence of Theorem 1.5) ¢ € E* with ||¢|| = 1 and

ITu(t) — Tu(m)| = @(Tu(t) — Tu(r)).
Thus
ITutt) — Tu(r)] <

< | fo %g“ f(s,u(s))) ds

- fo r(g) e(f(s,u(s)))
= Jo Stk o
1—a1nﬁ—1 fol (1;23)_1 p(f (s,
Iy “‘S”lr;m“‘s)ﬁ L o(f(s.uls))) ds

IN + +

ds [t7=1 — 7071

1 o nﬁ 1 fO (6/2
5) ! S ‘tﬁ—l - 7_ﬂ—1|

(1—
1-a 775*1 fO INEG)]
s (N =97t = (=) ds + [l —s)"" ds)
a M, —
(1—a nP- 1)77 I(1+p) ‘t b- T/B 1|
1 — 2
(15404 70 T(0)
17 2@t-7)7 + [t =77
M, (o’ + 1) ‘tﬁ_l _ Tﬁ—1|
(I—a n=*) T(1+p) '
which proves that Tu € C[I, EJ.
Now, let

A+ 4+ +

IN + +

_I_

Q={u € E.: (Vt,Tel)

(Ilu(®) - u(r)]| Ay

< -

- T(1+p0)
M. (an® + 1)

(I—an’1) I(1+p)

Note that ) is nonempty, closed, bounded, convex and equicontinuous subset of
C[I, E]. Now, we claim that T": Q — @ and is weakly sequentially continuous.
If this is true then according to Theorem 1.3, T'Q) is bounded in C[I, E] (hence,
Theorem 1.4, implies TQ(t) is weakly relatively compact in E for each ¢t € I)
and the result follows immediately from Theorem 1.1. It remains to prove
our claim. First we show that T" maps @ into (). To see this, note that the

(2 (t—71)" + \tﬂ—TﬁD

_|_

|tﬁ_1 o Tﬁ_l‘}7
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inequality (2) shows that T'Q is norm continuous. Now, take u € @; without
loss of generality, we may assume that 1% f(¢,u(t)) # 0, then, by Theorem 1.5,
there exists ¢ € E* with ||¢|| = 1 and ||[I*f(¢,u(t))|| = o(I*f(t,u(t))). Thus

1 Tu(t)]] <
< |17 e, ())H . Hla;‘;;l S B f(s,u(s) ds||
+ e o S S us)) dsl
= (I f(t,u(t))) ; 90(1 fo roy [ (s,u(s)) ds)
+ <1fn1ﬁlfolsﬁl s, u( ds)

I o(f(tu(t) + toi [ Uk o(f (s, uls)) ds

B8-1 (1— 55 1
+ 1- toznﬂ 1 fO f(s,u( ))) dS
t sﬂ 1 a M, -1 —g)B-1
< M, fo O di 4oa antﬁ_l K (nr(g) ds
M, t8-1 1 5)P—1
+ 1— anﬁ 1 f() T
M, 8 M t -1
< e T meen e @’ + 1)
< MT + MT (OZ + 1)
— F(}Jﬂ) (I—a nP~1) T(1405)
<ty T
therefore
| Tullo < L + r
" T T(1+p) '

Thus T': ) — . Finally, we will show that T is weakly sequentially contin-
uous. To see this, let {u,}>%; be a sequence in @ and let u,(t) — u(t) in E,
for each ¢ € [0,1]. Recall [5] that a sequence {u,}> is weakly convergent in
C[I, E] if and only if it is weakly pointwise convergent in E. Fix ¢t € I. From
the weak sequential continuity of f(t,.), the Lebsegue dominated convergence
theorem (see assumption (3)) for the Pettis integral [2] implies for each ¢ € E*
that o(Tu,(t)) — @(Tu(t)) a.e. on I, Tu,(t) — Tu(t) in E,. SoT:Q — Q is
weakly sequentially continuous. The proof is complete. m

Now, we are looking for sufficient conditions to ensure the existence of Pseudo
solution to the boundary value problem (1).

Theorem 3.2 If f : [ x B, — E satisfies the assumptions of Theorem 3.1,
then the boundary value problem (1) has at least one solution u € C[I, E].
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Proof: Let us remark, that by assumptions (2), (3) the FPI of f of order g > 1
exists and

o(I°f(t,u(t)) = I” o(f(t,u(t))), forall ¢ € E*.
Let u be a solution of equation (2), then
-1 U _ &\8-1
) = = 1 ) - 2 [T U s d
81

1 (1—5)5_1
D /O S SN ds 6 € (121 € 0.1)

It is clear that
IMu(t)i=o = 0, v € (0,1], au(n) = u(l).
Furthermore, we have
ut) = — I° f(t,u(t)) + K 771 (2)

where

—o —S -1
K = 1—a nf-1 fOn (nf(%) f(37 U(S)) ds
)

1
since u € O[I, E], then o(I?Pu(t)) = I* Pp(u(t)), for all p € E* (see Lemma
2.2). From equation (2), we deduce that

put) = — oI f(t,ult)) + ¢ K 7
= = I" o(f(t,u(t) + ¢ K", (3)

Operating by I?~” on both sides of the equation (3) and using the properties
of fractional calculus in the space L]0, 1] (see [14] and [15]) result in

P pu(t) = =17 o(f(t,ult) + ¢ K T(B) t.
Therefore,

A7 u(t)) = — o(f(tu(t) + ¢ K ()t
Thus P

Egp(ﬂ_ﬁ u(t)) = — o(f(t,u(t))) ae. on (0,1).

That is u has the FPD of order 5 € (1,2) and w is a solution of the differential
equation (1) which complete the proof. m
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