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Abstract

In this paper we study the stability of linear non-autonomous time-varying system with
multiple delays. Using the Lyapunov functionals method we find sufficient conditions
for the exponential stability with a given convergence rate, in terms of linear matrix
inequalities or the solution of Riccati differential equations. The results are applied to
stabilization problem of linear non-autonomous time-varying control system with multiple
delays.
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1 Introduction

Time-delay systems are frequently encountered in various areas, including
physical and chemical processes, biology, economics, engineering, control of the
growth of global economy, control of epidemics, etc.

The stability problem of linear time-delay systems has attracted a lot of
attention in the few past decades, for example, [1, 5, 6, 7, 10, 14], etc.
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Stability criteria for linear time-delay systems can be divided into two cat-
egories, delay-independent stability criteria and delay-dependent stability cri-
teria, by whether the criteria include the information about delays or not. In
addition linear time-delay systems can be divided into two categories by the
number of delays. Single-delay systems which have only a single time-delay
constant, and multiple-delay systems which have at least two time-delay con-
stants.

Most of exciting results of stability were derived using different theories.
Some of the stability criteria are directly developed from the characteristic
equation and are characterized by the location of eigenvalues and determination
of measures and norms of matrices of the system. The main technique used
in the stability investigation relies on the using of the Lyapunov functionals
method, for example, [2, 16, 17, 18].

One of the extended stability properties is the concept of α-stability, which
relates to the exponential stability with a convergence rate α > 0. The following
retarded system

ẋ = f(t, x(t), x(t− h)), t ≥ 0,

x(t) = φ(t), t ∈ [−h, 0],

is α-stable with α > 0, if there exists a function ξ(.) such that for each φ(.),
the solution x(t, φ) of the system satisfies

‖x(t, φ)‖ ≤ ξ(‖φ‖) e−αt, for all t ≥ 0,

where ‖φ‖ = max{‖φ(t)‖ : t ∈ [−h, 0]}. This implies that for α > 0 the system
can be made exponentially stable with the convergence rate α.

For time-varying systems, the investigation of the exponential stability was
treated in [3, 5, 8, 9, 16, 17], where stability conditions for time-varying systems
are derived in terms of the solution of a certain Riccati differential equation
RDE and linear matrix inequalities LMI.

This paper deals also with the exponential stability with convergence rate
of linear non-autonomous time-varying system with multiple delays, and then
apply the obtained results to control problems. By using Lyapunov functionals
method we show that the existence of the solution of certain RDE or of some
LMI guarantees the exponential stability with a given convergence rate of linear
non-autonomous time-varying delay systems, and how the results can be applied
to obtain sufficient conditions for the stabilizability with a given convergence
rate of a class of linear non-autonomous time-varying control delay systems.
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This paper is organized as follows. In section 2 the problem is stated and the
required notation, definitions and auxiliary proposition are formulated. Section
3 presents the main results for the exponential stability problem with a con-
vergence rate of a linear non-autonomous multiple time-varying delays system.
Section 4 devotes to apply the obtained results to the stabilization problem.
The paper ends with conclusion and cited references.

2 Preliminaries and Statement of the Problem

We start by introducing some notation and definitions, that will be used through-
out the paper.
R+ denotes the set of all real non-negative numbers.
Rn denotes the n-dimensional space.
Aτ denotes the transpose of the matrix A.
A is symmetric, if A = Aτ .
< x, y > or xτy denotes the scalar product of two vectors x, y.
‖x‖ denotes the Euclidean vector norm of x.
Mn×r denotes the space of all n× r- matrices.
I denotes the identity matrix.
λ(A) denotes the set of the eigenvalues of A.
λmax(A) = max{Reλ : λ ∈ λ(A)}.
η(A) denotes the spectral norm of the matrixA, defined by η(A) =

√
λmax(AτA).

µ(A) denotes the measure of the matrix A, defined by µ(A) = 1
2λmax(A+ Aτ).

L2([0, t],Rm) denotes the Hilbert space of L2-integrable and Rm-valued func-
tions on [0, t].
Matrix A is called non-negative definite A ≥ 0, if < Ax, x >≥ 0, for all x ∈ Rn.
A is called positive definite A > 0, if < Ax, x >> 0 for all x 6= 0; or equivalently
there exists c > 0, such that

< Ax, x >≥ c‖x‖2, for all x ∈ Rn.

Matrix function A(t) is uniformly positive definite, if there exists c > 0, such
that

< A(t)x, x >≥ c‖x‖2, for all t ∈ R+ and x ∈ Rn.

C([−h, 0],Rn) denotes the Banach space of all piecewise-continuous vector func-
tions mapping from [−h, 0] into Rn.
In this paper we consider linear non-autonomous time-varying system with mul-
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tiple delays

ẋ(t) = A0(t)x(t) +
m∑
i=1

Ai(t)x(t− hi(t)), t ∈ R+,

x(t) = φ(t), t ∈ [−h, 0], h ≥ 0,

(2.1)

where x(t) ∈ Rn is the state vector; A0(t), Ai(t) ∈Mn×n, i = 1, 2, ...,m are given
matrix functions continuous on R+, φ ∈ C([−h, 0],Rn) is the initial function
and hi(t), i = 1, 2, ...,m are the time-varying delay functions satisfying

0 ≤ hi(t) ≤ h, ḣi(t) ≤ δi < 1, for all t ≥ 0.

Definition 2.1. Let α > 0 be a given number. System (2.1) is said to be
α-stable, if there exists a function ξ(.) : R+ → R+ such that for each φ(t) ∈
C([−h, 0],Rn) the solution x(t, φ) of the system satisfies

‖x(t, φ)‖ ≤ ξ(‖φ‖) e−αt, for all t ∈ R+.

Let us consider the following free-delay linear time-varying control system
[A(t), B(t)]

ẋ(t) = A(t)x(t) +B(t)u(t), t ∈ R+, (2.2)

where u(t) ∈ L2([0, T ],Rr), for all T > 0 is the control, A(t) ∈ Mn×n, B(t) ∈
Mn×r.

Definition 2.2. Linear control system (2.2) is said to be α-stabilizable, if there
exists a feedback control u(t) = K(t)x(t), K(t) ∈ M r×n, such that the closed-
loop system

ẋ(t) = [A(t) +B(t)K(t)]x(t), t ≥ 0,

is α-stable.

Definition 2.3. Linear control system (2.2) is said to be globally null-controllable,
if for every x0 ∈ Rn, there is a time T > 0 and control u(t) ∈ L2([0, T ],Rr) such
that the solution x(t) of the system satisfies x(0) = x0, x(T ) = 0.

Relationship between the global null-controllability and the existence of the
solution of Riccati differential equations is given in the following proposition.

Proposition 2.1. [17] (Kalman condition) Assume that the linear control
system [A(t), B(t)] is globally null-controllable. Then for every symmetric ma-
trices Q(t) ≥ 0, P (t) ≥ 0 the Riccati differential equation

Ṗ (t) + Aτ(t)P (t) + P (t)A(t) + P (t)B(t)Bτ(t)P (t) +Q(t) = 0, P (0) = P0,

has the solution P (t) ≥ 0, P (t) = P τ(t).
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The following technical result will be used in the proof of the main results.

Proposition 2.2. [1] (Completing of the square) Assume that S ∈ Mn×n

is a symmetric positive definite matrix. Then for every matrix Q ∈ Mn×n we
have

2 < Qy, x > − < Sy, y >≤< QS−1Qτx, x >, for all x, y ∈ Rn.

3 Main Results

Consider the linear non-autonomous time-varying system with multiple delays
(2.1), where the matrix functions A0(t), Ai(t) are continuous on R+. Given
positive numbers α, ε, hi, εi, i = 1, 2, ...,m; we set

A0,α(t) = A0(t) + αI, Ai,α(t) = eαhi(t)Ai(t), i = 1, 2, ...,m.

µ(A0,α) = sup
t∈R+

µ(A0,α(t)), η(Ai,α) = sup
t∈R+

η(Ai,α(t)),

Qi(t) =
2

1− δi
Ai,α(t)Aτ

i,α(t),

m∑
i=1

εi = m+ 2εµ(A0,α) +
m∑
i=1

2ε2

1− δi
η2(Ai,α).

The main results are stated in the following theorems.

Theorem 3.1. Linear non-autonomous time-varying system with multiple de-
lays (2.1) is α-stable, if there exists a symmetric matrix function P (t) > 0
satisfying the following Riccati differential equation

Ṗ (t) +Aτ0,α(t)P (t) + P (t)A0,α(t) +

m∑
i=1

P (t)Qi(t)P (t) +

m∑
i=1

εiI = 0. (3.1)

Proof. Let P (t) > 0, t ∈ R+ be a solution of Riccati differential equation
(3.1). We take the following change of the state variable

y(t) = eαtx(t),

where α > 0 is the convergence rate. Then the linear delay system (2.1) is
transformed to the delay system

ẏ(t) = A0,α(t)y(t) +

m∑
i=1

Ai,α(t)y(t− hi(t)),

y(t) = eαtφ(t), t ∈ [−h, 0].

(3.2)
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Consider the following Lyapunov-Krasovskii functional for the system (3.2) as

V (t, y(t)) = V1 + V2 + V3, (3.3)

where

V1 =< P (t)y(t), y(t) >,

V2 = ε‖y(t)‖2,

V3 =
m∑
i=1

∫ t

t−hi(t)
‖y(s)‖2ds.

Taking the derivative of V (t, y(t)) in t along the solution y(t) of system (3.2)
we have

V̇ (t, y(t)) ≤< Ṗ (t)y(t), y(t) > +2 < P (t)A0,α(t)y(t), y(t) >

+ 2
m∑
i=1

< P (t)Ai,α(t)y(t− hi(t)), y(t) > +2ε < A0,α(t)y(t), y(t) >

+ 2ε
m∑
i=1

< Ai,α(t)y(t− hi(t)), y(t) > +m‖y(t)‖2 −
m∑
i=1

(1− δi)‖y(t− hi(t))‖2

=< [Ṗ (t) +Aτ0,α(t)P (t) + P (t)A0,α(t) +mI]y(t), y(t) >

+ 2
m∑
i=1

< P (t)Ai,α(t)y(t− hi(t)), y(t) > +2ε < A0,α(t)y(t), y(t) >

+ 2ε
m∑
i=1

< Ai,α(t)y(t− hi(t)), y(t) > −
m∑
i=1

(1− δi)‖y(t− hi(t))‖2.

Therefore we get

V̇ (t, y(t)) ≤< [Ṗ (t) +Aτ0,α(t)P (t) + P (t)A0,α(t) +mI]y(t), y(t) >

+ ε < [A0,α(t) +Aτ0,α(t)]y(t), y(t) > +2

m∑
i=1

< P (t)Ai,α(t)y(t− hi(t)), y(t) >

−
m∑
i=1

1− δi
2

< y(t− hi(t)), y(t− hi(t)) >

+ 2ε

m∑
i=1

< Ai,α(t)y(t− hi(t)), y(t) >

−
m∑
i=1

1− δi
2

< y(t− hi(t)), y(t− hi(t)) > .

(3.4)
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By using Proposition 2.1 we can obtain
m∑
i=1

{
2 < P (t)Ai,α(t)y(t− hi(t)), y(t) > −1− δi

2
< y(t− hi(t)), y(t− hi(t)) >

}
≤

m∑
i=1

2

1− δi
< P (t)Ai,α(t)Aτ

i,α(t)P (t)y(t), y(t) >,

m∑
i=1

{
2ε < Ai,α(t)y(t− hi(t)), y(t) >

− 1− δi
2

< y(t− hi(t)), y(t− hi(t)) >
}

≤
m∑
i=1

2ε2

1− δi
< Ai,α(t)Aτ

i,α(t)y(t), y(t) > .

(3.5)

Thus we can write (3.4) in the following form

V̇ (t, y(t)) ≤< [Ṗ (t) + Aτ
0,α(t)P (t) + P (t)A0,α(t) +mI]y(t), y(t) >

+ ε < [A0,α(t) + Aτ
0,α(t)]y(t), y(t) >

+
m∑
i=1

{
2

1− δi
< P (t)Ai,α(t)Aτ

i,α(t)P (t)y(t), y(t) >

+
2ε2

1− δi
< Ai,α(t)Aτ

i,α(t)y(t), y(t) >

}
.

If we let

< [A0,α(t) + Aτ
0,α(t)]y(t), y(t) >≤ 2µ(A0,α)‖y(t)‖2,

m∑
i=1

< Ai,α(t)Aτ
i,α(t)y(t), y(t) >≤

m∑
i=1

η2(Ai,α)‖y(t)‖2.
(3.6)

Then we have

V̇ (t, y(t)) ≤< [Ṗ (t) + Aτ
0,α(t)P (t) + P (t)A0,α(t) +

m∑
i=1

P (t)Qi(t)P (t)

+mI]y(t), y(t) > +2εµ(A0,α)‖y(t)‖2

+
m∑
i=1

2ε2

1− δi
η2(Ai,α)‖y(t)‖2.

Because
m∑
i=1

εi = m+ 2εµ(A0,α) +
m∑
i=1

2ε2

1− δi
η2(Ai,α).
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Therefore we find

V̇ (t, y(t)) ≤< [Ṗ (t) + Aτ
0,α(t)P (t) + P (t)A0,α(t) +

m∑
i=1

P (t)Qi(t)P (t)

+
m∑
i=1

εiI]y(t), y(t) > .

Since P (t) is a solution of (3.1), it follows that

V̇ (t, y(t)) ≤ 0, for all t ∈ R+.

By integrating both sides of this inequality from 0 to t we find

V (t, y(t))− V (0, y(0)) ≤ 0, for all t ∈ R+,

then we get

< P (t)y(t), y(t) > +ε‖y(t)‖2 +
m∑
i=1

∫ t

t−hi(t)
‖y(s)‖2ds

≤< P (0)y(0), y(0) > +ε‖y(0)‖2 +
m∑
i=1

∫ 0

−hi(0)

‖y(s)‖2ds,

where P0 = P (0) > 0 is any initial condition. Since

< P (t)y(t), y(t) >≥ 0,
m∑
i=1

∫ t

t−hi(t)
‖y(s)‖2ds ≥ 0,

m∑
i=1

∫ 0

−hi(0)

‖y(s)‖2ds ≤
m∑
i=1

∫ 0

−hi(0)

‖eαsφ(s)‖2ds ≤ ‖φ‖2
m∑
i=1

∫ 0

−hi(0)

e2αsds

=
1

2α

m∑
i=1

(1− e−2αhi(0))‖φ‖2,

it follows that

‖y(t)‖2 ≤ 1

ε
{< P (0)y(0), y(0) > +ε‖y(0)‖2 +

1

2α

m∑
i=1

(1− e−2αhi(0))‖φ‖2}.

Therefore the solution y(t, φ) of the system (3.2) is bounded, returning to the
solution x(t, φ) of system (2.1) and noting that

‖y(0)‖ = ‖x(0)‖ = φ(0) ≤ ‖φ‖,
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we have

‖x(t, φ)‖ ≤ ξ(‖φ‖)e−αt, for all t ∈ R+,

where

ξ(‖φ‖) := [
1

ε
{‖P (0)‖‖φ‖2 + ε‖φ‖2 +

1

2α

m∑
i=1

(1− e−2αhi(0))‖φ‖2}]
1
2 .

This implies that system (2.1) is α-stable, which completes the proof.

Theorem 3.2. Linear non-autonomous time-varying system with multiple de-
lays (2.1) is α-stable, if there exists a symmetric matrix function P (t) > 0, such
that the following condition LMI holds

χ(t) P (t)A1,α(t) + εA1,α(t) ... P (t)Am,α(t) + εAm,α(t)

Aτ1,α(t)P (t) + εAτ1,α(t) −(1− δ1)I ... 0
...

...
...

...
Aτm,α(t)P (t) + εAτm,α(t) 0 ... −(1− δm)I


< 0,

(3.7)

where

χ(t) = Ṗ (t) + Aτ
0,α(t)P (t) + P (t)A0,α(t) + ε{A0,α(t) + Aτ

0,α(t)}+mI.

Then the system (2.1) is α-stable.

Proof. Regarding to the above condition, we can reset relation (3.4) as
follows:

V̇ (t, y(t)) ≤< [Ṗ (t) + Aτ
0,α(t)P (t) + P (t)A0,α(t) +mI]y(t), y(t) >

+ ε < [A0,α(t) + Aτ
0,α(t)]y(t), y(t) > +2

m∑
i=1

< P (t)Ai,α(t)y(t− hi(t)), y(t) >

+ 2ε
m∑
i=1

< Ai,α(t)y(t− hi(t)), y(t) > −
m∑
i=1

(1− δi)‖y(t− hi(t))‖2

= Zτ(t)
χ(t) P (t)A1,α(t) + εA1,α(t) ... P (t)Am,α(t) + εAm,α(t)

Aτ
1,α(t)P (t) + εAτ

1,α(t) −(1− δ1)I ... 0
...

...
...

...
Aτ
m,α(t)P (t) + εAτ

m,α(t) 0 ... −(1− δm)I


Z(t),
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where

Z(t) := [y(t), y(t− h1(t)), · · · , y(t− hm(t))].

Therefore by condition (3.7) there is a constant β > 0 such that

V̇ (t, y(t)) ≤ −β‖Z(t)‖2, for all t ∈ R+.

Since ‖Z(t)‖2 ≥ ‖y(t)‖2 we have

V̇ (t, y(t)) ≤ −β‖y(t)‖2, for all t ∈ R+. (3.8)

By integrating both sides of (3.8) from 0 to t we get

V (t, y(t))− V (0, y(0)) ≤ −β
∫ t

0

‖y(s)‖2ds.

Hence

< P (t)y(t), y(t) > +ε‖y(t)‖2 +
m∑
i=1

∫ t

t−hi(t)
‖y(s)‖2ds− < P (0)y(0), y(0) >

− ε‖y(0)‖2 −
m∑
i=1

∫ 0

−hi(0)

‖y(s)‖2ds ≤ −β
∫ t

0

‖y(s)‖2ds.

Since

P0 = P (0) > 0, < P (t)y(t), y(t) >≥ 0,
m∑
i=1

∫ t

t−hi(t)
‖y(s)‖2ds ≥ 0,

ε‖y(t)‖2 ≥ 0,
m∑
i=1

∫ 0

−hi(0)

‖y(s)‖2ds ≤ 1

2α

m∑
i=1

(1− e−2αhi(0))‖φ‖2,

it follows that∫ t

0

‖y(s)‖2ds ≤ 1

β
[< P (0)y(0), y(0) > +ε‖y(0)‖2 +

1

2α

m∑
i=1

(1− e−2αhi(0))‖φ‖2].

Letting t → ∞ and noting that P (0) > 0, we obtain that
∫∞

0 ‖y(s)‖2ds < ∞,
which proves that y(t) ∈ L2([0,∞),Rn) and hence the solution y(t, φ) which is
a continuously differentiable function of linear system (3.2) is bounded, there
exists a function
ξ(.) : R+ → R+ such that

‖y(t, φ)‖ ≤ ξ(‖φ‖), for all t ≥ 0.
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Returning to the solution x(t, φ) of system (2.1) and noting that

‖y(0)‖ = ‖x(0)‖ = φ(0) ≤ ‖φ‖,

we have

‖x(t, φ)‖ ≤ ξ(‖φ‖)e−αt, for all t ∈ R+,

Then the system (2.1) is α-stable.
Thus the proof of Theorem 3.2 is now complete.

Example 3.1. Consider the following linear non-autonomous time-varying de-
lay system

ẋ(t) = A0(t)x(t) + A1(t)x(t− h1(t)), t ∈ R+,

with any initial function φ ∈ C([−1
2 , 0],R2), time-varying delay h1(t) = 1

2sin
2 t

2

and

A0(t) =

(
−1

2 − 6e−tsin2t− et 0
0 −1

2 −
3
2e
−tcos2t− et

)
,

A1(t) =

( √
3e−

1
2sin

2 t
2sint 0

0
√

3
2e
− 1

2sin
2 t
2cost

)
.

Therefore we have

m = 1, h =
1

2
and δ1 =

1

2
.

For α = 1, we obtain

A0,α(t) =

(
1
2 − 6e−tsin2t− et 0

0 1
2 −

3
2e
−tcos2t− et

)
,

A1,α(t) =

( √
3sint 0

0
√

3
2cost

)
.

Hence we find

µ(A0,α) = −2, η(A1,α) =
√

3 and

Q1(t) =

(
12sin2t 0

0 6cos2t

)
.
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Let ε = 1
2 , we have ε1 = 2.

Then the solution of the following Riccati differential equation

Ṗ (t) + Aτ
0,α(t)P (t) + P (t)A0,α(t) + P (t)Q1P (t) + ε1I = 0,

is found by

P (t) =

(
e−t 0
0 e−t

)
> 0, for all t ∈ R+.

Thus, by Theorem 3.1, the system is 1-stable.

4 Application to control problem

We apply the above results to the strong stabilizability problem of the follow-
ing linear non-autonomous multiple time-varying delays system with control
problem

ẋ(t) = A0(t)x(t) +
m∑
i=1

Ai(t)x(t− hi(t)) +B(t)u(t), t ∈ R+, (4.1)

where x(t) ∈ Rn is the state vector; u(t) ∈ Rr is the control, A0(t), Ai(t) ∈
Mn×n; i = 1, 2, ...,m and B(t) ∈ Mn×r are given matrix functions continuous
on R+.
Strong stabilizability means that for every given number α > 0, there exists
a delay-free feedback control u(t) = K(t)x(t), K(t) ∈ M r×n such that the
closed-loop system

ẋ(t) = [A0(t) +B(t)K(t)]x(t) +
m∑
i=1

Ai(t)x(t− hi(t)),

is exponentialy stable with the rate convergence α.
Recently the stabilization problem has been studied by using Lyapunov func-

tionals method, for example, [2, 3], etc.
As a direct consequence of Theorem 3.1 and Theorem 3.2 we obtain the

following sufficient conditions for the strong stabilizability in terms of Linear
matrix inequality and the solution of Riccati differential equation.

Theorem 4.1. Linear non-autonomous time-varying control system with mul-
tiple delays (4.1) is α-stabilizable, if there exists a symmetric matrix function
P (t) > 0 satisfying the following Riccati differential equation

Ṗ (t) + Aτ
0,α(t)P (t) + P (t)A0,α(t)−

m∑
i=1

P (t)Q̄i(t)P (t) +
m∑
i=1

ε̄iI = 0, (4.2)
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where

‖B‖ = sup
t∈R+

‖B(t)‖,

m∑
i=1

Q̄i(t) = B(t)Bτ(t)−
m∑
i=1

2

1− δi
Ai,α(t)Aτ

i,α(t),

m∑
i=1

ε̄i = m+ ε2‖B‖2 + 2εµ(A0,α) +
m∑
i=1

2ε2

1− δi
η2(Ai,α).

Moreover the feedback control is determined by

u(t) = −1

2
Bτ(t)[P (t)− εI]x(t),

where P (t) is the solution of Riccati differential equation (4.2).

Proof. Let us make a variable transformation

y(t) = eαtx(t), t ≥ 0.

Under the feedback control u(t) = K(t)x(t), where K(t) = −1
2B

τ(t)[P (t)− εI],
the system (4.1) is reduced to

ẏ(t) = [A0,α(t) +B(t)K(t)]y(t) +
m∑
i=1

Ai,α(t)y(t− hi(t)),

y(t) = eαtφ(t), t ∈ [−h, 0].

(4.3)

For the system (4.3), we apply the same Lyapunov-Krasovskii functional (3.3).
Then for the derivative of V (t, y(t)) in t along the solution y(t) of system (4.3)
we have

V̇ (t, y(t)) ≤< [Ṗ (t) + Aτ
0,α(t)P (t) + P (t)A0,α(t)− P (t)B(t)Bτ(t)P (t)

+mI]y(t), y(t) > + < [ε2B(t)Bτ(t) + ε(A0,α(t) + Aτ
0,α(t))]y(t), y(t) >

+ 2ε
m∑
i=1

< Ai,α(t)y(t− hi(t)), y(t) >

+ 2
m∑
i=1

< P (t)Ai,α(t)y(t− hi(t)), y(t) >

−
m∑
i=1

(1− δi) < y(t− hi(t)), y(t− hi(t)) > .

(4.4)
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From the inequalities (3.5) and (3.6), then we can obtain

V̇ (t, y(t)) ≤ < [Ṗ (t) + Aτ
0,α(t)P (t) + P (t)A0,α(t)−

m∑
i=1

P (t)Q̄i(t)P (t)

+mI]y(t), y(t) > +ε2‖B‖2 < y(t), y(t) > +2εµ(A0,α)‖y(t)‖2

+
m∑
i=1

2ε2

1− δi
η2(Ai,α)‖y(t)‖2.

Let

m∑
i=1

ε̄i = m+ ε2‖B‖2 + 2εµ(A0,α) +
m∑
i=1

2ε2

1− δi
η2(Ai,α).

Thus we get

V̇ (t, y(t)) ≤< [Ṗ (t) +Aτ0,α(t)P (t) + P (t)A0,α(t)−
m∑
i=1

P (t)Q̄i(t)P (t)

+

m∑
i=1

ε̄iI]y(t), y(t) > .

Since P (t) is a solution of (4.2), therefore

V̇ (t, y(t)) ≤ 0, for all t ∈ R+.

Since the completion of this proof is similar to that of Theorem 3.1, which
implies that system (4.1) is α-stabilizable.

Theorem 4.2. Linear non-autonomous time-varying control system with mul-
tiple delays (4.1) is α-stabilizable, if there exists a symmetric matrix function
P (t) > 0, such that the following condition LMI holds

χ̄(t) P (t)A1,α(t) + εA1,α(t) ... P (t)Am,α(t) + εAm,α(t)

Aτ1,α(t)P (t) + εAτ1,α(t) −(1− δ1)I ... 0
...

...
...

...
Aτm,α(t)P (t) + εAτm,α(t) 0 ... −(1− δm)I


< 0,

(4.5)

where

‖B‖ = sup
t∈R+

‖B(t)‖,

ε̃1 = m+ ε2‖B‖2,
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χ̄(t) =Ṗ (t) + Aτ
0,α(t)P (t) + P (t)A0,α(t)− P (t)B(t)Bτ(t)P (t)

+ ε{A0,α(t) + Aτ
0,α(t)}+ ε̃1I.

Moreover the feedback control is determined by

u(t) = −1

2
Bτ(t)[P (t)− εI]x(t).

Proof. Regarding to the above condition, we can write the relation (4.4) in
the following form:

V̇ (t, y(t)) ≤< [Ṗ (t) + Aτ
0,α(t)P (t) + P (t)A0,α(t)− P (t)B(t)Bτ(t)P (t)

+ ε(A0,α(t) + Aτ
0,α(t)) + ε2‖B‖2 +mI]y(t), y(t) >

+ 2ε
m∑
i=1

< Ai,α(t)y(t− hi(t)), y(t) > +2
m∑
i=1

< P (t)Ai,α(t)y(t− hi(t)), y(t) >

−
m∑
i=1

(1− δi) < y(t− hi(t)), y(t− hi(t)) >

= Zτ(t)
χ̄(t) P (t)A1,α(t) + εA1,α(t) ... P (t)Am,α(t) + εAm,α(t)

Aτ
1,α(t)P (t) + εAτ

1,α(t) −(1− δ1)I ... 0
...

...
...

...
Aτ
m,α(t)P (t) + εAτ

m,α(t) 0 ... −(1− δm)I


Z(t),

where

Z(t) := [y(t), y(t− h1(t)), · · · , y(t− hm(t))].

Therefore by condition (4.5) there is a constant β > 0 such that

V̇ (t, y(t)) ≤ −β‖Z(t)‖2, for all t ∈ R+.

Since the completion of this proof is the same to the proof of Theorem 3.2, then
the linear non-autonomous time-varying control system with multiple delays
(4.1) is α-stabilizable.

Example 4.1. Consider the following linear non-autonomous time-varying de-
lay system with control problem

ẋ(t) = A0(t)x(t) + A1(t)x(t− h1(t)) +B(t)u(t), t ∈ R+,
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with any initial function φ ∈ C([−1
2 , 0],R2), the time-varying delay h1(t) is the

same of Example 3.1, and

A0(t) =

(
−1

2 + 4e−tsin2t− 5
2e
t 0

0 −1
2 + e−tcos2t− 5

2e
t

)
,

A1(t) =

( √
2e−

1
2sin

2 t
2sint 0

0
√

3
2e
− 1

2sin
2 t
2cost

)
and B(t) =

(
4sint 0

0 2
√

2cost

)
.

For α = 1, therefore we obtain

m = 1, h =
1

2
, δ1 =

1

2
, µ(A0,α) = −2, η(A1,α) =

√
2 and ‖B‖ = 4.

Let ε = 1
2 , we find ε̄1 = 4 and Q̄1(t) =

(
4sin2t 0

0 2cos2t

)
.

Then the solution of the following Riccati differential equation

Ṗ (t) + Aτ
0,α(t)P (t) + P (t)A0,α(t)− P (t)Q̄1(t)P (t) + ε̄1I = 0,

is found by

P (t) =

(
e−t 0
0 e−t

)
> 0, for all t ∈ R+.

Thus, by Theorem 4.1, the system is 1-stabilizable with feedback control

u(t) =

(
(1− 2e−t)sint 0

0 1√
2
(1− 2e−t)cost

)
.

5 Conclusion

In this paper we have presented sufficient conditions for the α-stable (expo-
nential stability with a given rate α) of a class of linear non-autonomous time-
varying system with multiple delays. The conditions are derived in terms of the
solution of Riccati differential equation or of linear matrix inequality. The re-
sults are applied to obtain α-stabilizable conditions for linear non-autonomous
time-varying control system with multiple delays.
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