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Abstract. The nonlinear dynamical system, describing the dynamics of sector
capital distribution over two levels of technological development, low and high,
proposed. The dynamics is determined by the interaction of innovation and
imitation process with the process of depreciation taking into account. The
qualitative behavior of the system trajectories depending on the relationship
of parameters determining the rates of innovation, imitation and depreciation
processes is studied. The invariant set which all trajectories enter in a finite
time is found. In the case of nonzero rate of innovation process, the uniqueness
of equilibrium is proved. On the basis of proposed constructive geometrical
method the sufficient conditions of its global stability are obtained. In order
to study the behavior of isoclines the special curve parametrization, connected
with the invariant set geometry, is proposed. It is shown that in the absence
of innovation process the existence of two equilibria, stable and unstable, is
possible. In addition, the transition to a high technological level, corresponding
to a stable equilibrium, may not occur even under sufficiently small depreciation
process rate. The bifurcation value of the imitation rate parameter is found.
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1 Introduction

In [1],[2] K.Iwai proposed a model describing the evolution of economical sys-
tem through innovation and imitation. It was one of the first attempts to create
the mathematical interpretation of well-known Schumpeterian concept of en-
dogenous economic growth, caused by interacting processes of innovation and
imitation [3].

It is worth to note that Schumpeterian concept of economic development
through innovation and imitation attracts considerable attention because there
exists a large number of empirical confirmations of its main principles. Subse-
quently, different approaches to mathematical modeling of of its main principles
are proposed [4, 5, 6, 7, 8, 9].

V.M. Polterovich and G.M. Henkin, invoking the Iwai’s model, proposed the
economic growth model [10, 11], based on Burgers type difference-differential
equations used to study the fluid processes [12].

Extending these results (see also [13]), in [14, 15] the authors introduced
the notion of economic niche volume in order to take into account the bound-
edness of economic growth, and under this condition, the dynamics of capital
distribution over efficiency levels was studied. In addition, in [16] was consid-
ered the influence of depreciation process on the capital distribution dynamics
taking into account the innovation process only. It is worth to note that the
result presented in [16] is the partial solution of the problem of the influence of
depreciation on Schumpeterian dynamics, which was formulated in [10]. In this
paper, the study of the dynamics of capital distribution over efficiency levels in
presence of depreciation is presented. Unlike [16], in the proposed model not
only the innovation process is taken into account but the imitation process as
well. The latter circumstance considerably complicates the study of dynamics
of corresponding two-dimensional dynamic system with sufficiently large num-
ber of parameters, namely six. The main difficulty is due to the right hand
sides which may be reduced to the polynomials of third degree, depending in
two variables. It is worth to note that the qualitative theory of the differential
equations used in this paper is widely applied for the mathematical modeling
of the economic processes (for example, see [17, 18, 19, 20]).

The paper is organized as follows. Section 2 describes the model of the
capital distribution dynamics with innovation, imitation and depreciation pro-
cesses.

In Section 2 the construction of invariant set Ω is given,and, it is proved that
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all positive half-trajectories enter and do not leave Ω. Besides, the existence of
an unique equilibrium C∗ of the presented two-dimensional dynamic system is
proved.

Sections 3, 4 provide the analysis of isoclines. The sufficient condition on
economic niche volume V , under which the arcs of isoclines, belonging to Ω,
present the graphs of monotonically decreasing functions, is obtained. The main
tool to prove these result is the special parametrization of the arcs of isoclines,
which is due to the geometric structure of Ω.

In Section 5 the main result is proved: the equilibrium of the system is
globally stable for sufficiently large economic niche volume V . The proof is
constructive and is based on the parameterized set of nested polygons P (d)
shrinking to the equilibrium C∗ = (C∗

1 , C
∗
2) as d → d∗, where d∗ = C∗

1 +C∗
2 −V .

In addition, all trajectories enter and do not leave each polygon.

Section 6 deals with the analysis of capital distribution dynamics without
an innovation process, i.e. only an imitation is taken into account. It is shown
that in this case there appears the second equilibrium (V, 0), which is not stable,
if along with (V, 0) there exists the first equilibrium C∗. It is shown that the
technological development, i.e. the transition to a higher technological level,
via an imitation only, without an innovation, may be impossible.

2 The model

Let Ci = Ci(t) be the integrated capital of the sector firms at the i-th technolog-
ical level (one firm can have the capital at different levels) at a time t, i = 1, 2.
Consider the following system of ordinary differential equations, describing the
dynamics of capital distribution over the technological, low (i = 1) and high
(i = 2), levels

Ċ1 =
1

λ1
(1− φ(C1, C2))C1(V − C1 − C2) + µC2, (1)

Ċ2 =
1

λ2
C2(V − C1 − C2)− µC2 + φ(C1, C2)C1, (2)

where

φ(C1, C2) = α + β
C2

C1 + C2
. (3)

Here, φ(C1, C2) is the share of capital of the firms at the first, low, level intended
to the developing of the production at the second, high, level. The structure of φ
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is as follows: α is the capital share due to innovation firms’s activity and β C2

C1+C2

is the share due to imitation activity. The latter, as one can see, depends on
the share of the firms’s capital engaging in the development of the second, high,
technological level. The term µC2 describes the depreciation process. 0 < V
is the economic niche volume. The presence of the multiplier V − C1 − C2

in the right-hand sides permits to take into account the boundedness of the
economic growth [14],[15]. Further, 0 < λi is the unit prime cost at the i-th level
(i.e. the unit goods production cost per unit time), i = 1, 2. All parameters,
α, β, µ > 0, V, λi, i = 1, 2, are constants. Denote C = (C1, C2) ∈ R2

+ \ {O},
where {O} = (0, 0).

In [16] the system (1)-(2) without imitation process was considered, i.e. it
was supposed β = 0. The global stability of a unique equilibrium in R2

+ \ {O}
was proved. Here we suppose that

β > 0, α ⩾ 0, (4)

which means that the model involves the imitation process, while the innovation
process will be absent in some cases considered below. Besides, suppose that

λ1 > λ2, α+ β < 1, µ > 0. (5)

The first condition means that the unit prime cost at the low technological level
is greater than at the high one.

The inequality α + β < 1 implies that

φ(C1, C2) ∈ (0, 1). (6)

Remark 1 It easy to show that R2
+ \ {O} is invariant set. Thus, further, the

phase space is this invariant set R2
+ \ {O}.

3 Invariant sets, equilibria (α > 0, β > 0)

Denote by v · w the scalar (inner) product of vectors v = (v1, v2) and w =
(w1, w2). Then v · w = v1w1 + v2w2.

Definition 1 Let γ(t, x0), γ(0, x0) = x0 be the solution of the differential equa-
tion ẋ = F (x). The positive half-trajectory corresponding to γ(t, x0) is the set
{γ(t, x0), t ⩾ 0}.
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Denote

d1 =
λ1(α + β)

1− α− β
.

Lemma 1 All positive half-trajectories of the system (1)-(2), with initial points
in R2

+\{O}, enter and do not leave the set Ω = {(C1, C2) ∈ R2
+\{O} : C1+C2 ∈

[V, V + d1]}.

Proof

Let n = (1, 1) be the normal vector of the straight line C1 + C2 = V + d,
where d is any nonnegative constant, f = (f1, f2), where f1, f2 are the righthand
sides of (1), (2), respectively. Then

f · n = (a1C1 + a2C2)(V − C1 − C2) + φ(C1, C2)C1,

where a1 =
1−φ(C1,C2)

λ1
, a2 =

1
λ2
. Hence,

f · n|C1+C2=V = φ(C1, V − C1)C1 > 0, (7)

where the left-hand side is the value of inner product on the straight line. Next

f ·n|C1+C2=V+d = − d

λ1

(
1−φ(C1, V+d−C1)

)
C1+a2(V+d−C1)+φ(C1, V+d−C1)C1,

and after obvious transformations we obtain for d ⩾ d1

f ·n|C1+C2=V+d =
(
− d

λ1
(1−α−β)+α+β

)
C1− (d+1)

βC2
1

V + d
−da2C2 < 0. (8)

The conclusion of lemma follows from (7), (8). □

Remark 2 The set Ω is a quadrangle, namely, a trapezoid.

Lemma 2 Assume α > 0. The system (1)-(2) has the unique equilibrium C∗ ∈
R2

+ \ {O}.

Proof

To determine an equilibrium consider the system

fi(C1, C2) = 0, i = 1, 2. (9)

If C1 = 0 then (1) implies that C2 = 0 but (0, 0) does not belong to R2
+ \ {O}.

Thus, suppose C1 ̸= 0. Dividing the equations (9) by C1 and denoting x =
C2

C1
, y = V − C1 − C2, we obtain the system of equations

1

λ1

(
1− α− β

x

1 + x

)
y + µx = 0, (10)
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1

λ2
xy − µx+ α + β

x

1 + x
= 0. (11)

From (10), (11) we obtain the functions g1(x), g2(x)

y = − λ1µx

1− α− β x
1+x

= g1(x), y = λ2(µ− α

x
− β

1 + x
) = g2(x).

Let us prove that the curves y = g1(x) and y = g2(x) have the unique common
point if x > 0. The following properties of g1, g2 are valid for x > 0

g1(x) < 0, g1(0) = 0, g′1(x) = −λ1µ(1−α−β
x2

(1 + x)2
)(1−α− βx

1 + x
)−2 < 0;

lim
x→+0

g2(x) = −∞, lim
x→+∞

g2(x) = µλ2 > 0, g′2(x) = λ2(
α

x2
+

β

(1 + x)2
) > 0.

Denoting G(x) = g1(x)− g2(x) we have for x > 0 : G′(x) < 0, limx→+0G(x) =
+∞, limx→+∞G(x) = −∞, that implies the existence of the unique point
x∗ > 0 such that G(x∗) = 0, i.e. the unique point (x∗, y∗) of intersection of the
curves y = g1(x), y = g2(x), for x > 0. Therefore, the system (1)-(2) has a
unique equilibrium C∗ ∈ R2

+ \ {0, 0}, where C∗
1 = V−y∗

1+x∗ , C
∗
2 = C∗

1x
∗. □

Remark 3 It follows from Lemma 1 that C∗ ∈ Ω.

4 Isoclines (α > 0, β > 0)

In this section, we prove that for sufficiently large value of V the arcs of isoclines,
belonging to the invariant set Ω, are the graphs of the monotonically decreasing
functions.

It is worth to note that after multiplying the equations (9) by C1 + C2 ̸=
0 we obtain that isoclines are the cubic curves, which equations contain six
parameters: α, β, µ, λ1, λ2, V . The latter fact produces supplementary
difficulties while proving the global stability.

Consider the isocline f1(C1, C2) = 0

1

λ1
(1− α− β

C2

C1 + C2
)C1(V − C1 − C2) + µC2 = 0.

This isocline has no common points with C2-coordinate axis if C2 > 0, and
(V, 0) is its unique point with C1-coordinate axis. Next, prove some properties
of the isocline f1(C1, C2) = 0.
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Lemma 3 The isocline f1(C1, C2) = 0 has one and only one common point
C(d) = (C1(d), C2(d)) with the straight line C1 + C2 = V + d, where d ⩾ 0. If
d ∈ [0, d1] then C(d) ∈ Ω.

Proof

Consider the equation f1(C1, V + d− C1) = 0, or

1

λ1

(
1− α− β(1− C1

V + d
)C1(−d)

)
+ µ(V + d− C1) = 0.

Dividing it by V + d and denoting z = C1

V+d we obtain the equation

βdz2 + (λ1µ+ d(1− α− β))z − λ1µ = 0

with the unique positive solution z(d) > 0, if d ⩾ 0, and, therefore, the isocline
f1(C1, C2) = 0 has one and only one common point C(d) = (C1(d), C2(d)) with
the straight line C1 +C2 = V + d, if d ⩾ 0, such that C1(d) = z(d)(V + d) > 0.

It is clear from the above equation that z(0) = 1. Next, if d > 0, then
z(d) < 1, or

z(d) =
1

2β

(
−
(
1−α−β+

λ1µ

d

)
+

√(
1− α− β +

λ1µ

d

)2

+
4λ1µβ

d

)
< 1 (12)

Really, it is easy to show, that this inequality is equivalent to the obvious
one βd + d(1 − α − β) > 0. Therefore, C1(d) = z(d)(V + d) < V + d and
0 < C2(d) = V +d−C1(d) = (V +d)(1− z(d)) < V +d. If d = 0, then C1 = V ,
and C(0) = (V, 0) ∈ Ω. Thus, C(d) ∈ Ω, if d ∈ [0, d1]. □

Denote by M and R the common points of the isocline f1 = 0 and the
straight line C1 + C2 = V + d1 and the C1-coordinate axis, respectively, i.e.

M = {C : f1(C) = 0} ∩ {C : C1 + C2 = V + d1}, R = (V, 0).

We shall write M = (C1(M), C2(M)) = (C1(d1), C2(d1)) = C(d1).

Let RM be the ark of the isocline f1 = 0, with endpoints R and M . Lemma
3 implies the existence of the unique arc of isocline f1 = 0 belonging to Ω.

Corollary 1 RM ∈ Ω.

Lemma 4 The isocline f1(C1, C2) = 0 and the straight line C2 = q, where
q ∈ [0, V + d1], have no more than one common point in Ω.
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Proof

Consider the equation f1(C1, q) = 0, or

s1(C1) = a1
(
1− α− βq

C1 + q

)
= − µq

C1(V − C1 − q)
= s2(C1).

Using standard methods of analysis we can easily prove that the graphs of
functions s1, s2 have an unique common point if q > 0. This point may belong
or not to Ω if q ∈ [0, V + d1] which implies the conclusion of Lemma. □

Lemma 5 If d > 0 then

(1) C ′
2(d) > 0;

(2) there exists d̂ > 0 such that for d ∈ (0, d̂) :

C ′
1(d) > 0 if V < λ1µ

1−α , C ′
1(d) < 0 if V > λ1µ

1−α.

Proof

From the proof of Lemma 3: C1(d) = (V + d)z(d), C ′
1(d) = z(d) + (V +

d)z′(d). Differentiating z(d), given by (12), we obtain

z′(d) =
1

2β

(
− λ1µ

d2

)(
− 1 +

λ1µ
d + (1− α− β) + 2β

√
D

)
,

where D = (a+ b
d)

2 + 4βb
d , a = 1− α− β, b = λ1µ. It easy to show that

z′(d) =
λ1µ

d2
√
D

(
z(d)− 1

)
,

and, therefore, taking into account (12) we have: z′(d) < 0. Further,

C ′
1(d) = z(d) +

b(z(d)− 1)

d2
√
D

(V + d),

C ′
2(d) = 1− C ′

1(d) = (1− z(d))
(
1 +

b

d2
√
D

)
> 0.

Let us find limd→+0C
′
1(d). As a result of simple transformations of z′(d) we

have

2βz′(d)(V + d) = −4e(ab+ e)

b
·

1√
(ad+ b)2 + 4ed · (ad+ b+ 2ed

b +
√

(ad+ b)2 + 4ed)
· (V + d),
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where a = 1− α− β, b = λ1µ, e = λ1µβ. Hence,

lim
d→+0

z′(d)(V + d) = −e(ab+ e)V

βb3
.

Further, from (12)

2βz(d) = −(a+
b

d
) +

√
D =

D − (a+ b
d)

2

D + (a+ b
d)

2

we obtain

2β lim
d→+0

z(d) = lim
d→+0

4e

d
√
D + ad+ b

=
2e

b
.

Taking into account that C ′
1(d) = z(d) + z′(d)(V + d), we have

lim
d→+0

C ′
1(d) =

e

βb

(
1− V (ab+ e)

b2

)
.

Thus, C ′
1(d) > 0 if V < b2

ab+e , C
′
1(d) < 0 if V > b2

ab+e . Taking into account the

continuity of C ′
1(d) and that b2

ab+e = λ1µ
1−α , we obtain the conclusion of Lemma.

□

Lemma 6 Assume V > λ1µ(1−α)
(1−α−β)2 . Then the equation f1(C1, C2) = 0 deter-

mines the unique monotonically decreasing function C2 = h(C1) on the segment
[C1(M), V ].

Proof

Let us show, that each straight line C1 = p, where p ∈ (0, V +d1], intersects

the isocline, or the arc RM , at a unique point, if V > λ1µ(1−α)
(1−α−β)2 . Substituting

C1 = p in f1(C1, C2) = 0 we obtain

1

λ1

(
1− α− β

C2

p+ C2

)
p(V − p− C2) + µC2 = 0,

and denoting r = p + C2 it is easy to obtain the following equation from the
above one(µλ1

p
+ α + β − 1

)
r2 + (V (1− α− β)− βp− µλ1)r + βpV = 0, (13)

where r ∈ [V, V + d1]. Let us study the conditions under which (13) has 0, 1 or
2 positive solutions.
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Consider the case µλ1

p + α + β − 1 > 0, or

p <
λ1µ

1− α− β
. (14)

Suppose, the discriminant of (13) is nonnegative. Then this equation has two
solutions, both positive or negative. Let us show, that (13) cannot have two
positive solutions. Two positive solutions exist if and only if V (1 − α − β) −
βp − µλ1 < 0, or p > 1

β (V (1 − α − β) − λ1µ). Taking into account (14), we
obtain

1

β
(V (1− α− β)− λ1µ) < p <

λ1µ

1− α− β
,

which implies 1
β (V (1− α− β)− λ1µ) <

λ1µ
1−α−β or V < λ1µ(1−α)

(1−α−β)2 that contradicts
to the assumption of Lemma.

Consider the case µλ1

p + α + β − 1 = 0, or p = λ1µ
1−α−β . Then from (13)

r = − βpV

V (1− α− β)− βp− λ1µ
,

and, as r > 0, it is necessary that V (1−α−β)−βp−λ1µ < 0, or λ1µ
1−α−β = p >

1
β (V (1−α− β)− λ1µ), which contradicts to the assumption of Lemma as well.

Consider the case µλ1

p + α + β − 1 < 0, or p > λ1µ
1−α−β . Then, the inequality

βpV > 0 implies that (13) has one positive solution.

Further, taking into account Corollary 1, we obtain, that under condition
V > λ1µ(1−α)

(1−α−β)2 , the isocline f1 = 0 and the straight line C1 = p have one common

point. Thus, the equation f1 = 0 determines the unique function C2 = h(C1)
with the graph RM . The monotonicity of h follows from Lemma 4.

Taking into account that

V >
λ1µ(1− α)

(1− α− β)2
=

λ1µ

1− α− β
· (1 + β

1− α− β
) >

λ1µ

1− α− β
>

µλ1

1− α
,

we obtain from Lemma 5 that C ′
1(d) < 0 for sufficiently small d > 0. Therefore,

C ′
2(d) = 1− C ′

1(d) > 0 and for sufficiently small d > 0 we have

h′(C1) =
C ′

2(d)

C ′
1(d)

< 0.

The monotonicity of h permits to assert the validity of the latter inequality for
d ∈ [0, d1]. □

Next, consider the isocline f2(C1, C2) = 0.
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Lemma 7 The isocline f2(C1, C2) = 0 has one and only one common point
Ĉ(d) = (Ĉ1(d), Ĉ2(d)) with the straight line C1 + C2 = V + d, where d ⩾ 0. If
d ∈ [0, d1] then Ĉ(d) ∈ Ω.

Proof

Consider the equation f2(V + d− C2, C2) = 0:

−da2C2 − µC2 + (α + β
C2

V + d
)(V + d− C2) = 0,

where a2 =
1
λ2
. Dividing the latter equation by V + d and substituting ẑ = C2

V+d

we obtain the equation

βẑ2 + (a2d+ µ+ α− β)ẑ − α = 0

with one positive solution ẑ(d):

ẑ(d) =
1

2β

(
− (a2d+ µ+ α− β) +

√
D̂(d)

)
< 1, (15)

whereD̂(d) = (a2d + µ + α − β)2 + 4αβ. The inequality ẑ(d) < 1 is valid
because it is equivalent to the obvious one 0 < a2d+µ. Therefore, 0 < Ĉ2(d) =
ẑ(d)(V + d) < V + d, and Ĉ1(d) = V + d − Ĉ2(d) = (V + d)(1 − ẑ(d)), i.e.
Ĉ1(d) ∈ (0, V + d). Thus, Ĉ(d) = (Ĉ1(d), Ĉ2(d)) ∈ Ω if d ∈ [0, d1]. □

Denote by K and N the common points of the isocline f2 = 0 and the
straight lines C1 + C2 = V and C1 + C2 = V + d1, respectively

K = {C : f2(C) = 0}∩{C : C1+C2 = V }, N = {C : f2(C) = 0}∩{C : C1+C2 = V+d1}.

We shall writeK = Ĉ(0), N = Ĉ(d1).

Let KN be the arc of the isocline f2 = 0, with the endpoints K and N .

Corollary 2 KN ∈ Ω.

Lemma 8 C ′
1(d) > 0.

Proof

Differentiating (15), we obtain

z′(d) =
1

2β

(
− a2 +

(a2d+ µ+ α− β)a2√
D(d)

)
= −a2ẑ(d)√

D̂
.

From Ĉ2(d) = (V + d)ẑ(d) we obtain Ĉ ′
2(d) = ẑ(d) + ẑ′(d)(V + d) = ẑ(d)

(
1−

a2(V+d)√
D̂

)
. Hence Ĉ ′

1(d) = 1− Ĉ ′
2(d) = (1− ẑ(d)) + a2(V+d)√

D̂
> 0. □
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Corollary 3 C1(K) < C1(N).

Lemma 9 Assume V > λ2ẑ(0)

√
D̂(0). Then Ĉ ′

2(d) < 0.

Proof

Using the expression for Ĉ ′
1(d) from Lemma 8, we obtain

Ĉ ′
2(d) = 1− Ĉ ′

1(d) = ẑ(d)− a2(V + d)√
D̂(d)

.

Therefore, the inequality Ĉ ′
2(d) < 0 is equivalent to V >

ẑ(d)
√

D̂(d)
a2

−d = G(d)−d,

where G(d) =
ẑ(d)

√
D̂(d)

a2
. If we show that G′(d) < 0, then G(0)− 0 > G(d)− d

for d > 0, and we will obtain the conclusion of Lemma. Using the expression
for ẑ from (15), we obtain

G(d) =
λ2

2β

(
− (a2d+ µ+ α− β) +

√
D̂(d)

)√
D̂(d).

Denote x = x(d) = a2d+ µ+ α− β and consider the following function H(x):

H(x) =
λ2

2β

(
− x+

√
x2 + 4αβ

)√
x2 + 4αβ.

After simple transformations we get: H ′(x) =
−3x2−4αβ+2x

√
x2+4αβ√

x2+4αβ
.

Let us show that the numerator of the above fraction is negative, or
2x

√
x2 + 4αβ < 3x2 + 4αβ. If x < 0, this inequality is obvious. If x ≥ 0, then,

after squaring, it is equivalent to the obvious one 0 < 5x4 + 8x2αβ + 16(αβ)2.
Hence, H ′(x) < 0. Noting that H(x(d)) = G(d), we obtain G′(d) = H ′(x(d)) =
H ′(x)x′(d) = H ′(x)a2 < 0. □

Lemma 10 If V > λ2ẑ(0)

√
D̂(0), then the equation f2(C1, C2) = 0 deter-

mines the unique monotonically decreasing function C2 = g(C1) for C1 ∈
[C1(K), C1(N)].

Proof

The proof follows from Lemmas 8, 9 and the following equality g′(C1) =
Ĉ ′

2(d)

Ĉ ′
1(d)

< 0. □

Denote

Vmax = max
( λ1µ(1− α)

(1− α− β)2
, λ2ẑ(0)

√
D̂(0)

)
.
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Corollary 4 If V > Vmax, then C1(M) < C1(N).

Proof

The proof follows from Lemmas 2, 6, 10. □

5 Global stability

In this section we consider the system (1)-(2), where α > 0, that is a pro-
cess of technological development involves an innovation process (along with
imitation).

Denote by C(t, C0) a solution of the system (1)-(2) such that C(0, C0) = C0.

Definition 2 The equilibrium C∗ of the system (1)-(2) is called globally stable
if limt→+∞C(t, C0) = C∗ for each C0 ∈ R2

+ \ {O}.

Denote
d∗ = C∗

1 + C∗
2 − V,

i.e. the value of the parameter d = d∗ corresponds to the straight line C1+C2 =
C∗

1 + C∗
2 , or C1 + C2 = V + d∗, containing the equilibrium C∗.

The main result is the following.

Theorem 1 (about global stability) If V > Vmax then C∗ is a globally stable
equilibrium of (1)-(2).

Remark 4 The establishment of global stability for nonlinear dynamical sys-
tems is rather difficult procedure. The method of Lyapunov functions does not
give any constructive receipt for its application. Here, we present a geometrical
approach to prove the global stability based on the construction of parameterized
nested polygons, shrinking to C∗, and such that each positive half-trajectory with
initial point in R2

+ \ {O} enters each polygon. The difficulties of implement-
ing the proposed method are due to the impossibility of obtaining the explicit
expression for C∗ and sufficiently large number of parameters.

Proof

The method of proof is based on the results of Section 4 (see Lemmas 3,
6 7, 10) which implies that the arcs of isoclines, RM , KN , belonging to Ω,
have no more than one common point with the straight lines C1 = p, C2 =
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q, C1 + C2 = V + d, where p, q ∈ [0, V + d1], d ∈ [0, d1]. Taking the latter into
view, we construct the continuous parameterized set of convex polygons P (d)
which sides are parallel to the straight lines C1 = p, C2 = q, C1 +C2 = V + d.

In addition, the polygons P (d) compose the nested set, i.e. P (d̃1) ⊃ P (d̃2),
if d̃1 < d̃2, and C∗ ∈ P (d) for any d ∈ [0, d∗). As a result, P (d) → C∗ as
d → d∗-0, i.e. P (d) shrinks to C∗, which means that all vertexes of P (d) tends
to C∗. Then, we will show that all trajectories enter each polygon P (d) and do
not leave it, which means the global stability of C∗.

The partition of Ω. Denote by R,R′, E, E ′ the vertexes of the quadrangle
Ω = RR′EE ′

R = (V, 0), R′ = (V + d1, 0), E = (0, V ), E ′ = (0, V + d1).

Let l0 l1 be the following straight lines

l0 = {C : C1 + C2 = V }, l1 = {C : C1 + C2 = V + d1}.

The invariant set Ω is divided by the arcs RM, KN of the isoclines into four
simply connected subsets Ωi, Ω = ∪4

i=1Ωi. The boundaries ∂Ωi of Ωi are as
follows

∂Ω1 = KR ∪RC∗ ∪ C∗K; ∂Ω3 = C∗N ∪NM ∪MC∗;

∂Ω2 = V R′ ∪R′N ∪NC∗ ∪ C∗R; ∂Ω4 = KC∗ ∪ C∗M ∪ME ′ ∪ E ′E ∪ EK,

where EK, KR are the segments of the straight line l0, R
′N, NM, ME ′ are

the segments of the straight line l1, C
∗R, MC∗ are the arcs of the isocline

f1 = 0, KC∗, NC∗ are the arcs of the isocline f2 = 0. Here, we consider the
non-oriented arcs: KC∗ = C∗K, etc.

Note, that ∂Ωi ∩ ∂Ωj is the boundary component of Ωi and Ωj if i ̸= j.

Analyzing the signs of the righthand sides of (1), (2) it is easy to obtain
the following

f1 > 0, f2 > 0 if C ∈ int Ω1; f1 < 0, f2 < 0 if C ∈ int Ω3;

f1 < 0, f2 > 0 in C ∈ int Ω2; f1 > 0, f2 < 0 in C ∈ int Ω4,

where intΩj is the interior of Ωj.

The construction of polygon P (d). Consider the relative position of the
points R, N, M, K. For points A,B ∈ R2

+ we write A < B if C1(A) < C1(B).
From the above study we have K < R, K < N, M < N, M < R. Below, we
consider four possible cases:
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1) K < M < R < N ; 2) M < K < R < N ;

3) K < M < N < R; 4) M < K < N < R.

In what follows, the boundary components of polygons P (d) are the seg-
ments of straight lines with normal vectors

u = (1, 0), v = (0, 1), w = (1, 1).

Below, we represent the detailed proof in the first case. In the other cases, the
character of arguments is analogous to the first one.

1)Assume K < M < R < N .

All trajectories enter and do not leave the parallelogram M1RR1M , where

M1 = {C : C1 = C1(M)} ∩ l0, R1 = {C : C1 = C1(R) = V } ∩ l1.

Indeed, consider the segment Seg(p) = {C : C1 = p}∩Ω. If p ∈ [0, C1(M)], then
f · u = f1 > 0 on Seg(p) ⊂ Ω1 ∪ Ω4, except for the point M : f1(M) = 0. But
Lemma 1 implies that M is the ingress point for M1RR1M . If p ∈ [V, V + d1]
then f · u = f1 < 0 on Seg(p) ⊂ Ω2 ∪ Ω3, except for the point R: f1(R) = 0,
but as it was noted above, R is the ingress point for M1RR1M as well.

Let us construct the parameterized set of polygons P (d) ⊂ M1RR1M , d ∈
[0, d∗). Below, we represent the sequence of steps providing the vertexes and
sides of P (d) (fig. 1).

a. Vertex R(d). Let us begin with the point R(d) ∈ C∗R, which will be
called the generating vertex. It means that R(d) initialize P (d). Namely, we
will obtain P (d), constructing its boundary, moving from R(d) clockwise and
counterclockwise, determining the sequence of segments, sides of P (d), till they
meet at some final point.

b. Vertex Q(d). Denote Q(d) = {C : C1 + C2 = C1(R(d)) + C2(R(d))} ∩
M1C

∗, where M1C
∗ is the segment with endpoints M1, C

∗. Note that M1C
∗ ⊂

K̃C∗C̃, where K̃C∗C̃ is a triangle with vertexes K̃ = {C : C2 = C2(C
∗)} ∩ l0,

C̃ = {C : C1 = C1(C
∗)}∩ l0 and C∗. Moreover, due to the monotone decreasing

of the functions C2 = h(C1), C2 = g(C1), the arcs KC∗ and C∗R do not belong
to K̃C∗C̃, except for C∗. Hence, M1C

∗ has no common points with the isoclines,
except for C∗.

Let the segment R(d)Q(d) be the side of P (d), parallel to l0.

c. Vertex N(d). Denote N(d) = {C : C1 = C1(R(d))} ∩ C∗N .

Let the segment R(d)N(d) be the side of P (d), parallel to C1 = 0.

d. Vertexes L(d), M(d): ”L-procedure”.
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Figure 1: K < M < R < N .

Denote by Ray(A, e) the ray with initial point A and directing vector e.
Consider the point L̃(d) = Ray(Q(d), v) ∩ Ray(N(d), w1), where w1 = (−1, 1).
Obviously, L̃(d) ∈ M1RR1M .

We have three cases of L̃(d) position: L̃(d) ∈ Ω3, L̃(d) ∈ Ω4, L̃(d) ∈ MC∗

(fig. 2).

Figure 2: Position of L̃(d).

d1. L̃(d) ∈ Ω3.
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Consider the point M(d) = Ray(Q(d), v) ∩MC∗. Note, that C1(M(d)) =
C1(L̃(d)) and C2(M(d)) < C2(L̃(d)). Then, obtain the point L(d) = {C :
C2 = C2(M(d))} ∩ Ray(N(d), w1) ∈ Ω3. Thus, we obtain the polygon P (d) =
R(d)Q(d)M(d)L(d)N(d).

d2. L̃(d) ∈ Ω4.

Consider the point M(d) = Ray(N(d), w1) ∩MC∗. Then, obtain the point
L(d) = {C : C2 = C2(M(d))} ∩ Ray(Q(d), v) ∈ Ω4. Thus, we obtain the
polygon P (d) = R(d)Q(d)L(d)M(d)N(d).

d3. L̃(d) ∈ MC∗.

Now, M(d) = L(d) = L̃. Thus, we obtain the polygon P (d) =
R(d)Q(d)M(d)N(d).

The procedure of obtaining of the vertexes M(d) = L(d), comprising items
d1, d2, d3, will be used below. Let us call it, for brevity, the ”L-procedure”.

According to the construction, in all cases, P (d̃2) ⊂ P (d̃1) if d̃1, d̃2 ∈ [0, d∗)
and d̃1 < d̃2. Moreover, C∗ ∈ P (d) for any d ∈ [0, d∗). Thus, P (d) shrinks to
the equilibrium C∗, as d → d∗, which means that all its vertexes tends to C∗.

Let us show that all trajectories enter P (d) and do not leave it. We have

f · w = f1 + f2 > 0 on R(d)Q(d) ⊂ Ω1,

f · u = f1 > 0 on Q(d)M(d) ⊂ Ω4, if L̃(d) ∈ Ω3,

f · u = f1 > 0 on Q(d)L(d) ⊂ Ω4, if L̃(d) ∈ Ω4,

f · v = f2 < 0 on M(d)L(d) ⊂ Ω3, if L̃(d) ∈ Ω3,

f · v = f2 < 0 on L(d)M(d) ⊂ Ω4, if L̃(d) ∈ Ω4,

f · w = f1 + f2 < 0 on M(d)L(d) ⊂ Ω3, if L̃(d) ∈ Ω3,

f · w = f1 + f2 < 0 on L(d)M(d) ⊂ Ω4, if L̃(d) ∈ Ω4.

Thus, C∗ is globally stable.

2)Assume M < K < R < N .

Similarly to the previous case 1, it is easy to show that all positive half-
trajectories enter and do not leave the polygon (pentagon) KRR1D̃M̃ , where

M̃ = {C : C1 = C1(K)} ∩MC∗, D̃ = {C : C2 = C2(M̃) ∩ l1.

The procedure of constructing of polygons P (d) ⊂ KRR1D̃M̃ , d ∈ [0, d∗),
is absolutely similar to the one described in the previous case 1 (fig. 3).

3) K < M < N < R.

Let us introduce the following points: R̃ = {C : C1 = C1(N)} ∩ C∗R,
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Figure 3: M < K < R < N .

Ẽ = {C : C2 = C2(R̃)} ∩ l0.

Consider three possible cases of the relative position of the points M1, C̃, Ẽ

belonging to l0: M1 < C̃ < Ẽ (31), M1 < Ẽ < C̃ (32), Ẽ < M1 < C̃ (33).

31. M1 < C̃ < Ẽ (fig. 4).

Similarly to the case 1, it is easy to show, that all trajectories enter and do
not leave the polygon M1ẼR̃NM .

Denote R̂ = {C : C1 = C1(Ẽ)} ∩ C∗R̃, where C∗R̃ is the arc: C∗R̃ ⊂ C∗R.
Consider two segments: ẼR̂ and M1C

∗, which will contain the vertexes of P (d).
As it was shown in the case 1, M1C

∗ has no common points with the isoclines,
except for C∗. Obviously, ẼR̂ also has no common points with the isoclines.

Let R(d) ∈ C∗R̃ be the generating point.

We have two cases: R(d) ∈ R̂R̃, R(d) ∈ C∗R̂.

If R(d) ∈ R̂R̃ then E(d) = {C : C2 = C2(R(d))} ∩ ẼR̂, Q(d) = {C :
C1 + C2 = C1(E(d)) + C2(E(d))} ∩M1C

∗.

If R(d) ∈ C∗R̂ \ C∗ then Q(d) = {C : C1 + C2 = C1(R(d)) + C2(R(d))} ∩
M1M .

Next, after Q(d), in both cases, we obtain N(d) = {C : C2 = C2(R(d))} ∩

https://doi.org/10.21638/11701/spbu35.2023.201 Electronic Journal: http://diffjournal.spbu.ru/ 18



Differential Equations and Control Processes, N. 2, 2023

Figure 4: K < M < N < R, M1 < C̃ < Ẽ.

C∗N .

Then, as in the case 1, we have three cases of L̃(d) position: L̃(d) ∈ Ω3,
L̃(d) ∈ Ω4, L̃(d) ∈ MC∗. Using the L-procedure, we finish the polygons con-
structing:

P (d) = R(d)E(d)Q(d)L(d)(orM(d))M(d)(orL(d))N(d), if R(d) ∈ R̂R̃,

P (d) = R(d)Q(d)L(d)(orM(d))M(d)(orL(d))N(d), if R(d) ∈ C∗R̂;

32. M1 < Ẽ < C̃ (fig. 5).

Consider the segment ẼC∗ ⊂ K̃C∗C̃. Similarly to M1C
∗, ẼC∗ has no

common points with the isoclines, except for C∗.

Let R(d) ∈ C∗R̃ be the generating point.

E(d) = {C : C2 = C2(R(d))) ∩ ẼC∗.

Q(d) = {C : C1 + C2 = C1(E(d)) + C2(E(d))} ∩M1C
∗.

Then, to obtain N(d), M(d), L(d) we use the same construction as in case
31.

Thus, we obtain the polygon
P (d) = R(d)N(d)M(d)(orL(d))L(d)(orM(d))Q(d).
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Figure 5: K < M < N < R, M1 < Ẽ < C̃.

33. Ẽ < M1 < C̃ (fig. 6).

Denote Ê = {C : C2 = C2(R̃)} ∩ {C : C1 = C1(M)}. Similarly to the
previous arguments, it is easy to show, that all trajectories enter the polygon
ÊR̃NM .

Consider the segment ÊC∗ ⊂ K̃C∗C̃, hence, having no common points with
the isoclines, except for C∗.

Let R(d) ∈ C∗R̃ be the generating point.

Next, obtain the point E(d) = {C : C1+C2 = C1(R(d))+C2(R(d))}∩ÊC∗.

Then, to obtain N(d), M(d), L(d) we use the same construction as in the
case 31.

Thus, we obtain the polygon
P (d) = R(d)N(d)M(d)(orL(d))L(d)(orM(d))E(d).

4) M < K < N < R.

Using the same arguments as in the previous cases, it can be shown that
trajectories enter and do not leave the polygon KẼR̃NÑM̃ , where Ñ = {C :

C2 = C2(M̃)} ∩ l1, M̃, Ẽ, R̃ are determined in the previous cases 1 and 3.

Consider two cases: C∗ < Ẽ, Ẽ < C∗.
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Figure 6: K < M < N < R, Ẽ < M1 < C̃.

Assume C∗ < Ẽ (fig. 9).

Let R(d) ∈ C∗R̃ be the generating point.

If R(d) ∈ R̃R̂, then E(d) = {C : C2 = C2(R(d))} ∩ ẼR̂, where R̂ is
determined in the previous case 3.

K(d) = {C : C1 + C2 = C1(E(d)) + C2(E(d))} ∩KC∗.

N(d) = {C : C1 = C1(R(d))} ∩ C∗N .

L̃, L(d) M(d) are determined by the L-procedure (see the case 1).

Thus we obtain the polygon
P (d) = R(d)N(d)L(d)M(d)(orM(d)L(d))K(d)E(d).

If R(d) ∈ R̂C∗, then we obtain K(d) = {C : C1 + C2 = C1(R(d)) +
C2(R(d))} ∩KC∗.

N(d) = {C : C1 = C1(R(d))} ∩ C∗N .

L̃, L(d) M(d) are determined by the L-procedure (see the case 1).

Thus, we obtain the polygon
P (d) = R(d)N(d)L(d)M(d)(orM(d)L(d))K(d).

Assume Ẽ < C∗ (fig. 10). Let R(d) ∈ C∗R̃ be the generating point.
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Figure 7: M < K < N < R, C∗ < Ẽ. Figure 8: M < K < N < R, Ẽ < C∗.

Figure 9: M < K < N < R, C∗ < Ẽ.

E(d) = {C : C2 = C2(R(d))} ∩ ẼC∗ (see the case 3).

K(d) = {{C : C1 + C2 = C1(E(d)) + C2(E(d))}} ∩KC∗.

N(d) = {C : C1 = C1(R(d))} ∩ C∗N .

L̃, L(d) M(d) are determined by the L-procedure (see the case 1).

Thus, we obtain the polygon
P (d) = R(d)N(d)L(d)M(d)(orM(d)L(d))K(d)E(d).
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Figure 10: M < K < N < R, Ẽ < C∗.

Thus, Theorem is proved. □

6 Global stability, bifurcation (α = 0)

Suppose, α = 0, which means that the system (1)-(2) describes the dynamics
of capital distribution over the technological levels without innovation process.
The simple analysis of the system (10)-(11) shows that we have two equilibria,
C∗ and R = (V, 0) if β > µ, or one equilibrium R if β ≤ µ.

Let us formulate results describing the long run dynamics of capital distri-
bution over efficiency levels in the case α = 0, β > 0.

Theorem 2 If α = 0, β > µ then the system (1)-(2) has two equilibria, namely
C∗ and R. In addition, if V > Vmax then C∗ is globally stable in R2

+ \{C : C2 =
0} and R is unstable.

Proof

The proof of global stability is analogous to the proof of Theorem 1. The
remaining part of the statement is obvious. □
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Theorem 3 If α = 0, β ⩽ µ then the system (1)-(2) has the unique equilibrium
R, which is globally stable in R2

+ \ {O}.

Proof

The uniqueness of equilibrium (V, 0) may be obtained by the use of argu-
ments of Lemma 2.

To prove the global stability of (V, 0) in R2
+ \ {O} it is sufficient to note

that (V, 0) ∈ Ω and for C ∈ R2
+ \ {C : C2 = 0}

Ċ2 = C2(a2(V −C1 −C2)− µ+
βC1

c1 + C2
) < C2

(
a2(V −C1 −C2)− µ+ β

)
< 0.

Besides, there are two trajectories, namely, {C(t, (C1(0), 0) : C1(0) ∈ (0, V ), t ∈
R} and {C(t, (C1(0), 0) : C1(0) > V, t ∈ R}, such that C(t, (C1(0), 0) → (V, 0)
as t → ∞. □

Suppose µ is fixed, and let us decrease β. If β > µ then the system (1)-(2)
has two equilibria, C∗ and R, globally stable in R2

+\{C : C2 = 0} and unstable,
respectively. If β = µ then C∗ = R, which is globally stable in R2

+ \ {O}. If
β < µ then R is the unique, globally stable, equilibrium in R2

+ \ {O}, and C∗

goes into a set {C : C2 < 0}, which has no economic sense in the considered
problem. Thus, we may say that µ is the bifurcation value of β.

Let us formulate the economic sense of the obtained results. If α = 0 the
appearance of the equilibrium R = (V, 0) implies the situation when the second,
more high, level of technology efficiency may not emerge in a finite time. Really,
if the rate of depreciation is sufficiently large, i.e. β ⩽ µ, then R = (V, 0) is
globally stable. If β > µ, then R = (V, 0) is the saddle and, as it is easy to
show, has two stable separatrices, belonging to the set {C : C2 = 0}. Hence,
the theorem of integral continuity implies that for any small ε > 0 and any large
T > 0 there exists δ > 0 such that C2(t, C

0) < ε if C2(0) < δ and t ∈ [0, T ].

The latter means that under the condition α = 0, which means the absence
of innovation process in the economical system, the imitation process only can-
not initialize the emergence of the second, high, technological level within a
reasonable time. The proposed model permits to obtain the estimations of
parameters for which the imitation efforts do not lead to an economic system
modernization.
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Conclusions

The process of technological development, based on Schumpeterian classical
approach, is modeled by the two-dimensional nonlinear dynamical system. The
influence of innovation, imitation and depreciation processes interaction is stud-
ied. The results concerning the existence and stability of equilibria which de-
pends on the parameters’s relationships are proved. The bifurcation value of
the imitation rate parameter, in the absence of innovation process, is found.

The future investigations will be dedicated to the weakening of the global
stability condition. Also, it is interesting to consider the system with three
technological levels.
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